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Abstract: Exploration of new mines is vitally important for human life. Geospatial Information 
Systems (GIS) can be effectively used in the gathering, weighting, analyzing and presenting spatial and 
attribute information to facilitate the mine exploration process. The success of mine exploration largely 
depends on: the identification of governing factors, the determination of their impacts and the selection 
of suitable models to integrate the parameters. Weighting methods are classified into two main groups: 
data-driven and knowledge-driven. Six weighting methods are identified and scientifically assessed in 
this study, namely; Ratio Estimation, Analytical Hierarchy Process (AHP), Delphi, Weight of 
Evidence, Logistic Regression and Artificial Neural Networks (ANN). The first three are examples of 
knowledge-driven and the last three are classified in the data-driven group. In order to evaluate the 
methods, the information of 26 copper boreholes are used. Numerical experimentations showed that 
the artificial neural network used in this study is the most accurate method because it could predict the 
characteristics of all boreholes correctly. It is shown that knowledge-driven methods are very much 
affected by the degree of knowledge and the specialization of experts. The results indicated that AHP 
is the most successful method among knowledge-driven class and could predict the characteristics of 
82% of boreholes correctly. 
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INTRODUCTION 

 
 Geologists, miners and engineers are dealing with 
problems related to the analysis and manipulation of 
geospatial information to explore minerals for many 
decades[5, 22]. It is a multistage investigation that begins 
at a small scale maps and progresses to larger ones. At 
each stage, geological, geochemical and geophysical 
data are collected, processed and analyzed to produce 
Mineral Potential Maps (MPM)[10]. Even after labor 
intensive studies on a deposit, predicting the exact 
location and the amount of minerals under the ground is 
difficult. Boreholes must be drilled to find out the exact 
characteristics of the underground deposits. However, 
drilling is expensive if not impossible.  
 A GIS has the potential for storing, updating, 
retrieving, displaying, processing, analyzing and 
integrating various geospatial data. GIS can produce 
MPMs easily and integrates the results of different 
investigations such as geological, geophysical and 
geochemical studies[15, 29]. Using a powerful method for 
weighting of the information, GIS can provide a better 
prediction    on    the    potential   of   mineralization 

under the ground[35].   
 The basic pre-requisite for MPM generation is the 
determination of weights and rating values representing 
the relative importance of factors and their categories[2, 

19]. Determining the relative importance of information 
is called map layer weighting[24]. In general, each layer 
of information includes some sub-classes. The 
importance of sub-classes has to be determined before 
assigning weights to the layers. This procedure is called 
calibration and the weights are assigned to the classes 
are called rating[4]. There are two main methods for 
weighting the information layers; data-driven and 
knowledge-driven[5,27]. In data-driven methods, the 
importance of data is determined using data itself while 
in knowledge-driven methods, an expert or a group of 
experts perform this task. Six methods are implemented 
in this research to scientifically assess weighting 
predictors of copper mineralization and producing 
MPMs. They are: Analytical Hierarchy Process (AHP), 
Delphi and Ratio Estimation (RE) (as knowledge-
driven) and Logistic Regression (LR), Weight Of 
Evidence (WOE) and Artificial Neural Networks 
(ANN) (as data-driven methods). 
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KNOWLEDGE-DRIVEN METHODS 
 
 The weights and ratings in this category are 
determined using subjective experts knowledge. 
Although, it can be implemented in various ways[34], 
three approaches are used in this investigation: AHP, 
Delphi and Ratio Estimation. 
 
AHP: AHP is a mathematical decision making 
technique that allows for the rational evaluation of 
weightings[32]. It determines an optimal solution 
through the use of simple representation of a 
hierarchical model. AHP relies on three fundamental 
assumptions: 
 
• Preferences for different alternatives depend on 

separate criteria which can be reasoned about 
independently and given numerical scores.  

• The score for a given criteria can be estimated from 
sub-criteria. That is, the criteria can be arranged in 
a hierarchy and the score at each level of the 
hierarchy can be calculated as a weighted sum of 
the lower level scores.  

