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Abstract: Digital filters have found their way into many products from every day consumer items such 
as mobile phones to advanced maritime and military communications and avionics systems.  Design of 
digital filters faces two fundamental problems, their stability and synthesis. Recursive filters have more 
stability problems than nonrecursive filters. Stability of a filter can be determined by the location of the 
zero valued region of the denominator polynomial of its transfer function. Stability of recursive filters 
has been studied by many researchers for the past three decades. Several theorems on stability testing 
and stabilizing recursive digital filters have been already proposed. We present a new approach to test 
the stability problem of the one-dimensional (1-D) recursive digital filters using Lagrange Multipliers. 
This method not only tests the stability of recursive digital filters, but also provides the stable version 
of the filter’s transfer function if found to be unstable.   
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INTRODUCTION 

 
 Digital filters are used in many digital signal 
processing (DSP) fields, but the recursive version of 
which is difficult to design due to stability problem. 
Several filtering applications, such as in image 
processing or in communications, require a linear-phase 
characteristic. This can be easily achieved with finite-
impulse response (FIR) filters, also known as 
nonrecursive filters. However, the resulting FIR filter 
order is sometimes exceedingly high, producing an 
unacceptable delay and computational cost. The 
alternative is to use infinite-impulse response (IIR) 
filters known also as recursive filters with approximate 
linear-phase. For a given filter specifications, the 
required order for a recursive filter is 5 to 10 times 
lower than that of a nonrecursive filter[1]. In recursive 
filters, the poles of the transfer function (equivalently, 
the zeros of the denominator polynomial of the filter’s 
transfer function) can be placed anywhere inside the 
unit circle in the z-plane. As a consequence of this 
degree of freedom, high selectivity filters can easily be 
designed with lower-order transfer functions. In 
nonrecursive filters, on the other hand, with poles fixed 
at origin, high selectivity can be achieved only by using  

a relatively higher order transfer functions[2]. A general 
desire in any filter design is that the number of 
operations needed to compute the filter response is as 
low as possible. The order of a filter is more or less 
proportional to the number of operations. Recursive 
filter is preferable, primarily because of its lower order. 
So its implementation involves fewer parameters, 
requires less memory and has lower computational 
complexity than the nonrecursive counterpart [3]. This 
gives more flexibility and power to implement high 
selectivity recursive filters using smaller number of 
coefficients meeting a particular magnitude 
specification, but results in stability problems in both 
design and implementation.  

A recursive digital filter is defined to be Bounded-
Input-Bounded-Output (BIBO) stable if every bounded 
input results in a bounded output. Stability is often a 
desirable constraint to impose since an unstable system 
can generate an unbounded output, which can cause 
system overload and other difficulties[4, 6]. The stability 
testing and stabilization of 1-D recursive digital filters 
has been studied by several researchers [2, 5]. In this 
paper a new method of stability testing and stabilizing 
1-D recursive digital filters based on Lagrange 
multipliers is obtained.  
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1-D RECURSIVE DIGITAL FILTER STABILITY 
THEOREMS AND STABILIZATION METHODS 
  

In this section, the various stability theorems and 
stabilization methods on 1-D recursive digital filters are 
reviewed and compared. Recursive filters are 
conveniently described in terms of 1-D z-transforms.  It 
is assumed throughout this section that z-transform is 
defined with negative powers of z. Under this 
assumption, stability implies that all poles of the filter’s 
transfer function must be within the unit circle.  
 

Consider the transfer function )(zH of a certain 1-
D recursive digital filter given by 
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One method of testing the stability of the filter 
described by the transfer function as in (1) is to 
explicitly determine the zeros of )(zA  by a root finding 
method[3, 6] and check if all the zeros are inside the unit 
circle of the complex z-plane. If so, the system 
described by the transfer function (1) is stable else 
unstable. This method is conceptually very simple, and 
is computationally efficient for low values of M where, 
M  is the order of the denominator polynomial of (1). 
For values of M up to 4=M , closed-form expressions 
can be used to determine the zeros. Even if the closed-
form expressions are not available, the zeros 
determined in one test can be used as initial estimates 
for the zeros in the subsequent test. This is because the 
zeros obtained in the 1-D stability tests typically do not 
vary much from one test to the other. This method has 
been reported[2] to be quite useful in practice for 8=M . 
The explicit evaluation of the zeros using this method 
provides us considerable insight into exactly how stable 
a stable filter is. If none of the zeros determined is very 
close to the unit circle, the filter is said to be stable [3, 6].  

