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Abstract:

Modulo 2'+1 adders find great applicability in several applications including RNS

implementations. This paper presents a new number system called Carry Save Diminished-one for
modulo 2"+1 addition and a novel addition algorithm for its operands. In this paper, we also present a
novel architectures for designing modulo 2'+1 adders, based on parallel-prefix carry computation
units. CMOS implementations reveal the superiority of the resulting adders against previously reported

solutionsin terms of implementation area and delay.
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INTRODUCTION

The Residue Number System (RNS) is a non-
weighted number system ! that can map large numbers
to smaller residues, without any need for carry
propagations @.  Arithmetic operations like addition,
subtraction and multiplication can be performed on
residue digits concurrently and independently. Thus,
using residue arithmetic, would in principle, increase
the speed of computations **

RNS has shown high eff|C|ency in reaI|2|§
sIDemaI purpose appl|cat|ons such as digital fllters

, image processing RSA cryptography and
specific  applications for which only add|t|ons
subtractions and multiplications are used and the
number dynamic range is specific.

Special moduli sets have been used extensively to
reduce the hardware complexity in the |mg)lementation
of converters and arithmetic operatlons . Among
which the triple moduli set {2"-1,2,2" +1} have some
benefits [*. Because of operand lengths of these
moduli, the operation delay is determined by the
modulo 2" +1 channel. Therefore, the design of efficient
modulo 2" +1 adders is critica ™. Modulo 2" +1
operailons are used in many appllcanons such as DSP
agoritms!™®,  Fermat  Number  Transform  for
elimination of round off errors in convolution
computations*” 18 19 crypto?raphy and in
pseudorandom number generation'?y. Modulo 2" +1
adders are also utilized as the last stage adder of
modulo 2" +1 multipliers.

In the last few years, several algorithms and
architectures have been proposed for designing modulo

2"+1 adders. These algorithms are based on two number

systems

To overcome the problem of (n+1)-bit wide circuits

for the modulo 2" +1 channel, the diminished-one

number system 1 has been proposed. In_this

sgstem efficient adders have been reported in 14 2

2l But these adders need a specia treatment for

Zero operands.

For this problem, a new number representation
caled “Carry Save Diminished-one” (CSD-1) is
proposed in this paper. With this system, the addition
with zero operand doesn't need a special treatment,
which reduces the adder chip area.

- Modulo 2" +1 adders @n be designed as a special
case of general modulo m adders. The most
efficient circuits for generalized modulo adders are
reported in (1% 2628 | [39] the proposed adder is
more efficient than the ones proposed by 229
However, the corresponding structure ™ uses a 3-

operand adder which is eliminated in our method. Inthe

paper, we derive a new methodology for modulo 2" +1
adder that leads to a parallel-prefix adder architecture.

Using implementation in a CM OS technol ogy, we show

that the proposed parallel-prefix design methodolog?y

uses considerably less chip area than that reported in

(diminished-one number system) and less chip area and

propagation delay than the approach reported in [

(normal number system).

FOUNDATION
Modulo 2" +1 Reduction Basics: Let A be a 2 hit
word and A" (resp. A) the corresponding high (resp.
low) n bit words:
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A=A"2"+Al
Amod (2" +1) = (A"2" + A") mod (2" +1)
=(A'-A") mod (2" +1).

Therefore, the reduction modulo 2" +1 is computed
by subtracting the high n-bit word from the low n-bit
word and then conditionally adding 2" +1 if the
subtraction yields anegative result.

Diminished-One Number System: In the diminished-
one number system, the number A is represented by
A= A - 1 and the value zero istreated separately, i.e.,
it requires an additional zero indication bit. In this
system, the ordinary addition can be implemented by an

end-around-carry parallel-prefix adder with G =C_,
[17,25]:
S = (S1) = (A+B-1) mod (2"+1)

=[(A'+1) + (B'+1) - 1)] mod (2"+1)

=(A' + B'+ 1) mod (2"+1)

=(A'+ B'+C,, ) mod 2" )

Algorithm 1. (Modulo 2" +1 addeition in diminished-1
number system): A number in diminished-one is
represented by n+1 bits in which the (n+1)th bit is used
to indicate ‘0’. In 7 the modulo 2" +1 addition
algorithm has been presented for zero and non zero
operands:

1) If the most significant bit of one addend is ‘1’,
inhibit the addition and the other addend is the sum
(Fig. 1).

