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 Abstract: A zero-stable numerical method for direct solution of fourth order differential equations 
reduces the computational burden and computer time wastage involved in the method of reducing such 
equations to a system of first order equations. The method adopted is the collocation of the differential 
system and the interpolation of the approximate solution to the problem using the power series as a 
basis function. The method is consistent and symmetric with optimal order p = 6. A consistent and 
symmetric main predictor of order five is also developed for the evaluation of the implicit scheme.  
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INTRODUCTION 

 
The empirical problems leading to higher order 

differential equations of the form 

...,2,1,...,,,,,( 10
)1()1(21)(   m  )(ty ),y  y y y tfy m

mmm === −
−− µ ,     (1) 

 are often encountered especially by Scientists and 
Engineers. The solutions of such equations have 
engaged the attention of many mathematicians, both the 
theorists and numerical analysts. Many of such 
empirical results yielding higher order differential 
equations are not solvable analytically. Numerical 
methods adopted for such higher order differential 
equations are only capable of handling first order 
equations of type 

µ==′ )y(t  y),tfy 0,( , mRt y b aCf ∈∈ ,],,[1 .               (2) 

This implies that such problems will be reduced to 
system of first order equations [1], [8], [10]. The approach 
of reducing such equations to a system of first order 
equations leads to serious computational burden and 
wastage in computer time[2], [3].  

Many attempts have been made to formulate 
numerical algorithms capable of solving special 
problem of type (1) without reducing it to system of 
first order equations[7], [9], [11], [12]. Multiderivative 
methods for direct solution of problem (1), taking m = 
4, have been considered using canonical polynomial as 

the basis functions [4], [5].  They produced methods with 
many function evaluations. 
Efforts are made to develop a zero-stable order six 
method of higher step-number with reduced functions 
evaluation for direct solution of problem (1) for m = 4. 
The reduced functions evaluation of this method further 
lessened the computational burden [3], [6].  

 
METHODS OF SOLUTION 

 
 The proposed zero-stable numerical method of 
order six for direct solution of fourth order differential 
equations is of the form of a continuous linear multistep 
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Let the approximate solution )(xy  to problem (1) be taken to 

be a partial sum of a power series )( xjϕ  of a single variable 

x in the form 

)( xjϕ j
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where saj ' ,  k   j )1(2...,,1,0 −= , are real coefficients.  

The first, second and third order derivatives of 

 (4a) are respectively given as  
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Equation (5) was collocated at some selected grid 

points k   i xx in ...,,3,1, == + , while equation (4a) was 

interpolated at grid points 1,1,0, −== + k ...,  i xx in , to 

have a system of linear equations 
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Solving the system of equations (6), (7) for ,'saj  

2...,,1,0 += k  j  and substituting the results into (4a), 

we obtained a continuous method of type (3). 

Using the transformation [6]  
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equation (3) translates to 
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The coefficients )(tjα   and )(tjβ   obtained as  
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The first, second and third order derivatives of (9) were 

computed and given as follows: 

Fist derivative of (10):  
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Second derivative 
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Third derivative 
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For any sample discrete scheme to be determined from 
the continuous method (9) and its first, second and third 
derivatives respectively, the values of t could be taken 
in the interval I = (0, 1]. In this work, the value of t was 
taken to be 1 to obtain a zero-stable discrete method 
and its derivatives as  
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Using the local truncation error approach [13], the order 

P and error constant Cp+2 of method (14) were found to 

be 6 and 
720
31−  respectively. 

The discrete method (14) was found to be consistent 
and zero stable, satisfying the necessary and sufficient 
conditions for the convergence of Linear Multistep 
Methods [9], [13].  
      

IMPLIMENTATION OF THE METHOD 
 

The continuous method (9) was designed to solve 
general differential equations of type (1) where the 
collocated

inf +
 has been defined as 
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 By definition, the method is implicit if 0≠kβ  and 

explicit if otherwise [13]. To implement the sample 

discrete method (14) and its derivatives, additional 

explicit starting values for ,iny +
)(r
iny + , i = 1, 2 …, k-1, 

were obtained by using the same approach described in 

equations (3) through (8) to obtain the following 

consistent and zero stable explicit methods 
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For k = 5: 

),85(
12

464 24

4

12345 nnnnnnnn fff
h

yyyyy −++−+−= +++++++
 

p = 5, 
3
1

2 −≈+pC , 

 fff
h

yyyy
h

y

nnn

nnnnn

)}13904659(
120

11425726{
6
1

24

4

1234
)1(
5

−++

−+−=

++

+++++  

p = 5, 
4000
2473

2 −≈+pC , 



American J. App. Sc., 5 (11): 1461-1466, 2008 
 

 1464

)}1139761237(
720

2783{
1

24

4

12342
)2(
5

nnn

nnnnn

fff
h

yyyy
h

y

−++

−+−=

++

+++++  

p = 5, 
20
11

2 −≈+pC , 

)}752(
24

33{
1

24

4

12343
)3(
5

nnn

nnnnn

fff
h

yyyy
h

y

+++

−+−=

++

+++++    Order p = 5, 
105

1
2 ≈+pC

p = 5, 
60
31

2 −≈+pC . 