The second method of testing the stability of the 
filter described by the transfer function (1) is to use 
Marden-Jury Test[6] which is proven to be 
computationally efficient. This method has been 
reported to be computationally efficient and reliable for 
M  up to 20 that cover most recursive filters considered 
in practice [2]. However, the disadvantage being it does 
not tell us how stable a filter is. The method can be 
used in determining the number of zeros inside the unit 
circle, but cannot be used explicitly to determine the 
locations of the zeros.  

The third method of testing the filter for stability is 
to exploit the Argument Approach [2]. Consider the net 
change in the argument of )(zA  in (1) as we follow the 

unit circle contour given by ωjez =  from 0=ω  to 
πω 2=  in a counterclockwise direction. Denoting the 

net argument change by ( )πωθ 2,0:A∆ , the argument 
approach states that 

( ) )(22,0: MN zA −=∆ ππωθ                                     (2) 
where, ZN  is the number of zeros inside the unit circle.  
When all roots are inside the unit circle, MN Z = and 
therefore,  
 ( ) 02,0: =∆ πωθ A                                                      (3) 

From (3) it is clear that, to test the stability is to 
check if the net phase change is zero. The net phase 
change can be determined by unwrapping the phase. If 
the unwrapped phase is continuous and the unwrapped 
phases at 0=ω  and πω 2=  are identical, the system is 
stable, else it is unstable. This method has been 
reported to be reliable and computationally efficient in 
comparison to other methods for M > 20[2]. It is also 
noted that the phase unwrapping is quite difficult when 
some roots are very close to the unit circle. The 
unwrapped phase has some qualitative features that can 
be related to the degree of system stability. For a stable 
filter, rapid change in the unwrapped phase typically 
occurs when some zeros are close to the unit circle.  

In 1-D systems there are two standard approaches 
to design recursive filters. One approach is to design the 
filter from an analog system function and the other is to 
design directly in the discrete domain. The direct design 
method is further classified into spatial domain and 
frequency domain methods. In the spatial domain 
method, the filters are designed by using an error 
criterion in the spatial domain, conversely in the 
frequency domain method the filters are designed using 
an error criterion in the frequency domain. The filters 
designed by both spatial domain and frequency domain 
techniques can still be unstable.  

There are few methods by which the 1-D recursive 
digital filter can be stabilized. The popular methods are 
Least Squares Inverse (LSI)[5, 7] and Discrete Hilbert 
Transform (DHT) methods [8]. It has been shown[8] that 
DHT method of stabilization will yield stable 
polynomials if the original polynomial does not have 
zeros on the unit circle. Likewise, it is well known[5, 9- 

11] that the LSI of a 1-D polynomial that does not have 
zeros on the unit circle is always stable. This fact can be 
utilized for the effective design of stable 1-D recursive 
digital filters. In the process of obtaining the stable LSI 
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polynomial corresponding to an unstable polynomial, 
since the minimum error   [ 5, 10, 14] is given by  

00min 1 baE −=                                                            (4) 
the value of 0b will always turn out to be always the 
highest value. In this, 0a  and 0b  are the constant terms 
of the original and LSI polynomials respectively. It is 
apparent that the stable LSI polynomial will have the 
highest value for its constant term. We use this concept 
of maximizing the constant term of a polynomial to test 
the stability or otherwise of a polynomial in the 
following sections. 
 

SOME IMPORTANT PRELIMINARIES AND 
CONCEPTS 

 Unlike the conventional method of defining   z-
transform of a discrete signal[6], it is assumed hereafter 
that positive powers of z are used in the definition of z-
transform [12, 13]. With this assumption, we have the 
following Theorem [2]. 
 
Theorem 1: 
 
(i) The 1-D polynomial )(zA  is stable if and only if 

0)( ≠zA , for all 1≤z  

(ii) A stable )(zA  is said to be marginally stable if 

0)( =zA , for some 1=z  

We also have the following definition on 
autocorrelation coefficients [10].  
 
Definition: 
If )(zA is an Mth degree polynomial as in (5) the 

coefficients sγ ’s of )()( 1−zAzA written as  
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are called the autocorrelation coefficients of )(zA .  The 
coefficients are (M+1) in number. For a real 
polynomial )(zA , sγ ’s   are real.  