• At a given level, suitable scores can be calculated 
from only pair-wise comparisons.  

 
 The scores are arranged in a matrix and the weights 
for each of the compared elements are calculated using 
various methods such as eigenvector. This gives a 
weight for each element within a cluster as well as 
inconsistency ratio[31]. The inconsistency checking can 
be done through the following relations: 
 

max n
II (Inconsistency Index)

n 1
λ −=

−   (1) 

                   

II
I.R

I.I.R
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 (2) 
 
 Where n is the dimension of comparison matrix, 
λmax is the maximum eigenvalue of the comparison 
matrix and I.I.R is the inconsistency index of a random 
matrix with the same dimension as the comparison 
matrix. Finally, I.R is the inconsistency ratio. If I.R is 
less than 0.1 the comparisons are consistent, if not they 
should be compared again[21]. The final weight of each 
alternative or sub-criteria (in a hierarchy like Fig. 1) is 
obtained using Equation 3. The sum of calculated 
weights for each comparison matrix is equal to 1. 
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Fig. 1: Calculating the Final Weights in a Hierarchy of 

AHP 
 
Delphi: Delphi provides reliable information for 
weighting[29]. The method gathers knowledge from a 
group of experts by means of a series of questionnaires 
and their feedbacks. Anonymity, controlled feedback 
and statistical response characterize Delphi[12]. These 
characteristics provide distinct advantages over the 
conventional face-to-face conference as a 
communication tool.  
 A team is chosen to do the Delphi activities. They 
invite experts and prepare the questionnaires. The 
questionnaires are distributed among the participants 
and after some sessions of conversation participants 
often converge to unique decisions about each related 
weight. 
 
Ratio Estimation: This approach is categorized in 
rating methods of weighting[24]. First the criteria are 
ranked from the most important to the least important. 
Then, the method starts by assigning an arbitrary 
weight (i.e. 100) to the most important criterion, as well 
as to the least important attribute. The value for the 
least important criterion is, then, divided by the score 
for each criterion: that is, the ratio is equal to wi/w*, 
where w* is the lowest score and wi is the score for the 
ith criterion. This ratio expresses the relative 
desirability of a change from the worst level of that 
criterion to its best value. This states how much more or 
less valuable an alternative is than the best, in a ratio 
sense. 
 This procedure is repeated for the next most 
important criterion until weights are assigned to all 
criteria. Finally, the weights are normalized by dividing 
each weight by the total[18]. 
 

DATA-DRIVEN METHODS 
 
 Data-driven method reduces the problem of biased 
or incorrect decisions that knowledge-driven method 
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may have. For minimizing the subjectivity and bias in 
the weighting process, quantitative methods, namely, 
statistical analysis, deterministic analysis, probabilistic 
model and distribution free approaches may be 
utilized[14]. Data-driven models need samples of results 
to be executed and evaluated. 
 
Weigh of evidence (WOE): The WOE is a data-driven 
and discrete multivariate statistical method that uses 
conditional probabilities to determine the relative 
importance of parameters[11]. Prior and posterior 
probabilities are the major concepts which are used in 
this approach to delineate the relative importance of 
data. If a phenomenon has been assessed in a region, 
then, it is present in some points and is absent in 
others[8]. Thus, the probability of occurrence of this 
phenomenon can be calculated by dividing the number 
of occurrence samples to the whole assessed 
samples[30]. This probability is called prior probability. 
The posterior probability is the conditional probability 
of existence of the phenomena when the predictor 
exists. The following equations formulate the basis of 
WOE[5]: 
 

 
n

s
1 2 3 n i

i 1

logit(D | B B B ... B ) logit(D) W
=

= +�� � �  (4) 

