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Abstract: We presented optimization of mechanical structures, performed by the Mixed-Integer Non-
linear Programming (MINLP) optimization approach. The MINLP is a combined continuous/discrete 
optimization technique, where a structural topology and standard/discrete sizes are optimized 
simultaneously with the continuous variables. Ddiscrete binary 0-1 variables were used to express the 
discrete decisions. For solution of this non-linear, continuous/discrete and non-convex MINLP class of 
the optimization problem, Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm 
was used. A two-phase MINLP strategy applied for the optimization to accelerate the convergence of 
the mentioned algorithm.  
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INTRODUCTION 

 
The paper discusses the optimization of mechanical 

structures, performed by the Mixed-Integer Non-linear 
Programming approach (MINLP). The MINLP is a 
combined continuous/discrete optimization technique. 
It handles with continuous and discrete binary 0-1 
variables simultaneously. While continuous variables 
are defined for the continuous optimization of 
parameters (dimensions, stresses, strains, weights, 
costs.), discrete variables are used to express discrete 
decisions, i.e. usually the existence or non-existence of 
structural elements inside the defined structure. 
Different standard/discrete sizes may also be defined as 
discrete alternatives. Since the MINLP performs 
continuous and discrete optimizations simultaneously, 
the MINLP approach also finds optimal continuous 
parameters (mass, costs, stresses), a structural topology 
(with an optimal number and a configuration of 
structural elements) and discrete standard sizes 
simultaneously. 

The MINLP optimization approach is proposed to 
be performed through three steps. The first one includes 
the generation of a mechanical superstructure of 
different topology and standard dimension alternatives, 
the second one involves the development of an MINLP 

model formulation and the last one consists of a 
solution for the defined MINLP optimization problem. 
The MINLP continuous/discrete optimization problems 
of structural optimization are in most cases 
comprehensive, non-convex and highly non-linear. The 
Outer-Approximation/Equality-Relaxation (OA/ER) 
algorithm [1-2] is thus used. A two-phase MINLP 
optimization is proposed to accelerate the convergence 
of the mentioned algorithm. The optimizations are 
carried out by the MINLP computer package MIPSYN, 
the successor of PROSYN[1] and TOP[2-4]. 

Three examples are presented at the end of the 
paper. The first one introduces the topology, shape and 
sizing optimization of an aluminium truss cantilever, 
the second example shows topology and 
discrete/standard sizing optimization of a 40 m long 
steel truss and the last one presents the topology and 
standard sizing optimization of a single-storey 
industrial steel building. 
 

MATERIALS AND METHODS 

 
 Mechanical superstructure: The MINLP 
optimization approach requires the generation of an 
MINLP mechanical superstructure composed of various 
topology and design alternatives that are all candidates 
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for a feasible and optimal solution. While topology 
alternatives represent different selections and 
interconnections of corresponding structural elements, 
design alternatives include different standard 
dimensions. 
 The superstructure is typically described by means 
of unit representation: i.e. structural elements and their 
interconnection nodes. Each potential topology 
alternative is represented by a special number and a 
configuration of selected structural elements and their 
interconnections; each structural element may in 
addition have different standard dimension alternatives. 
The main goal is thus to find within the given 
superstructure a feasible structure that is optimal with 
respect to topology, standard dimensions and all 
defined continuous parameters. 
 
MINLP model formulation: It is assumed that a 
general non-linear and non-convex continuous/discrete 
optimization problem can be formulated as an MINLP 
problem in the form: 
 

min   ( )xyc fz +=
T  

s.t.: 
( ) 0=xh  

 ( ) 0≤xg  (MINLP) 

bCxBy ≤+  

x ∈ X = {x ∈ R
n

:  x
lo

 ≤  x ≤  x
up

} 
 
where x is a vector of continuous variables specified in 
the compact set X and y is a vector of discrete, binary 0-
1 variables. Functions f(x), h(x) and g(x) are non-linear 
functions involved in the objective function z, equality 
and inequality constraints, respectively. All functions 
f(x), h(x) and g(x) must be continuous and 
differentiable. Finally, By+Cx≤b represents a subset of 
mixed linear equality/inequality constraints. 
The above general MINLP model formulation has been 
adapted for structural optimization. It is postulated that 
it helps us construct a MINLP mathematical 
optimization model for any structure. 