Consider the transfer function of a certain recursive 

digital filter such that 
)(

1
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be of degree M. It has )1( +M  autocorrelation 
functions sγ ’s as given below:  
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We would like to point out that for any given 1-D 
polynomial )(zA  of order M, there are M2  number of 
1-D polynomials in total (without counting the 
negatives of these polynomials) which will have the 
same autocorrelation coefficients sγ ’s as that of )(zA as 
shown in later sections. Out of these M2  number of    
1-D polynomials, which are said to form a family, only 
one polynomial will lead to a stable system. It has been 
shown that the autocorrelation functions or coefficients 
are related to magnitude square of system functions [15]. 
Therefore it is obvious all the M2  number of 
polynomials will have the same magnitude response. 
Out of this M2 number of polynomials in total only one 
polynomial will be stable for which the constant term 
will have the highest value as discussed in the 
foregoing section. The remaining polynomials although 
provide the same magnitude response, may lead to 
unstable system.  We now state this in the form of a 
theorem. 
 
Theorem 2: 
 
For any 1-D polynomial )(zA of degree M, there are  

M2 distinct 1-D polynomials with same autocorrelation 
function that form a family. Only one 1-D polynomial 
among the family whose constant term is the highest 
leads to a stable system. 

Based on Theorem 3.2 we use the Lagrange 
multipliers to find out the stable polynomial. The proof 
of the above theorem is shown in the following section. 
 

STABILITY TESTING AND STABILIZATION 
BASED ON LAGRANGE MULTIPLIERS 

 
In this section, a new method of testing the stability 

and stabilizing 1-D recursive digital filters based on 
Lagrange multipliers is explained. This method aims to 
maximize the constant term of the 1-D polynomial and 
a decision regarding its stability can be made depending 
upon whether the constant term of the 1-D polynomial 
is maximizable or not. To test the stability of a system 
described by the transfer function (1) whose 
denominator polynomial is )(zA , we use Lagrange 
multipliers.  
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Let the stable version of )(zA  be )(zA′  whose 

coefficients are denoted by ra′ . To show that the given 
polynomial )(zA  is stable, we should maximize the 

constant term 0a′  or 2
0a′  of )(zA′ by using Lagrange 

multipliers.  
 
Let ‘f’ be the function to be maximized 

2
0af ′=                                                                        (7) 

satisfying the constraints ig , given as 

Msaag ssr

M

r
ri ��,2,1,0,0

0

==−′′= +
=
� γ    (8) 

where, Msaa
M

r
srrs ,........2,1,0

0

==�
=

+γ  

that is,  
Mig i ...,.........2,1,0,0 ==                              (9) 

 
The above constraints are framed due to the fact that the 
constant term 0a  of one of the polynomials from the 
family will be equal to the constant term 0a′  of the 
assumed stable version of the polynomial )(zA′  if )(zA  
is the stable polynomial among the family. Here, sγ  
represents the autocorrelation coefficients as in (6) of 

the original polynomial )(zA  and  sr

M

r
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represents the autocorrelation coefficients of the stable 
version )(zA′ . 
 
Let us now form the Lagrange Function ),( 0 iaL λ′  such 
that  
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where iλ ’s are the Lagrange multipliers. 
 The necessary and sufficient conditions for the 
function ‘f’ to be global maximum and hence ‘ 0a′ ’ to 
be the greatest in magnitude are given using Lagrange 
multiplier method as follows[13]. 
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and  
0>iλ , Mi ,....,2,1,0=                                              (12) 

For a given polynomial )(zA , all the coefficients ra ’s 
are known and hence sγ ’s  are fixed.  
 
If we want to test whether )(zA will lead to a stable 
system or not, we have to do the following: 
 
Obtain the equation   
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Using (10) in (13) we get, 
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Simplifying (14), we get,   
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The constraint equations in (8) can be expanded as 
follows:  

0
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Substitute the value of 0a′  which was obtained from 
(15) in the expanded constraint equations (16) above.  
 
This will result in (M+1) equations involving (M+1) 
number of iλ ’s and M number of  ia′ ’s as unknowns.  
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Solve (17) for ia′ ’s and iλ ’s. In this process all iλ ’s 
should turn out to be positive and ia′ ’s real satisfying 
(11) and (12). The values of ia′  and iλ ’s thus obtained 
from (17) are used to get the maximum value of 0a′  by 
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using (15). If the maximum value of 0a′ is the same as 

0a of the given polynomial )(zA , then we can conclude 
that )(zA will lead to a stable system.  
 