 
Where, logit is the natural logarithm, D is an event, B1, 
B2…Bn are binary maps which are considered as a 
predictor for D and s

iW  is the weight which is changed 
to jW+  when the predictor Bj is present and also is 

changed to jW−  when the predictor Bj is absent ( jW+  

and jW−  are the positive and negative weights of 
evidence). If one or more data is not available 
somewhere, the W is 0 for that area. The contrast C 
provides a measure of spatial association between a set 
of occurrence points and an evidence pattern and is 
derived from: 
 
  C W W+ −= −  (5) 
  
 If more occurrences occur within a pattern than 
would be expected by chance, then W+ is positive and 
W- is negative. In contrary, W+ is negative and W- is 
positive   when    fewer   points   occur    within   a 
pattern by chance.  
 Since Equation 4 is derived assuming the 
conditional independency between predictor maps, it is 
necessary to evaluate the conditional independency 
between layers of data before using WOE[9]. The 
maximum contrast in a large area with a large number 

of   occurrences    gives    the     best    measure    of 
spatial correlation.  
 For each estimated weight, the variance can be 
calculated. The sum of variances for two weights is the 
variance of contrast. Dividing the contrast by its 
standard deviation, the studentized value can be 
calculated[1]. The studentized value serves as an 
approximate test of the spatial association between the 
occurrence points and the test domain. It is an informal 
test that C is significantly different than zero, or the 
contrast is likely to be real. This test is applied when a 
small area being considered and there is only a small 
number of occurrence points (In such cases the 
uncertainty of the weights is large and C is 
meaningless). Contrast and studentized values are 
suitable parameters to determine cut off values to 
produce a binary map from a continuous map[16]. 
Studentized values can be used to produce uncertainty 
maps as well.  
 
Logistic Regression: Logistic Regression (LR) is a part 
of statistical models called generalized linear models[20]. 
LR describes the relationship between the response 
(dependent) and the linear sum of the predictor 
(independent) variables. LR can predict a discrete 
outcome, such as MPM, from a set of variables that 
may be continuous, discrete, dichotomous, or a mix of 
any of these[25]. Generally, the dependent or response 
variable is dichotomous like presence/absence or 
success/failure. Logistic regression makes no 
assumption about the distribution of the independent 
variables[23]. The presence/absence of copper potential 
can be transformed into a continuous probability space 
ranging from 0 to 1[17]. Values close to 1 represent high 
probability of presence; whereas, values close to 0 
represent high probability of absence. 
 
Artificial neural networks (ANN): Artificial neural 
networks have been used in many branches of science 
due to their versatile characteristics[13]. An artificial 
neural network operates by creating connections 
between many different processing elements, each 
analogous to a single neuron in a biological brain. Each 
neuron takes many input signals, then, based on an 
internal weighting system, it produces a single output 
signal   that    is     typically     sent    as input   to the 
other neurons[28]. 
 Ability of learning is one of the most important 
characteristics of ANN[3]. Based on the type of training, 
ANNs are categorized into two main classes of 
supervised and unsupervised networks[6]. The network 
weights are modified in the training process through a 
number of learning algorithms based on back 
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propagation learning[7]. The most widely used back 
propagation algorithms are gradient decent and gradient 
decent with momentum. 
 A feed forward multilayer network consists of 
three layers namely; input, output and hidden layers. 
Each layer in a network contains adequate number of 
neurons depending on specific applications. The 
number of neurons in the input layer is equal to the 
number of data sources and the number of neurons in 
the output layer is limited by the application and is 
represented by the number of outputs. The number of 
hidden layers and the number of neurons in each layer 
depend on the architecture of network and usually are 
determined by trial and error[33]. 
 
Index overlay: Index overlay is used in this research to 
integrate various data layers. In index overlay method, 
each class of maps is given a different score allowing 
for a flexible weighting system. The table of scores and 
the map weights can be adjusted to reflect the judgment 
of experts in the domain of the application under 
consideration[5]. At any location, the output score S is 
defined as: 
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=

=

=
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�
            (6) 

 
 Where, S is the assigned score to the cell (or 
polygon), Wi is the weight of the ith map and Sij is the 
weight of jth class from the ith map. When a map is 
binary Sij will be 0 or 1. The biggest disadvantage of 
this method probably lies in its linear additive nature. 
However, as the method is the same for all of the 
weighting methods it will not have a biased effect. 
 