In the context of structural optimization, continuous 
variables x define structural parameters (dimensions, 
strains, stresses, costs, mass...) and binary variables y 
represent the potential existence of structural elements 
within the defined superstructure. An extra binary 
variable y is assigned to each structural element. The 
element is then selected to compose the structure if its 
subjected binary variable takes value one (y=1), 

otherwise it is rejected (y=0). Binary variables also 
define the choice of discrete/standard sizes. 
The economical (or mass) objective function z involves 
fixed costs (mass) in the term cTy, while the dimension 
dependant costs (mass) are included in the function f(x). 
Non-linear equality and inequality constraints h(x)=0, 
g(x)≤ 0 and the bounds of the continuous variables 
represent the rigorous system of the design, loading, 
resistance, stress, deflection, constraints known from 
the structural analysis. Logical constraints that must be 
fulfilled for discrete decisions and structure 
configurations, which are selected from within the 
superstructure, are given by By+Cx≤b. These 
constraints describe relations between binary variables 
and define the structure’s topology, materials and 
standard dimensions. It should be noted, that the 
comprehensive MINLP model formulation for 
mechanical structures may be found elsewhere[3, 5]. 
 
MINLP methods: A general MINLP class of 
optimization problem can be solved in principle by the 
following algorithms and their extensions:  
-the Nonlinear Branch and Bound, NBB, proposed and 
used by many authors, e.g. E.M.L. Beale[6], O.K. Gupta 
and A. Ravindran[7];  
-the Sequential Linear Discrete Programming method, 
SLDP, by G.R. Olsen and G.N. Vanderplaats[8] and M. 
Bremicker et al.[9];  
-the Extended Cutting Plane method by T. Westerlund 
and F. Pettersson[10];  
-Generalized Benders Decomposition, GBD, by J.F. 
Benders[11], A.M. Geoffrion[12];  
-the Outer-Approximation/ Equality-Relaxation 
algorithm, OA/ER, by G.R. Kocis and I.E. 
Grossmann[13];  
-the Feasibility Technique by H. Mawengkang and B.A. 
Murtagh[14]; and  
-the LP/NLP based Branch and Bound algorithm by I. 
Quesada and I.E. Grossmann[15]. 
 
Modified OA/ER algorithm: The OA/ER algorithm 
consists of solving an alternative sequence of Non-
linear Programming (NLP) optimization subproblems 
and Mixed-Integer Linear Programming (MILP) master 
problems, see Fig. 1. The former corresponds to 
continuous optimization of parameters for a mechanical 
structure with a fixed topology (and fixed 
discrete/standard dimensions) and yields an upper 
bound to the objective to be minimized. The latter 
involves a global approximation to the superstructure of 
alternatives in which a new topology and 
discrete/standard dimensions are identified so that its 
lower bound does not exceed the current best upper 
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bound. The search of a convex problem is terminated 
when the predicted lower bound exceeds the upper 
bound, otherwise it is terminated when the NLP 
solution can not be improved. The OA/ER algorithm 
guarantees the global optimality of solutions for convex 
and quasi-convex optimization problems. 

The OA/ER algorithm as well as all other 
mentioned MINLP algorithms do not generally 
guarantee that the solution found is the global optimum. 
This is due to the presence of nonconvex functions in 
the models that may cut off the global optimum. In 
order to reduce undesirable effects of nonconvexities 
the Modified OA/ER algorithm was proposed by Z. 
Kravanja and I.E. Grossmann[1], see also S. Kravanja et 
al.[2], by which the following modifications are applied 
for the master problem: the deactivation of 
linearizations, the decomposition and the deactivation 
of the objective function linearization, the use of the 
penalty function, the use of the upper bound on the 
objective function to be minimized as well as the global 
convexity test and the validation of the outer 
approximations. 
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Fig. 1: Steps of the OA/ER algorithm 
 
Two-phase MINLP optimization: The optimal 
solution of complex non-convex and non-linear MINLP 
problem with a high number of discrete decisions is in 

general very difficult to be obtained. The optimization 
is thus proposed to be performed sequentially in two 
different phases to accelerate the convergence of the 
OA/ER algorithm. The optimization starts with the 
topology optimization of a structure, while discrete 
sizes are relaxed temporary into continuous parameters. 
When the optimal topology is found, discrete sizes are 
in the second phase re-established and the simultaneous 
topology and discrete sizing optimization of the 
structure is then continued until the optimal solution is 
found. 
 