2) If the msb of both addends are ‘0’ ignore the msb,
add the n Isb’s, complement the carry and add it to
the n Isb’s of the sum.

The modulo 2" +1 adder in Fig. 1 can be designed
in different ways. To increase the modulo addition
speed, the delay of carry computation should be
minimized. In many papers, parallel-prefix adders have
been proposed for this purpose.

]
Fed 2o
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1 is extendable to any other modulo when diminished-
oneisonly defined for modulo 2" +1.

CSD-1 Addition Algorithm: In this section, we
present the CSD-1 addition algorithm for modulo 2" +1
(Algorithm 2).

Algorithm 2: (CSD-1 addition): This algorithm is
decomposed into 2 steps.

Step 1. The first step is based on the following
theorem:

Theorem 1: Let A and B be two CSD-1 numbersin the
range [0, 2"+1]. Then,

A+ =?||A+B-]]2n +]l2n if A+B-1<2"
“fla+B-1, otherwise
Pr oof:
jA+B if A+B<2'+1
|A+ E12“+1 =l .
tA+B- (2”+]) otherwise 2)
_j(A+B-1+1 if A+B-1<2
1(A+B-1)- 2"  otherwise
When A+ B- 1< 2" then
(A+B-1)+1=|A+B-1,, +1 (3)

The maximal value of (3) is 2. In CSD-1, this
value can be represented by (n+1) bitsin n positions. In
other words, the output carry resulting from
|A+ B- ]lzn +1is 0. Thus, the term (3) is transformed

into:
|A+ B- 1|2" +l=||A+ B- 1|2" +]|2n

Since A, B1 [0, 27, the second case of equation (2)
leads to the following inequalities:

A+B-1-2"£2"+2"-1- 2" < 2"
So

A+B-1- 2'=|A+ B-1- 2| =|A+B- 1,
Therefore, from (2) we get:
A+, =¥A+B- 1.+1  if A+§- <2y
G T|A+ B- ]|2n otherwise
Y

The equation (4) outlines the impact of the output
carry of A+B-1). In the CSD-1 number system, this
carry is produced when the sum is larger than 2. The
carry generation indicates that the sum is equa or
greater than the modulo. Let assume Cgy is the output
carry of (A+B-1). Thus the carry of @A+B-1) will be
generated when:
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1'0 (A+B-1)22"+1 0 A+B3 2"+2

COU'[

U0 A+B>2"+1
®)
Thus, if the sum of two numbers is greater than the
modulo, the output carry of (A+B-1) is‘1’ and the sum
is correct according to theorem 1: there is no need to
increment the result.
The output carry is zero in the following cases:

'0'0 (A+B-1) " +1

) ) fA+B <2"+1 (¥)

U A+B £2" +1 |
FA+B =2"+1 (**)

In condition (*), since A+B isless than the modulo,
the output carry of (A+B-1) is ‘0’. According to
equation (4), the sum should be incremented in the
second stage. Therefore from (4), (5) and (*) we have:
if A+B <2"+10r A+B >2" +1 then:
S=(A+B)mod (2" +1)= (A+B- 1) +c, (7

But in condition (**) of equation (6), when
A+B =2" +1, equation (7) leads to S =1, which is not
true. To correct this case, we introduce step 2 of

Algorithm 2 that will be presented |ater.
In our method, (A+B-1) is computed without any extra

hardware and only by ignoring acft in above sum. As

Cout

(6)

mentioned earlier, if Al Othena0¢:1; thus A+B-1)
will be achieved by eliminating ao¢- If A=Othen A+B
will be computed by removing ao¢- Inthis case, we have

aways €, ='0" and the sum will be incremented
according to equation (7). But incrementing shouldn’t
be done to obtain the correct result.

The first step of Algorithm 2 reveals that a two-
stage combinational circuit is required for modulo
addition (adder and incrementer). The first stage
computes an intermediate sum M.

M=A+B-1 if A10 (a$=0)

M=A+B if A=0 (af=1)

Therefore, we adjust equation (7) as below:
(A+B)mod (2" +1) =M +g,, +af (8)
M in equation (8) is achieved by addition of A and B
excluding a0¢. Therange of M is given by theorem 2.