MATERIAL AND METHODS 
 
Study area: The study area of this research is located 
in the centre of Iran (latitude: 31º 39´ and longitude: 53º 
51´) which is called Ali-Abad copper deposit. The area 
of study is about 1 squared kilometer.  
 Mineral deposit exploration is a multi-stage 
process that starts with feasibility studies on small scale 
maps and/or aerial images[26]. This paper focuses on the 
final stage of exploration which is a large scale 
investigation and is performed on large scale maps (e.g. 
1:1000). At this scale the existence of a mineral (e.g. 
copper in this study) is investigated by considering the 
existence of the evidences.  

 Data preparation and spatial analysis were done by 
AutoCAD 2006 and ArcGIS 9.2 software. A software 
was developed to implement AHP in MATLAB v.7 
environment. SPSS v9 was used to construct LR model.
 Figure 2 demonstrates the processes followed to 
prepare nine data layers. In the first step, all data layers 
are digitized from hardcopy maps and georeferenced. 
The values of contour lines are assigned and finally the 
Digital Terrain Models (DTM) of the related layers are 
generated in ArcGIS. These information layers are 
copper predictors that are called factor maps. Maps of 
geoelectric, geomagnetic and geochemical anomaly are 
classified into three classes of anomaly, medium and 
background. Due to its simplicity and efficiency in 
overlaying, maps are converted to raster in 1x1 m2 
resolution. Finally maps of different alterations 
(Propilitic, Argyllic and Phallic) are integrated into one 
layer. The layers are then weighted and integrated to 
produce MPM. The resulting factor maps are illustrated 
in Fig. 3. Boreholes are used to check the efficiency of 
each weighting method.  
 Figure 4 represents the implemented procedure of 
knowledge driven models. AHP has high compatibility 
to work with hierarchical data, hence, AHP is used for 
data calibrating and weighting. Using AHP in two cases 
of with/without hierarchy facilitates assessing the effect 
of hierarchy on AHP performance. Experts did the pair-
wise comparisons in this case. Since the faults layer did 
not present a statistically meaningful effect on 
mineralization, the layer was removed from the 
weighting process. 
 Pair-wise comparisons are performed on nine 
standard statements of AHP and the digits from 1 to 9 
are assigned to the statements where the higher the 
number is, the stronger the preference is. The same 
experts performed both AHP and the Ratio Estimation 
and assigned the weights. A complete package of an 
invitation letter, prepared data layers, elements of 
Delphi process and questionnaires were sent to several 
expert persons. The questionnaires were filled out and 
presented to Delphi process.  
 In the process of Delphi the opinions were 
converged and participants became successful in 
weighting the layers. Due to the separation of two parts 
of host rock and phillic alteration, the experts identified 
that one of the faults may have a negative effect on 
mineralization. Therefore, they proposed three spatial 
buffers (30, 45 and 60 meters) around the faults. Three 
ratings were then assigned to the buffers (0.7, 0.2 and 
0.1 respectively). 
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Fig. 2: Process of data preparation and the resulting factor maps 
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Fig. 3: Factor maps, boreholes and a fault with its buffers 
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Fig. 4: Flow diagram of preparing MPM using knowledge-driven methods 
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Three data-driven methods have been performed as 
presented in Fig. 5 and 6. To execute the data-driven 
procedures, 16 boreholes (out of 26 existed ones) are 
randomly chosen. The amount and quality of copper in 
the boreholes are the basis to call a borehole good or 
not. By taking the statistics of the boreholes into 
account, experts classified the quality of boreholes to 
bad (poor) or good (suitable).  
 The spatial dependency among data has to be 
considered and the dependent data must be removed 
from the model. If a layer does not cover any boreholes, 
it is removed from further processing. Observing these 
constraints, the remaining layers were reduced to: 
geoelectric, geomagnetic, geochemical, host rock and 
phillic alteration. These layers are tested for spatial 
correlation. Pair-wise comparisons and χ2 tests revealed 
that phillic alteration have significant spatial correlation 
with Host Rock. Consequently, the two layers are 