RESULTS AND DISCUSSION 

 
MINLP optimization approach is illustrated by three 

examples. The first one introduces the topology, shape 
and sizing optimization of an aluminium truss 
cantilever, the second example shows the topology and 
discrete/standard sizing optimization of a 40 m long 
steel truss and the last one presents the topology and 
discrete/standard sizing optimization of a single-storey 
industrial steel building. 
The optimization of the structures is proposed to be 
carried out by a user-friendly version of the MINLP 
computer package MIPSYN, the successor of 
PROSYN[1] and TOP[2-4, 16]. MIPSYN is the 
implementation of many advanced optimization 
techniques, most important of which are the Modified 
OA/ER algorithm and MINLP strategies. In terms of 
complexity, the MIPSYN's synthesis problems can 
range from a simple NLP optimization problem of a 
single structure up to the MINLP optimization of a 
complex superstructure problem. MIPSYN runs 
automatically or in an interactive mode and thus 
provides the user with a good control and supervision 
of the calculations. GAMS/CONOPT2[17] (Generalized 
reduced-gradient method) is used to solve NLP 
subproblems and GAMS/Cplex 7.0[18] (Branch and 
Bound) is used to solve MILP master problems. 

For each type of structure, a special optimization 
model must be developed. Each model is constructed 
on the basis of the mentioned general MINLP-G model 
formulation. As an interface for mathematical 
modelling and data inputs/outputs GAMS (General 
Algebraic Modelling System)[19], a high level language, 
is used. 
 
Topology, shape and sizing optimization of an 

aluminium truss cantilever: The first numerical 
example presents the topology, shape and sizing 
optimization of an aluminium truss cantilever. The 
superstucture of the cantilever comprises 14 joints and 
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30 alternative elements. It is shown in Fig. 2. The input 
data are: L = 500 cm, H = 1050 cm, qSd = 10 kN/m, 
Young's modulus E = 68.97 GPa, the limit 
tensile/compressive stress σt,max = σc,max = 172.4 MPa 
and the allowed vertical displacements of unsupported 
joints are vi

max = 15 cm. The design uniformly 
distributed load qSd is approximated to the nodal forces 
acting on the joints of the bottom chord. 

The MINLP optimization model ALUMTRUSS 
was developed for the optimization. The objective 
function defines the weigth of the structure. The unit 
weigth of the aluminium material amouts to 27126.4 
N/m3. The objective function is subjected to the set of 
constraints known from structural analysis. The finite 
element equations were defined for the calculation of 
internal forces and displacements. Design constraints 
are defined in order to check the tensile and 
compressive/buckling resistance of bars as well as 
vertical displacements of joints. The limit buckling 
stress of a compressed element is considered as equal to 
the Euler buckling stress for circular cross-sections. 

For each element, a binary variable yi,j is introduced 
in order to define the existance or nonexistance of a bar 
inside the current structural topology, where i and j 
stand for the initial and the end joint of the element, 
respectively. A set of logical relations is then defined 
by which the kinematical stability of the truss is 
provided. The vertical (Y) coordinates yi

c of the top 
chord joints (joints 4, 6, 8, 10, 12 and 14, see Fig. 2) are 
defined as continuous shape variables with their 
lower/upper bounds yi

c,LO/ yi
c,UP = 100/1200 cm. The 

cross section areas of bars Ai,j are considered as 
continuous sizing variables. The lower/upper bounds on 
cross-sectional areas are Ai,j

