
American Journal of Applied Sciences 5 (10): 1296-1299, 2008 
ISSN 1546-9239 
© 2008 Science Publications 

1296 

 
Resonance Caused by the Gravitational waves On an Earth Satellite 

    
Mohamad Radwan 

Department of Astronomy, Faculty of Science, Cairo University, Cairo, Egypt 
 

Abstract: The present work deals with the motion of an Earth satellite taking into account the 
oblateness of the Earth and of a passing Gravitational wave. The oblateness of the Earth is truncated 
beyond the second zonal harmonic, J2, which plays the role of the small parameter of the problem. The 
conditions for resonance are determined and the resonance resulting from the commensurabilities 
between the wave frequency and the mean motions of the satellite, the nodal regression, and the 
apsidal rotation are analyzed. 
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INTRODUCTION 

 
 Resonance problems occur frequently in nonlinear 
mechanics and celestial mechanics . It is usually 
manifested by the appearance, when integrating the 
equations of motion, of small divisors of the form 

( ) 1 1 m mD K.n K n ....... K n= = + + , where the components 
of the resonant vector K are integers and the n’s are the 
fundamental frequencies of the system. If there exits 
one such resonant vector (i.e., one small divisor) the 
resonance is called simple, otherwise it is multiple. Due 
to the importance of these commensurate orbits, they 
have received much attention. 
 In recent years, the general theory of relativity 
became a necessary framework for the construction of 
accurate dynamical ephemerides and in the discussion 
of high precision observations. Regarding general 
relativity, the structure of the field equations and the 
equations of motion is the subject of relativistic 
celestial mechanics. 
 An important consequence of general relativity is 
the existence of gravitational waves produced by 
changes in the distribution of matter not symmetrical 
about a point. These waves travel in all space with the 
velocity of light. Recently efforts has been directed 
toward detecting them by the dynamical effects that 
they may produce in heavenly bodies, this effect results 
in increasing the distance between two particles by 
about 10−17 the natural separation. 
 An estimation was provided for the amplitude, 
duration and the frequency of arrival at earth of 
gravitational wave bursts expected from the activity of 
the nuclei of distant galaxies and quasars [1]. It is 
estimated that they might reach at earth as often as 50 
times per year, or as rarely as once each 300 years. 
Also, it is suggested that such bursts may be detected 

using dual-frequency Doppler tracking of interplanetary 
spacecrafts. 
 Cylindrical coordinates was used to find the first 
order orbital variations. It is found that for an initially 
circular orbit, resonance occurs for γ = 1,2,3 and that 
for elliptic orbits the resonance occurs for any positive 
integral value of  γ depending on the approximation 
scheme [2]. 
 Lagrange's planetary  equations was used to find a 
first order solution in all the elements in the case of 
oblique incidence of the wave [3] . 
 Fundamental models are the simplest, one degree 
of freedom Hamiltonians that serve as a tool to 
understand the qualitative effects of various resonances. 
A new extended fundamental model was proposed in 
order to improve the classical, Andoyer type, second 
fundamental model [4]. 
 The present work treats the resonance arising from 
the commensurability between the wave frequency and 
the mean motions of the satellite, the nodal regression, 
and the apsidal rotation. 
 

THE ACCELERATION COMPONENTS 
 
 To find the acceleration components produced by 
the waves on a bound system of two bodies (e.g. an 
Earth-Satellite, or a planetary system) we assume that 
the characteristic dimension of the system is small 
compared to the length of the wave, and the velocities 
of each component of the system are much smaller than 
the speed of light, so that our frame is locally inertial. 
To do so we now proceed to find the acceleration 
components produced by the wave at a point x, y, z. Let 
us start with the equation of geodesic deviation [5] 
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 The field of a weak gravitational wave is determined by a metric close to the Minkowski [3] 
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but 
 

l
l1 d dt

p 0
c dt ds

η= →  

 
so that for  c = 1, ds = dt and p5 = (1,0,0,0), Eq. (1) 
reduces to 
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or simply  
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 now retaining orders up to order hik, we have 
 

 
2 2 2 2
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From which (hio = hio  = 0) 
2

il
i0l0 2

1 h
R

2 t

∂= −
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 and Eq. (3) 

yields 
 

  
2 2
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2 2
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, 

 

  
2 2

m2m
2 2

d y 1 h
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∂= η
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 , 

 

  
22

m3m
2 2

hd z 1
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∂

. 