merged using Boolean AND operator to build the Host 
Rock And Phillic Alteration (HRAPA) layer.  
 LR uses binary response values for building a 
model. A value of 1 is assigned to good boreholes and 0 
is assigned to bad ones. The predictor parameters are 
the values of the four used layers, (namely; geoelectric, 
geomagnetic, geochemical and HRAPA) at 16 
boreholes locations. The natural values (the values 
extracted directly from hardcopy maps) of geoelectric, 
geomagnetic and geochemical maps are normalized to 
lie between 0 and 1. This brings data into an equivalent 
rational scale; otherwise, the target coefficients will 
have different ranges. For constructing the LR model, 
the values are uploaded in SPSS 9 software. The 
process showed that the values of geomagnetic layer 
cannot pass the significance test, therefore, this layers 
was removed from further processing. The model is, 
however, passed the tests of goodness of fit such as 
Hosmer and Lemeshow test and likelihood ratio test[17].  
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Fig. 5: Flow diagram of implementing WOE 
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Fig. 6: Flow diagram of constructing LR and implementing ANN 
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 WOE uses binary predictor maps as well. The 
HRAPA layer is binary itself while geochemical, 
geoelectric and geomagnetic maps have three classes 
of; anomaly, medium and background. The later layers 
are reclassified into two class maps based on experts' 
opinions. Then, the same 16 boreholes in LR are used 
to determine the weights. The new information layers 
are tested for conditional independency, pair by pair. 
The result showed that geochemical anomaly map and 
geochemical medium were conditionally dependent and 
therefore, the geochemical medium map was rejected 
for further processing. In addition, no borehole falls in 
anomaly of geomagnetic and only one bad borehole 
falls in the medium class of geomagnetic, so these 
layers could not be taken into account either. The 
remained layers to use in WOE were the maps of: 
anomaly of geoelctric, medium of geoelectric, anomaly 
of geochemical and HRAPA. W+ and W- were 
calculated and C was treated as the weights needed in 
index overlay.  
 A multi layer perceptron network is designed and 
implemented in this research. To train the network, 16 
randomly selected boreholes are considered. Four 
layers are used in this case, namely: geoelctric, 
geomagnetic, HRAPA and geochemical layers. Like LR 
model, the layers had been normalized in the range of 0 
and 1. Output of network is binary; number 1 for good 
boreholes and 0 for bad ones. Root Mean Squared 
Errors (RMSE) of responses are calculated for each run. 
The best network is the one with minimum RMSE. The 
networks are changed both in number of hidden layers 
and number of neurons in each hidden layer to produce 
various RMSEs.  
 

PRODUCING MPM 
 
 Sixteen boreholes are used to build the LR model. 
Seven boreholes out of 16 are good ones, therefore, the 
primary probability of being good is 7/16=0.4375. 
Then, the probability of being a high potential point is 
calculated. If the probability for each pixel exceeds the 
value   of    0.4375,    it    is   considered as a high 
potential pixel.  
 Similar method is performed for WOE. Using 
Equation 4, MPM is estimated. The cut off value in 
WOE is also considered as 0.4375. Therefore, any cell 
in MPM surpass the cut-off value is classified in high 
potential area. 
 The same 16 boreholes are used for training ANN. 
The output values of ANN do not bear the concept of 
probability like LR or WOE models. A natural break 
classifies the MPM into two classes of high potential 
and low potential[19].    

 The weights extracted from all models of 
weightings are entered to Index Overlay model. Then 
the MPMs are produced by Index Overlay. For the 
produced MPMs, experts determined the cut-off value 
for classifying MPMs to two classes of high and low 
mineral potential. Experts determined 0.4 as a cut-off 
value for this purpose.  Figure 8 represents the final 
MPMs produced for copper deposit of Ali-Abad using 
AHP and ANN.  
 