For k = 4: 

)4(
6

464

123

4

1234

+++

++++

+++

−+−=

nnn

nnnnn

fff
h

yyyyy
  (24) 

p = 6, 
720

1
2 −≈+pC , 

 fff
h

yyyy
h

y

nnn

nnnnn

)}113452185(
60

11425726{
6
1

123

4

123
)1(

4

+++

++++

+++

−+−=   

p = 5, 
105

1
2 ≈+pC , 

)}149452449(
60

2783{
1

123

4

1232
)2(
4

+++

++++

+++

−+−=

nnn

nnnnn

fff
h

yyyy
h

y  

p = 5, 
90
7

2 ≈+pC  

)}13855(
24

33{
1

124

4

1233
)3(
4

+++

++++

+−+

−+−=

nnn

nnnnn

fff
h

yyyy
h

 y .  

p = 5, 
20
7

2 ≈+pC  

The minimum value of k for the development of any 
Linear Multistep Method must be equal to the order of 
the differential equation it is meant to solve. For each 
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problems.  

SAMPLE TESTS AND RESULTS 
 

The accuracy of the method (14) was tested with 
two test problems and their results compared with 
existing method [6] as shown in the tables below.  
Test Problem 1: 

,0)2()4( =+ yy  ,
2

0
π≤≤ x  
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Table 1: Comparison of errors arising from Awoyemi and Kayode[6] and New Method (14) for Problem 1 

X Exact solution Computed Method (14) Awoyemi and 
Kayode[6] 

Error in Method (14) 

0.103125 0.130079934027D-02 0.130079934027D-02 0.215807406667D-12 0.498732999343D-15 
0.206250 0.253177321538D-02 0.253177321538D-02 0.235634428636D-12 0.676542155631D-15 
0.306250 0.365247827946D-02 0.365247827947D-02 0.250504044591D-12 0.313507900196D-14 
0.406250 0.469595233257D-02 0.469595233258D-02 0.258852835000D-12 0.943602834758D-14 
0.506250 0.565764127720D-02 0.565764127722D-02 0.257955115601D-12 0.221168569570D-13 
0.603125 0.650775336185D-02 0.650775336190D-02 0.245233520990D-12 0.433793626020D-13 
0.703125 0.729831337007D-02 0.729831337015D-02 0.216478744652D-12 0.778708694749D-13 
0.803125 0.799851869108D-02 0.799851869121D-02 0.168292463298D-12 0.128634949914D-12 
0.903125 0.860724505508D-02 0.860724505528D-02 0.969693075836D-13 0.199271155132D-12 
1.003125 0.912428221980D-02 0.912428222010D-02 0.893382590128D-15 0.293232452209D-12 

 
Table 3: Comparison of errors arising from Awoyemi and Kayode[6] and New Method (14) for Problem 2 

X Exact solution Computed Method (14) Awoyemi and 
Kayode[6] 

Error in Method (14) 

0.103125 0.111926474479D+01   0.111926474479D+01 0.817323986269D-11 0.666133814775D-14 
0.206250 0.127159949320D+01 0.127159949320D+01 0.788127341167D-09  0.974775815621D-13 
0.306250 0.145211090707D+01   0.145211090706D+01   0.146806344858D-09  0.461852778244D-12  
0.406250 0.166621686250D+01   0.166621686250D+01 0.267951016930D-08  0.142241773915D-11 
0.506250 0.191534710992D+01 0.191534710992D+01   0.706149827501D-08  0.342548212018D-11 
0.603125 0.219158159361D+01   0.219158159360D+01 0.154384078854D-07  0.687361279006D-11 
0.703125 0.251444029333D+01 0.251444029332D+01   0.309007592847D-07  0.126365584663D-10 
0.803125 0.287751638775D+01 0.287751638773D+01 0.567595508372D-07  0.213882245248D-10 
0.903125 0.328293615881D+01   0.328293615877D+01 0.975496026179D-07  0.339896999435D-10 
1.003125 0.373304951150D+01 0.373304951144D+01 0.158970819619D-06  0.514028819509D-10 

 
 

RESULTS AND DISCUSSION 
 
Tables 1 and 2 above show the results of problems 1 
and 2 respectively when solved with the new method 
(14). The maximum errors arising from the problems 
when solved with the existing methods [6] for a mesh  
 

 

 
size h=1/32 were compared with the errors of the new 
method (14) for the same mesh size as shown in the 
Tables.  

CONCLUSION 
 

The order six method with three functions evaluation  
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developed through collocation approach is capable of 
solving linear and non-linear general fourth order 
ordinary differential equations directly without 
reduction to system of first order equations. This 
reduced the computational burden and its inevitable 
effects on computer time. 
The method is consistent and zero stable, satisfying 
the basic requirements for convergence of Linear 
Multistep methods (LMM). All the predictors and 
their derivatives are consistent and zero stable. 
Efforts were made to ensure that the orders of the 
predictors and their derivatives are close to the order 
of the method in order to reduce the effects this could 
have on accuracy. While the order of accuracy of the 
new method is 6, the orders of the predictors and 
their derivatives are 5 and 6.  
The zero stability property and the reduced functions 
evaluation as well as the comparative high order of 
the predictors of the new method (14) serve as 
advantages over the existing method [6]. In spite of its 
lower order, this comparative advantage probably 
accounts for better accuracy of the new method as 
shown in Tables 1 and 2.  
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