 
remembering that for a plane wave traveling in the Z-
direction the only non-vanishing components are 
   
  11 22 12 21h h , h h= − =   (4) 

so that we have 

  
2 2 2

11 12
2 2 2

d x 1 h 1 h
x y

2 2dt t t

∂ ∂= +
∂ ∂

 (5) 

 

  
2 2 2

12 11
2 2 2

d y 1 h 1 h
x y

2 2dt t t

∂ ∂= −
∂ ∂
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2

2
d z

0
dt

= .   (7) 

 
 Now Eq. (4) shows that the wave is transverse with 
two states of polarization. Remembering that the hij 
satisfy the wave Eq. 
 
  ϒ 0h =ij  

 
we choose 
  
  � �11 x 1h h cos n t�� �� ,   

 
  � �12 y 2h h cos n t�� ��  
 
 Where hx, hy are the dimensionless amplitudes of 
the wave in two orthogonal directions in the transverse 
plane, α1 and α2 are the phase differences. ϒ is the 
D'Alembertian operator. 
 

THE HAMILTONIAN 
 
 The Hamiltonian of the problem may be written in 
the form 
 
  E wH H H� �    (8) 
 
where HE represents the contribution of the earth's 
shape, while HW represents the contribution of the 
gravitational waves. Utilizing the acceleration 
components of the gravitational waves given by 
equations (5)-(7), the Hamiltonian, HW, may be written 
in the form 
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  � �2 2
w 1 2

1
H h y x h xy

2
� � �   (9) 

 

where 
2

11
1 2

1 h
h

2 t

�
� 	

�
 and 

2
12

2 2
1 h

h
2 t

�
� 	

�
. µ is the 

reduced mass of the system, and x,y are given by [6]   
 
 � � � �3 2 3 2x cosl cos f l cosisin l sin f l
 �� � � �� 
 

 � � � �3 2 3 2y sin l cos f l cosicosl sin f l
 �� � � �� 
 
 
 In terms of the Delaunay set of canonical elements, 
Noting that the time t appears explicitly in the 
expression (9) for the Hamiltonian through the term nwt, 
the Hamiltonian may be written as [7] 

  � �

� �

ij2 2 1 km 1 2 3 44
w w 4 1 ij

k o m 2i 2 j 1 km 1 2 3 4

B cos k m i j
H n L L

B sin k m i j� �� �� ��


 �� � � �� �
� � � �

� �� � � �� 


� � � �
l l l l

l l l l
 (10) 

 

where (m = 0,±2, i = ±2, j = ±1), nw is the frequency of the wave, 2
w x

1
n h

2
�� 	 , L4 the conjugate of l4, , and the 

Delaunay variables are augmented by the pair (l4, L4). The coefficients Bkm
ij, ij

kmB  are all cited in reference [7]. 
 
 Our set of canonical elements now consists of  
 
l1 = l = mean anomaly  , 1L a� 	  

l2 = g = ω = argument of perigee , 2
2 1L L 1 e� �  

l3 = h = longitude of the node , 3 2L L cos I�  
l4 = nwt                                     , 4L  
 
or � �i 4l l,g,h,l�  ,  � �i 4L L,G,H,L a� ,  � �i 1,2,3� . 

 The Hamiltonian of the problem, up to the second 
order, can now be expressed as a power series in J2, as 
follows 

 

 
2

o w 42
1
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� �   (11) 
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,  (12) 
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H L
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l l l l
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 �� � � �� �
� � �

� �� � � �� 


� � � �  (13) 

  
where H1 represents the contribution of the earth's 
oblateness, up to order J2, to the Hamiltonian. 
 

SHORT PERIOD ELIMINATION 
 
 The Hamiltonian of the problem, H*, after 
eliminating the short period element, using a 
perturbation technique based on Lie series and Lie 
transform[8], can be represented as (in the following all 
the variables are understood to be single primed, but the 
primes are dropped for the sake of simplicity of writing 
). 
 
  * * * *

o 1 2H H H H� � �    (14) 
 
where 

  
2

*
o w 42

1
H n L

2L

	
�� � ,  (15) 

 

  � �
4 2

* 2
1 3 3

1 2

R
H 3sin I 2

4L L

	
� � ,  (16) 

  

� �
2 2 1

* 4 iij
2 1 o 2 3 4

m 2i 2 j 1
H L B cos m i jl l l�

�� �� ��

� � �� � � .  (17) 

 
 Noting that the terms (ml2+il3+jl4) appear in the 
equation for H* with the result that resonant terms may 
arise, these will affect the ordering process of 
transformation. 