Theorem 2 (The range of M): M has a f+1)-digit
binary representation in CSD-1, i.e, M | [0, 2.
(Note that m, = C, in thistheorem.)
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Proof: If A=0 then M=A+B=B. Since Bl [0, 2" then
the theorem is established. The situation is the same if
B=0.
If At 0andB?0then M = A+B - 1. Since
AB<2"+1, A>0 andB>0then,
0<A+B-1<(2"+D)+(2"+1)- 10 0<M £2™
(9)
The maximal value of M is which can be
presented by n+2 bits or n+1 digits in CSD-1 (for this
maximal value, all bitsare‘1"). Y

In the second stage, the least n posibits of M is
incremented according to (8).

2n+1

Step 2: As described before, if A+B 12" +1then

theorem 1 leads to equation (8). But if A+B =2" +1
then the correct output of S=0 should be produced. In
this case, A and B ae non zero and
M=A+B 1=2".

According to theorem 2 and equation (8), if the msb of
M, my=0 (Coyt = 0) then M should be incremented in the
second stage. Thus the final output is 2"+1. In CSD-1,
each number is in the range of [0, 2" and can be
represented by n digits. Therefore the output carry can
be ignored and the output sum is “0...01" that can be

corrected by inverting .

In the second step of Algorithm 2, we introduce
two methods to detect zero output and to correct it.

a) The correct output zero occurs when two inputs are
complementary, i.e. their sum is equal to modulo
2"+1. One method to recognize complementary
numbers is the logical AND of the outputs of &
XOR by (for any i except i =0). A similar method
has been mentioned in %3,

b) Another method is based on the following theorem.

Theorem 3: (Complementary of two inputs): Two

inputs are complementary when (and only when) the

input and output carries of theincrementer are ‘1'.

Pr oof:

o First, we prove that if A and B are complementary
numbers, the input and output carries of the
incrementer are ‘1. When A and B are
complementary, both of them are non zero.

Therefore, M = A+B-1=(2"+1)- 1= 2. In
CSD-1, 2' has n digits. Thus, ¢, =0b ¢, =1.
The input cary of the incrementer is
Ci; = Cout a9:1
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The output carry of the incrementer is equivalent to
the output carry of the following addition:
S=(A+B-1)+1=A+B=2"+1

Obviously, the output carry is*1’.

Now we prove that if input and output carries of
the incrementer are ‘1’ then A and B are
complementary numbers.

If ¢ =1 thenc_ a%=1. Therefore A!1
andc, =0. In other words, M = A+B-1 and

we have:

M=A+B-1£2p A+B £2' +1 (10)

The output carry of the incrementer is ‘1’ when the

sumisequal or morethan 2"+1. That is:

(A+B- 1)+ 13 2+1p A+B 32" +1 (11)

Equations (10) and (11) are simultaneous verified

when A+B = 2'+1, which shows that A and B are

complementary.

Y

Method (a) has been used in ?®. However the
method (b) for zero detection and correction consumes
less area than method (@). Then, we implemented
method (b). As described earlier and according to

example 1, Sfcan be transformed to ‘0’ in the condition
of zero detection.

THE PROPOSEH CSD-1 PARALLEL -PREFIX
ADDER (CSD-PP)

One way for implementing the CSD-PP adder is
based on the adder architecture of Fig. 2. But instead of
having a dedicated single stage for reentering the carry,
(23 has proposed to perform carry recirculation at each
existing prefix level. Then, there is no need for the extra
carry increment stage. As a result, a dedicated CSD-PP
adder architecture is derived with one less prefix level
compared to those derived from Fig. 2 architecture. In
the CSD-1 system, it requires several modifications.
These modifications will be introduced by the 3
following theorems.

Theorem 4: Let assume that (G,p) = G.p) and
Ga,b and Pam , with a > b, are respectively the group
generate and propagate signalsfor the group a, a-1, a-2,
..., b-1, b, computed by:

(Ga,b! Pa,b) =(ga7 pa)o (ga-l! pa-l)o"'o(gbl pb)
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In our case, in which the reentering carry is given

by the expreSS|onég¢G , the carries Ci* of the

addition modulo Z'+1 are equal to G, where G is
computed by the prefix equations:
(G-*,P-*) ](Gnlvpn-l) L i=-1

v T(G P)o(a$G, o Pry) if OEi£n-2
Pr oof:

6'.P)=(c.R):(G, . 8P.)

=\G +P'(Gn 1in T Phogina >Gi)><aﬂ?,Pn_1)
-6 +rPEu(Pa+C)agP, )

 *PG, 11 Py @+ RG, G
+RG, 1 R+ PG, 1., G g P,

+RG, .., 4P
+R Gy 1y 8 Pyyy)
Gi P )° (Gn-li+1 >ﬁﬂ:, Pn-l,i+1

xag.F,

n 1i+1

Y
Theorem 5 will derive expressions leading to faster
circuits.

