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Abstract: Thirteen cytology of fine needle aspiration image (i.e. cellularity, background information, 
cohesiveness, significant stromal component, clump thickness, nuclear membrane, bare nuclei, normal 
nuclei, mitosis, nucleus stain, uniformity of cell, fragility and number of cells in cluster) are evaluated 
their possibility to be used as input data for artificial neural network in order to classify the breast pre-
cancerous cases into four stages, namely malignant, fibroadenoma, fibrocystic disease, and other 
benign diseases. A total of 1300 reported breast pre-cancerous cases which was collected from Penang 
General Hospital and Hospital Universiti Sains Malaysia, Kelantan, Malaysia was used to train and test 
the artificial neural networks. The diagnosis system which was developed using the Hybrid 
Multilayered Perceptron and trained using Modified Recursive Prediction Error produced excellent 
diagnosis performance with 100% accuracy, 100% sensitivity and 100% specificity.  
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INTRODUCTION 
 

Breast cancer occurs mostly in women, but does 
occur rarely in men. In Malaysia, the National Cancer 
Registry reports that the crude rate of mortality in the 
year 2002 was 148.4 per 100,000 populations for 
females, with the breast cancer being the number one 
killer [1]. Breast cancer accounted 30.4% of the newly 
diagnosed cancer cases in Malaysian women, with the 
probability of 1 of every 19 woman in Malaysia has the 
risk to develop breast cancer [1].  

Mortality rate due to breast cancer could be 
reduced through early detection. The most common 
early screening test is mammography. Mammography 
as a mass screening tool is convenient, inexpensive and 
has become the modality choice for an early detection 
of breast cancers due to its sensitivity in recognizing 
breast masses. However, the overall ‘false negative’ 
rate for screening mammography is about 10% lesions 
may not show up in a mammogram. Mammography 
also has ‘false positive’ findings which may lead to 

unnecessary biopsies that turn out to be negative or 
benign. Laine et al. [2] suggests that mammograms 
display only 3% of the total information detected.  

From literature review, many researchers have 
carried out intelligent diagnostic systems specifically to 
provide ‘second opinion’ for pathologists in making 
diagnosis [3,4,5]. Artificial neural network (ANN) was 
employed to classify between benign and malignant 
cases. Those approaches require breast features taken 
from mammogram images, as the input data for the 
ANN. It has been shown in [6][7][8] that in general, 
feedforward ANNs can produce the breast pre-
cancerous diagnosis result almost favorably comparable 
with those from human experts. The applicability of 
ANNs combined with image processing techniques to 
predict the stages of breast pre-cancerous has also been 
carried out in [9,10,11]. The system proposed in [9] 
managed to achieve 92% of sensitivity out of 272 cases. 
In [11], the diagnostic system managed to achieve 
accuracy of 88.9% out of the 58 cases tested.  
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 Nowadays, an alternative breast cancer screening 
test called fine needle aspiration (FNA) cytology is 
commonly used to diagnose palpable growth in the 
breast and also to confirm the non-palpable positive 
results from the mammogram screening. FNA is done 
by using a very thin needle connected to a syringe to 
extract the lesions from the breast. The sample from the 
biopsy is sent to a pathologist for analysis and to 
confirm the diagnosis. Based on the successful of 
aforementioned intelligent breast cancer diagnostic 
systems, this paper demonstrates an intelligent 
diagnostic system for breast pre-cancerous. This paper 
will propose and evaluate the capability of thirteen 
cytology of FNA (i.e. cellularity, background 
information, cohesiveness, significant stromal 
component, clump thickness, nuclear membrane, bare 
nuclei, normal nuclei, mitosis, nucleus stain, uniformity 
of cell, fragility and number of cells in cluster) to be 
used as input data for ANN in order to classify the 
breast cancer cases into four stages, namely malignant, 
fibroadenoma, fibrocystic disease, and other benign 
diseases. Hybrid Multilayered Perceptron (HMLP) 
network is proposed to predict the breast pre-cancerous 
stage. We empirically assess the capability of the 
proposed diagnostic system using 1300 reported cases 
from Penang General Hospital and Hospital Universiti 
Sains Malaysia, Kelantan, Malaysia. 
 