NUMERICAL RESULTS 
 
 In this section, we first show that for any given 1-D 
polynomial )(zA , there are M2  number of  1-D 
polynomials in total which will have the same 
autocorrelation coefficients sγ ’s as that of )(zA .  

Consider a 1-D polynomial of second degree 
(M=2), 672)( 2 ++= zzzA , which is of the form 

01
2

2)( azazazA ++= . There will be 4 polynomials in 
total in the family of )(zA . 
The autocorrelation coefficients of )(zA are as follows: 

89276 2222
2

2
1

2
00 =++=++= aaaγ  

( ) ( ) 56277621101 =×+×=+= aaaaγ  
1226202 =×== aaγ      

There are three other polynomials without counting the 
negatives of the polynomials in the family for the 
given )(zA . They are as follows: 

483)( 2
1 ++= zzzA  

384)( 2
2 ++= zzzA  

376)( 2
3 ++= zzzA  

It can be found that all these three polynomials will 
also have the same autocorrelation coefficients as that 
of )(zA , i.e. 89, 56 and 12. As discussed in previous 
section, the polynomials which have the same 
autocorrelation coefficients will also have the same 
magnitude response and among this only one 
polynomial will be stable for which the constant term is 
the highest (magnitude wise). Now we have to show 
that the polynomial with the highest value for its 
constant term is stable. It is palpable from our 
discussion in section IV that the Lagrange multiplier 
method maximizes the constant term of the given 
polynomial and hence in the process of maximization if 

0a′ turns out to be equal to 0a , then one can conclude 
that the given polynomial is stable or not. 

Consider again the same 1-D polynomial of second 
degree  

672)( 2 ++= zzzA                                           (18) 
 where  60 =a , 71 =a , 22 =a .  
Let us now check the stability of this polynomial.                                           

Let  01
2

2)( azazazA ′+′+′=′                                     (19) 
represent the stable version of the given polynomial 

)(zA  having the same autocorrelation coefficients 
as )(zA . The autocorrelation constraint equations of 

)(zA′  using (8) are as follows. 
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By using (15) in (20), we get,  
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Simplifying (20) we get,  
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It is clear that (15) and (22) can be only satisfied 
only by 71 =′a and 22 =′a . Substituting these values in 
(15) we get, 60 =′a . So the polynomial with 60 =a , 

71 =a , 22 =a , namely 672)( 2 ++= zzzA  is a stable 
polynomial. In this case, the given polynomial is found 
to be stable. For this polynomial )(zA , we find that the 

zeros are 2/3=z   &  2=z .  

As can be seen, this 1-D polynomial )(zA  is found 
to be stable as all its zeros lie outside the unit circle as 
said in theorem 3.1. Now when we check the stability 
of the remaining polynomials )(1 zA , )(2 zA  and 

)(3 zA that belong to the same family as that of )(zA , 
we find that at least one root of these polynomials lie  
inside the unit circle and hence unstable.  

From this, it can be concluded that, out of these 
four polynomials that belong to a ‘family’ having the 
same ACF and hence magnitude response, only one 
polynomial is found to be stable for which the constant 
term is the highest. It is stressed that the above 
procedure to test the 1-D polynomial for stability is 
applicable only if the polynomial is nonlacunary, in the 
sense there are no missing terms between the highest 
degree and the constant term. When the given 



Am. J. Applied Sci., 5 (5): 490-495, 2008 
 

 495 

polynomial is lacunary, we have to make it nonlacunary 
and follow the same procedure.  
 

CONCLUSIONS 
 

In this paper, we proposed a new method for 
testing the stability and stabilizing 1-D recursive digital 
filters based on autocorrelation functions and Lagrange 
multipliers. It has been shown that maximizing the 
constant term of a denominator polynomial of a system 
transfer function will lead to a stable system whose 
magnitude response is similar to the magnitude 
response of the original system. The proposed method 
not only tests the stability of recursive digital filters, but 
also provides the stable version of the system. Like the 
LSI and DHT stabilization methods, this method also 
does not guarantee stability if the original denominator 
polynomial of the system transfer function has zeros on 
the unit circle. If the original polynomial has a zero on 
the unit circle, then all the polynomials in the family 
will have a zero on the unit circle and hence none of 
them are stable. The proposed method can be extended 
to testing the stability of 2-D recursive digital filters.      
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