LO/Ai,j
UP = 6.45/225.81 cm2. 
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Fig. 2: Superstructure of the aluminium truss 

cantilever 
The mixed continuous/discrete MINLP optimization 

was performed by the Modified OA/ER algorithm. The 
optimization model contained 248 mainly nonlinear 
(in)equality constraints, 146 continuous and 30 

discrete/binary variables. The optimal solution was 
obtained at the 7th MINLP iteration. The optimized 
structure is shown in Fig. 3. The obtained optimal 
continuous variables are listed in Table 1. 
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Fig. 3: The optimized aluminium truss cantilever 

structure 
 
Topology and discrete/standard sizing optimization 

of a 40 m long steel truss: The second example 
presents the simultaneous topology and 
discrete/standard sizing optimization of a simply 
supported truss girder over the span of 40 m, see Fig. 4. 
The proposed superstructure includes 18 nodes and 41 
alternative elements. The truss is subjected to a design 
uniformly distributed load qSd of 30 kN/m, acting on the 
bottom chord. The uniform load is approximated to the 
nodal forces acting on the joints of the bottom chord. 
Truss elements are designed from standard circular 
hollow sections made of S 235 steel. The input data 
also include Young's modulus E = 210 GPa and the unit 
mass of steel material 7850 kg/m3. 

The MINLP optimization model STEELTRUSS 
was developed for the optimization. The objective 
function of the structure's mass was subjected to the set 
of constraints known from structural analysis. The finite 
element equations were defined for the calculation of 
internal forces and displacements. Constraints for the 
dimensionig were defined in accordance with Eurocode 
3[20]. Buckling lengths of the truss elements are 
considered as being equal to the system lengths of the 
elements for both in-plane and out-of-plane buckling.  

The vectors of discrete/standard alternative values 
for the diameter d and wall thickness t of cross-sections 
are given as follows: 

d = {42.4, 48.3, 60.3, 76.1, 88.9, 108.0, 114.3, 
133.0, 139.7, 159.0, 168.3, 177.8, 193.7, 219.1, 244.5 
273.0} [mm]  and 

t = {2.0, 2.9, 3.2, 4.0, 5.0, 6.3, 7.1, 8.0, 10.0, 12.5, 
14.2, 16.0} [mm]. 



Am. J. Applied Sci., 5 (1): 48-54, 2008 

 

 52 

Table 1: The obtained optimal values of optimization variables 
Sizing variables 

A1,3
 = 76.55 cm2 

A2,3 = 6.45 cm2 A2,4 = 20.36 cm2 
A3,4

 = 6.45 cm2 
A3,5 = 74.38 cm2 A4,5 = 6.45 cm2 

A4,6
 = 17.57 cm2 

A5,6 = 6.45 cm2 A5,7 = 71.30 cm2 
A6,7

 = 6.45 cm2 
A6,8 = 14.41 cm2 A7,8 = 6.45 cm2 

A7,9
 = 66.51 cm2 

A8,9 = 6.45 cm2 A8,10 = 10.26 cm2 
A9,10 = 6.45 cm2 A9,11 = 57.75 cm2 A10,11 = 7.38 cm2 
A10,12 = 6.45 cm2 A11,12 = 8.52 cm2 A11,13 = 33.36 cm2 

   A12,13 = 6.45 cm2    
Shape variables 

y4
c    =   772.40 cm y6

c     =      538.05 cm y8
c       =     347.74 cm 

y10
c   =   204.99 cm y12

c    =     153.64 cm  
Optimal weigth W =  5217.39 N 

 
With respect to the available standard cross sections the 
lower and upper bound on wall thickness for each 
section diameter are defined. This way, 76 alternative 
standard cross-sections are defined, which can be 
attributed to each element of the truss. The cross 
sections of the chords are forced into being constant 
through the entire span. Since the loading of the defined 
truss is symmetric, symmetry of topology with respect 
to the vertical axis through the midspan of the structure 
is required. 
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Fig. 4: Superstructure of the steel truss 
 
The MINLP optimization of the structure’s mass was 
performed by the computer package MIPSYN 
(GAMS/CONOPT2 and GAMS/Cplex 7.0). The 
Modified OA/ER algorithm and the two-phase MINLP 
optimization were applied. The optimization model 
contained 903 mainly nonlinear (in)equality constraints, 
1629 continuous and 1189 discrete/binary variables. 
Fig. 5 shows the calculated optimal truss. The optimal 
mass yields 2544.995 kg, obtained at the 51st main 
MINLP iteration. The obtained optimal height of the 
truss girder amouts to 767.82 cm. The calculated 
optimal standard cross-section dimensions are listed in 
Table 2. 
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Fig. 5: Optimal steel truss  
 