RESULTING AND DISCUSSION 
 
 Table 1 presents the weights assigned to the factor 
maps in knowledge-driven methods. The table also 
shows the rating obtained by AHP method. The weights 
extracted from LR, WOE and ANN are shown in Table 
2-4 respectively. 
  
Table 1: Weights extracted from knowledge-driven methods 
Method  Delphi Ratio 
Layer or class AHP process Estimation 
Geochemical Anomaly 0.157 0.161 0.123 
Geomagnetic Anomaly 0.063 0.030 0.135 
Geoelectric Anomaly 0.187 0.191 0.158 
Brecciated zones 0.087 0.036 0.090 
Alterations 0.392 0.401 0.202 
Dike 0.013 0.008 0.022 
Host Rock 0.087 0.188 0.180 
Bed Rock 0.014 0.010 0.090 
Faults 0 -0.025 0 
Geoelectric,  
Geomagnetic and Anomaly 0.749  
Geochemical Medium 0.198  
 Back Ground 0.053  
Alterations Phillic 0.739  
 Argillic 0.167  
 Propilitic 0.094  
Bed Rock Tuff 0.220  
 Lava 0.096  
 QSC 0.625  
 ASC 0.059  

 
Table 2: Weights obtained from Logistic Regression 
Coefficient HRAPA Geochemical Geoelectric 
Value 0.927 8.975 0.281 
 
Table 3: Values obtained from WOE 
 W+ W- Contrast (C) 
Anomaly of Geochemical 7.7142 -1.8281 9.5423 
Anomaly of Geoelectric 0.6568 -0.3083 0.9651 
Medium of Geoelectric -0.6649 0.4746 -1.1395 
HRAPA 0.9445 -0.5960 1.5405 
 
Table 4: Weights obtained from ANN in two cases of with and 

without geomagnetic layer 
 HRAPA Geoelectric  Geochemical Geomagnetic  
Layers  Anomaly Anomaly Anomaly 
With 0.0754 0.0909 0.1417 -8.5420 
Geomagnetic 
Anomaly 
Without 37.1522 45.7031 220.8821 -------- 
Geomagnetic 
Anomaly  
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 The minimum RMSE, 0.2780, in ANN is occurred 
with two hidden layers, 8 neurons in the first hidden 
layer and 3 neurons in the second one. After ignoring 
geomagnetic anomaly layer, the result got better. 
RMSE    showed    a    meaningful    decrease where the 
minimum RMSE reached to 0.1259.  These values are 
obtained from a network with two hidden layers, 6 
neurons   in   the   first and 4 neurons in the second 
hidden layer.  
 Comparing the numerical weights in Data-driven 
and Knowledge-driven models revealed that in 
knowledge-driven methods, alterations and host rock 
are the most important predictors while date-driven 
methods detected geochemical anomaly as the major 
predictor. Knowledge-driven methods have considered 
positive weights for all probable predictors. In contrast, 
data-driven methods have assigned negative weights to 
geomagnetic layer; hence the layer had negative impact 
on existing copper mineralization.  
 

 
a 
 

 
b 

Fig. 7: Percent of correct prediction of (a) 26 boreholes 
and (b) 10 test boreholes. Numbers refer to the 
used methods: 1- AHP with hierarchy, 2- AHP 
without hierarchy, 3- Delphi, 4- Ratio 
Estimation, 5- WOE and Index Overlay, 6- 
WOE, 7- LR and Index Overlay, 8- LR, 9- ANN 
with using Geomagnetic layer and Index 
Overlay, 10- ANN without using Geomagnetic 
layer and Index Overlay, 11- ANN with using 
geomagnetic and 12- ANN without using Index 
Overlay. 