Am. J. Applied Sci., 5 (10): 1296-1299, 2008 
 

 1298 

TRANSFORMATION IN THE CASE OF 
RESONANCE 

 
 Now the system of canonical equations of motion 
is: 
 

 � �
* *

i i
i i

H H
l , L , i 1,.......,4

L l
� �

� �� �
� �

� �   (18) 

 
 The system (18) has 3-degrees of freedom 
(remembering that li, Li are single primed). We perform 
a canonical transformation in which a new angle 
variable is introduced replacing one of the fast variables 
producing the resonant vector. The introduced variable 
(known as the Delaunay anomaly [9]) is chosen such that 
it becomes a slow variable. 
 Let us perform the transformation 

*
i i i il ,L y ,x ,H H� � � �  that reduces the system (18) to be 

of one degree of freedom. 

Let 1 1y ll �� , 2 2y l �� , 3 3y l ��  and 

4 2 3 4y ml il jl� � �� � � . 
this leads to the relations 
 

 
1 1 2 2 4

4
3 3 4 4

m
x L , x L L ,

j

i L
x L L , x

j j

� � �� � �

�
� �� � �

,  

 
and the system (18) becomes 
                 

 � �i i
i i

H H
y , x , i 1,.......,4

x y
� �
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� �

� � ,  (19) 

 
Where 
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2
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�
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2 2 1

4 ij 2 4
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y
H x B 1 2sin
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 Equation (19) represent the transformed system, 
and it is now of one degree of freedom. 
 

THE CONDITIONS FOR RESONANCE 
 
 Carrying out the procedure to determine the second 
order generator *

2W , using the Lie series technique, a 

resonant vectors of the form � �2 3 4ml il jl� �� � �  will arise 

in the denominators of *
2W When none of the 

combinations 
* *

1 1
w

2 3

H H
m i jn

L L

� ��� � � �� �� �� �� �� �� �� �
 vanishes or 

remains of the first order, this represents the non 
resonance case. If some of the denominators vanish or 
reduce to the second order, the equation for *

2W looses 
its validity (resonance case). 
 Let us define the following mean motions: 
  

 
2

2
1
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� ,    (23) 

  

 
* 2

4 e1
2 2

2

rH 15cos I 3
n nJ

L a 4 4
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a
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.   (26) 

 

where 1

2

L
L

�� , and V0 is the ratio of the frequency of 

the wave , nw, to the mean motion of a fictitious satellite 
with re as its semi-major axis [10]. Using equations (23)-
(26), yields 

   

  

7
2 24 2 4e o

2 3 4 2
2 e

r 15 3 3 a
mn in jn nJ mcos I i cos I m j

a 4 2 4 J r
�


 �
� ������ � � ��� �� �� � �� � � � � � � ��� �� � �� �� � ��� �� ��� ��� ��� �
� �� 


 

 
hence the conditions for resonance is given by 
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Fig. 1: (a) case m = 0,     (b) Case m = 2. 
 

7
22 4o

2 e

315 3 3 a
j mcos I i cos I m

4 2 4 4J r

��� � � ���� �� � � ���� �� ��� ��� � ��
.  (27) 

 
where ( m 0,1,2� ; i 2, 1,0�� � ; j 0, 1� � ). The 
conditions (27) is a relation between a, e and cosI that 
yield a number of curves (corresponding to the different 
values of  m shown in the next Fig. 
 

CONCLUSION 
 
 The canonical equations of motion of the problem 
under concern are formulated  including  the  effects  of 
the earth's oblateness and of a passing gravitational 
wave. The conditions of the resonance are determined 
and written in a general form. As a numerical example, 

we adopted the Molniya-type satellites (highly eccentric 
Earth orbits, e = 0.75) to reveal the different types of 
resonance. A case of simple resonance is obtained when 
a set of values a, e and cosI is such that it lies on any of 
the curves arcs. When more than one denominator tends 
to zero (or O(J2

2)), we have a case of multiple 
resonance. In the figures this occurs when a set of 
values of a, e and cosI fits across of any two or more 
curves. 
 The Fig. 1a and b show the known resonance cases,   
such   as   the    critical   inclination, (b) case (I = 63.3°, 
I = 116.6°) and the polar orbits case (I = 90°). 
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