Topology and discrete/standard sizing optimization 

of an industrial steel building: The third example 
introduces the topology and discrete/standard sizing 
optimization of a single-storey industrial steel building. 
The building is 27 meters wide, 80 meters long and 6 
meters high. The structure is consisted from equal non-
sway steel portal frames, which are mutually connected 
with purlins, see Fig. 6. Variable imposed loads s=1.80 
kN/m2 (snow), wv=0.2 kN/m

2 (vertical wind) and 
wh=0.80 kN/m

2 (total horizontal wind) are defined as 
the uniformly distributed surface load. The material 
used was steel S 355. The task of the optimization was 
to find the minimal structure’s mass, the optimal 
topology (the optimal number of portal frames and 
purlins) and all standard cross-sections. 
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Fig. 6: Single-storey industrial steel building 
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The MINLP optimization model FRAMEOPT was 
developed. The objective function of the structure’s 
mass was defined. Both, the horizontal concentrated 
load P at the top of the columns (wind) and the vertical 
uniformly distributed load q on the frame beams (snow 
and wind) were calculated automatically through the 
optimization considering the calculated intermediate 
distance between the portal frames. Internal forces were 
calculated by the elastic first-order theory for the non-
sway frame mode. The design of steel members was 
performed in accordance with Eurocode 3 for the 
conditions of both the ultimate and serviceability limit 
states.  
 
Table 2:  Optimal standard cross-sections 

Elemet Diameter 

d [mm] 

Wall 

thickness t 

[mm] 

Bottom chord (1-17) 193.7 4.0 

Top chord (4-16) 177.8 5.0 

1-4, 16-17 244.5 4.0 

1-5, 13-16, 7-8, 11-12 133.0 2.0 

3-4, 15-16 60.3 2.9 

5-6, 13-14 159.0 3.2 

6-7, 11-14 76.1 3.2 

8-9, 9-12, 9-10 42.4 2.0 

 
 
The industrial building superstructure was generated 

in which all possible structures were embedded by the 
topology variation of 30 portal frames and 20 purlins. 
The superstructure also comprised 24 different standard 
hot rolled European wide flange I sections, i.e. HEA 
sections (from HEA 100 to HEA 1000) for each 
column, beam and purlin separately.  

The MINLP model of the industrial building 
contains 122 (in)equality constraints, 175 continuos and 
112 discrete binary 0-1 variables. The MINLP 
optimization of the structure’s mass was performed by 
the computer package MIPSYN (GAMS/CONOPT2 
and GAMS/Cplex 7.0). The Modified OA/ER algorithm 
and the two-phase MINLP optimization were applied. 
The optimal result of 172.68 tons was obtained in the 
29th main MINLP iteration. The optimal solution 
includes the obtained optimal topology of 18 portal 
frames and 14 purlins, see Fig. 7, as well as the optimal 
standard steel HEA sections of columns, beams and 
purlins, see  Fig. 8. 
 

CONCLUSION 

 
 The paper presents the Mixed-Integer Non-linear 
Programming (MINLP) approach to optimization of 
mechanical structures. The Modified OA/ER algorithm 
and the two-phase MINLP optimization strategy are 
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Fig. 7: Optimal structural topology of the single-

storey industrial building 
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Fig. 8: Optimal steel sections 
 
proposed to be applied. The two-phase optimization 
starts with the topology optimization of the structure, 
while standard dimensions are temporarily relaxed into 
continuous parameters. When the optimal topology is 
found, the standard dimensions of cross-sections are re-
established and the simultaneous topology and 
discrete/standard sizing optimization is then continued 
until the optimal solution is found. Beside the optimal 
structure’s mass, the optimal topology with the optimal 
number of structure elements (bars, columns, beams, 
purlins), the optimal shape and the optimal 
discrete/standard cross-sectional sizes can be obtained 
simultaneously. Without performing the two-phase 
MINLP strategy no feasible or bad optimal results were 
obtained. Three examples, presented at the end of the 
paper, clearly show the efficiency of the proposed 
MINLP approach. 
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