 In brief, ANN has produced the best results. In 
fact, its MPM includes all 10 test boreholes resulting in 
a perfect prediction. If Index overlay is not used for 
information integration, the results of data-driven 
methods are a bit better than knowledge-driven ones. 
Figure 7 shows the success rate in predicting the 
boreholes. Also Fig. 8 represents the best MPMs 
produced by data-driven and knowledge-driven 
approaches. 
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Fig. 8: MPM produced by (A): ANN without 
considering geomagnetic anomaly into 
account and without using index overlay, 
(B): AHP with hierarchy 
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 Data-driven methods of weighting are explicit and 
must have some information from the results (like 
boreholes in this case). This condition is limiting the 
application of weighting to the number of samples and 
their reliability. Moreover, weighting by data-driven 
methods depends to the opinions of experts for 
determining and preparing efficient data, proper way of 
classification and interpretation.  
 Ratio Estimation suffers from its weak theoretical 
base. Delphi is a structured way to extract the hidden 
knowledge of experts and try to protect the judgments 
from biased decision. Though AHP can be executed by 
a group of experts, the consistency of judgments rarely 
is obtained. Pair-wise comparisons and consistency 
checking of judgments have made AHP a reliable 
approach for weighting of spatial information.   
 

CONCLUSIONS AND RECOMMENDATIONS 
  
 In this research, six different weighting procedures 
viz. Ratio Estimation, Analytical Hierarchy Process 
(AHP), Delphi, Weight of Evidence, Logistic 
Regression and Artificial Neural Networks (ANN) were 
applied for producing MPMs in part of Ali-Abad 
copper deposit in Iran.  A comparative evaluation was 
also carried out. The ANN approach produced the most 
accurate map. This may be attributed to the objective 
approach where weights for factors are determined 
through ANN connection weight approach.  
 In short, the following observations were made 
based on this research:   
      
• Ratio Estimation is based on the assumption that a 

standard alternative exists and the decision maker 
is able to state valuations of the other alternatives 
in a ratio form. If no standard alternative exists and 
such an alternative cannot be created, ratios of 
value differences are compared. This method may 
not produce reliable results in comparison to AHP 
and Delphi.  

• AHP is a simple systematic engineering method to 
quantitatively analyze non-quantitative objects. It 
cannot only fully consider the researcher’s 
subjective judgment during the quantitative and/or 
qualitative analysis, but also expresses the complex 
system in a hierarchic structure from interrelation 
between inside and outside of the system and by 
analyzing step by step, helps the decision-making 
process to be systemic, numerical and modeling. It 
was shown that employing hierarchy improves 
efficiency of the used method. Among knowledge-
driven models, AHP with hierarchy produced the 
best results. 

• If the effects of some factors are not easily 
demonstrated by numeric equations and expert 
judgment is required Delphi can be used to produce 
a reliable measurement of judgments by a group of 
experts. Due to its hierarchical nature of this study, 
Delphi did not bit AHP results.  

• Logistic regression strongly depends on boreholes′ 
situation and is concerned about the strength of the 
overall fit between the dependent variable and the 
independent parameters. In this study logistic 
regression was hardly fitted and could only predict 
%88.46 of boreholes correctly. 

• The weight of evidence approach emphasizes 
spatial context by focusing on geological features 
that may have localized mineral deposition. In this 
case study, the extracted weights from WOE were 
suitable for Index overlay. It ranked as a second 
best data-driven method. 

• ANN could nicely process the relationship between 
the predictors and situation of boreholes and 
predict the high potential area. For all boreholes 
true prediction were obtained. ANN had an 
extreme flexibility faced with data. In a way that 
even with using geomagnetic anomaly, the results 
are relatively good and with eliminating this data 
the best results are obtained. 

 
 Therefore, the integration of different factors in 
GIS environment using a variety of weighting 
procedures may serve as one of the key objectives in 
any MPMs generation. It is recommended that 
uncertainty in weighting methods to be studied further. 
It is also recommended that other methods for 
integrating the weights obtained from data-driven 
approaches to be tested. Providing alternative solutions 
to integrate the weights obtained from data-driven and 
knowledge-driven approaches can be another option for 
more researches. 
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