—_

Theorem 5: Defining p, = p, xa$leads to
(Q*, R): (gi B )°"'° (901 p;)o Gi-viss Pn-li+l)

Pr oof:
(Gi*’ i*):(giypi)
Eﬁg + p| gl 1

(go, po) ( n-1in X8, P, 1|+1)

)

“+ P Pyt Py Po G
8(p| pl 1’ pl po 1|+1) ﬂ
When  computing Gi* , only the last term
includes p,and a§. Therefore, we can
define p, = p, xa$ and replace P, by p,

(00, p2)- (G

N T R ¢ p;Gn-l,Hl)Q

2

)

(Gi*! R): (gh pi)°"‘°
zgég tThgat
&

(B Prse Py PoPy 1)

n-1i+1 I3n-1,i+1

(12

P* are never used and the intermediate P

The fina

don’'t have p, . The above equations are thus correct. Y
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In several cases, the equations (12) require more
than logn prefix levels for their implementation. These
equations can be transformed into equivalent ones that
can be implemented within logon prefix Ievels The
required transformation uses Theorem 2 of (% as well
as the Theorem 6 that will be mtroduced below.
Theorem 2 of ¥ saysthat,

(9.p)-G.P)=(p.9).(G.P)

This implies that a carry equal to the generate term
which is expressed by a prefix equation of the form
) is also equal to the generate term of an

(9.p)-(G.P)

equation of the form (Ba) ,(GP).

The above formulaistruewheng xp = p.
The following theorem is also required to derive the

term that has the form (g, p:)-1G.P)=(p5. g, ). (G, P)
in prefix notation:

Theorem 6: If (Gx"ax):(go'p;)"m and

G,.B) =(py,8),(G,P) thenG, =G, .
Proof: First, we proof the following expression:

9o XPo = (Go + Po) = afio$+ (afif +bfag)

(13)
= afbf+ bf{ag + af) = afiog+ b = p,
Using thisformula, we get:
Jo + PaG = (gy *+ PuG) = (o X Py +G))
= (0o *Po + 90 *G) =(Py + gy *G)
Y

The carry equations resulting from theorem 2 of 1%
and theorem 6 can be implemented by a prefix structure
that has log, n levels. As mentioned earlier, we use the
modifications introduced by theorems 4 to 6. Our
proposed adder is similar to » modulo adder
architecture but its first cells of preprocessing and post
processing stages are designed differently.

In the CSD-1 number system, if x¢=0 thenx®=0.

Thisis aspecia property of CSD-1. Using this property
to simplify truth tables of these two cells leads to the
following equations:;

s = agbgbfi+ agbgb®= bg(agA b
Po = Po ¥af = affb§ + afbft

=agoff
SO@: SO(ltE Ci*n + Sg Sgt Ci*n
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Theorem 3 is used for the detection and generation of a
correct zero. The term r indicates the condition of
theorem 3:

c,=1 ® G, .ag=1

*

out

C hn-l'
=G, a¢)lh, .c ,+4g,.)

RESULTS AND COMPARISONS

Cn-2 + gn-l = l

r=c,c,,

In this section, we compare the proposed CSD-PP

adder to those proposed in ™ and . As previously
mentioned, the architecture proposed in 2 outperforms
those presented in ¥ and ! and the architecture
proposed in ¥ outperforms those presented in 6% in
terms of implementation area and execution delay.
Thus, the architecture of % is the best diminished-one
architecture, and the architecture of ™ is the best
architecture using normal binary representation.
All architectures were described in HSPICE and
mapped to the 0.18 implementation technology (0.18
pm, Vdd=1.8 v). We use VLS| implementations and a
simple model to compare the proposed adder
architectures to those proposed in ™ and %!, we use
the notation PPREF for the diminished-one modulo
2+1 adder proposed in ® and TPP for the normal
binary one in ™. The CSD-PP implementation for the
modulo 2'+1 adder isgivenin Fig. 2.

Analytical Comparisons and Results: First, we use
the analytical model used in *® and ' under the
notation “unit-gate model”. This model assumes that
each gate, except the exclusive-OR gate, counts as one
elementary gate for both area and delay. An exclusive-
OR gate counts for two elementary gates for both area
and delay. According this model, the latencies of the
modulo 2" and modulo 2" -1 adders are equal to 2*log,n
+ 3. The PPREF modulo adder has an execution latency
of 2*logyn + 3.

However, according to Fig. 1, the overal delay of
PPREF is the modul o adder latency plus the multiplexer
delay. The multiplexer is a 2-level circuit in unit-gate
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model. The overall delay is 2*log,n + 5. The TPP adder
has a latency equal to 2*log,n + 6 and the proposed
CSD-PP adder has a latency equal to 2*logon + 4. The
CSD-PP architecture is faster than PPREF and TPP.
Therefore, the CSD-PP adder offers the fastest designs
reported in the open literature. The CSD-PP adder has
a so the same prefix levels as the PPREF adder, without
requiring any circuits for treating zero operands as
shown in Fig. 1, which reduce both the execution time
and the implementation area. Therefore, the proposed
CSD-PP adders are more efficient than the fastest
modulo 2"+1 adder which handle operands in
diminished-one representation. The normal binary
system can be easily converted to the normal binary
RNS. The representation of odd numbers in CSD-PP
addersisthe sameasin TPP adders.

According to the unit-gate model, the hardware
overheads of the fastest reported modulo 2" and modulo
2" -1 adders are respectively equal to 1.5 n* log, n +5n
and 3n* log, n+ 5n. The PPREF modulo adder has an
areaof 4.5n* log, n +0 .5n + 6. However, according to
Fig. 1, the final area of PPREF includes the modulo
adder area and the area of circuit for the treatment of
zero operands. The zero operand circuit area is 2n+5.
Thus, the final areais4.5n * log, n +2 .5n + 11. The
area of the TPP adder is equal to 4.5n * log, n +3 .5n +
13 and the proposed CSD-PP adder areais equal to 4.5
n*log,n+0.5n + 15.

Real Comparisons and Results: For evaluating the
speed, area and power consumption efficiencies of each
architecture, every adder is implemented by CMOS
technology. The obtained results are listed in Table 2.
As we can see proposed architecture leads to far faster
implementations than that of ™ and 1%, Thisiis due to
the fact that the architecture of [ requires a delay of
one CSA unit and the design of PPREF in (%! uses some
multiplexers to treat zero operands. The proposed
architecture, on the other hand, relies on a 2operand
addition (in adverse of TPP that adds two inputs and 2"-
1) and requires unique circuit for zero and non zero
operands based on CSD-1 number system.



Am. J. Applied Sci., 5 (4): 312-319, 2008

I
\f’erpns Mlad
)

_J =

(
|
|
|
|
|
|
|
A

& b a by as b, a b, a b, & b a bfbfadad
1| |1 l| |l L| |l 1| |l l| [
T a4 a4 A (%
|

(
|

| |

| |

Iiﬁed F'relﬁx Cnmffluutatinn

|
|
pvi

P

_____ }
al Zero Detaction
Circuit

&

$ (07 (Fo)

o

Fig. 2: Proposed modulo 2"+1 parallel-prefix carry save diminished-one adder

Table 2: Real Comparison Results

Adder Architecture Transistor Average Power Delay (ps) Power-Delay
Count Consumption (UW) Product (fJ)

PPREF 1~ 1036 293.56 434.44 127.54
Tpp (23] 844 278.64 562.74 156.80
CSD-PP 838 214.51 235.59 50.53
Improvement

CSD-PP Vs, PREF > 19% < 2% > 45% > 60%
I mprovement > 0.7% > 2% > 58% > 67%

CSD-PPvs. TPP

Finally, we study power consumption of compared
architectures. The simulation results are shown in Table
2. It is obvious that the proposed CSD-PP adder has the
lowest consumption of al. It improves TPP and PPREF
power consumptions above 23% and 26% respectively.

CONCLUSIONS

In this paper, a new number system has been
presented. This paper also presents a new achitecture
for modulo 2'+1 adders that uses parallel-perfix carry
computation units based on mentioned number system.
The proposed architecture has better performance than

the conventional modulo 2"+1 adders. The main points
of the paper are summarized below:

1. The specia treatment required for zero operands in
the diminished-one number system has been
removed.

The proposed architecture removes the 3operand
adder issue in the fastest modulo 2"+1 adders with
the normal binary system.

The proposed architecture leads to the fastest
reported modulo 2'+1 adders, with execution
latencies close to the execution latency of the
fastest modulo 2" and modulo 2"+1 adders, which
means that the proposed architecture is suitable for
RNS applications.
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