Fine Needle Aspiration Cytology: In this section, 
thirteen FNA cytology which are proposed as input data 
to the developed diagnostic system are presented. The 
definition will be given in detail and appropriate figures 
will be included for better understanding. Then, the four 
stages of breast pre-cancerous cases will be discussed. 
 
Cellularity: The first FNA cytology which is used is 
cellularity. Cellularity refers to the amount of cells 
present in a biopsy sample. The fibroadenoma has a 
very high cellularity yield, while the fibrocystic and 
malignant cases have variable state of cells which are 
dependent on different cases and stages of the disease. 
In this paper, the cellularity is classified into three 
categories, i.e. scanty, moderate and high. Figure 1 
displays the difference in cellularity for each breast 
cancer category.  
 
Background Information: Background information 
describes the cleanliness of the FNA images. In this 
study, the background of the cells is marked to three 
criteria (i.e. clean, slightly dirty and very dirty). The 
dirty background refers to the crashed and dead cells in 
the background of the smear sample. However, a 

bloody background does not denote to dirty 
background. The difference between bloody and dirty 
background is shown in Fig.  2. 

     
(a) Fibroadenoma                     (b) Fibrocystic 

 
                                 (c) Malignant 
Fig 1:  The cellularity of each respected categories of 

breast diseases 
 

     
(a) Bloody background            (b) Dirty background 

Fig 2:  The difference between dirty and bloody 
background. 

 
Cohesiveness: This study describes cell cohesiveness 
as the state of cohering or sticking together. The 
cohesiveness of the cell group is also an important 
characteristic to distinguish between benign and 
malignant cells, where the benign cells are more 
cohesive to each other compared to the malignant cells. 
A sample group of cohesive cells is shown in Fig.  3. 
 

 
Fig 3:  Cell cohesiveness. 

 
Significant Stromal Component: Stroma is important 
as a connective tissue framework that supports the 
neoplastic cell population [12]. Thus, this study employs 
significant stromal components as one of the input data 

Crashed, dead cells 
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as the presence presence of stroma is significant in 
determining the fibroadenoma as shown in Fig.  4. 

 
Fig 4:  Presence of stromal component in a 

fibroadenoma cytology. 
 

Clump Thickness: The fifth FNA cytology used is 
clump thickness, which is described as the number of 
layers of the smear sample. In this study, the clump 
thickness is categorized to monolayered, monolayered 
and folding; and multilayered as shown in Fig.  5. 

      
(a) Monolayered               (b) Multilayered 

 
                    (c) Monolayered and folding 
Fig 5:  The type of clump thickness in breast 

cytology. 
 

Nuclear Membrane: The thickness of nuclear 
membrane is also an important criterion to determine 
the malignancy of a cell. A normal breast cell has 
normal membrane thickness, while an abnormal cell has 
obvious thickened membrane. A benign cell has an 
even and thin membrane, while a thick and uneven 
membrane represents the characteristic of a malignant 
cell. The thickness of the nuclear membrane is 
categorized as normal thickness (even and thin), 
medium thickness (slightly thicker and even/uneven) 
and high thickness (thick and uneven). Figure 6 
displays the difference in membrane thickness 
measurement. 

       

(a) Normal thickness      (b) Medium thickness 

 
                            (c) High thickness 
Fig 6:  The appearance of various nuclear membrane 

thicknesses. 
 
Bare Nuclei: In FNA image, the presence of bare 
nuclei symbolizes the benignity of the cell. In this 
study, the bare nuclei is described as a group of nucleoli 
which are not surrounded by their perspective 
cytoplasts as shown in Fig.  7. 

 
Fig 7:  An example of bare nuclei. 
 
Normal Nucleoli: The eighth FNA cytology is normal 
nucleoli. Normal nucleoli defines a typical 
characteristic of a cell’s nucleolus. In general, a normal 
cell including benign cells does not have nucleolus or 
has fine nucleolus in their cells. However, abnormal 
(malignant) cells have prominent nucleolus and in 
certain cases have more than one nucleolus. In this 
study, the normal nucleoli is categorized as no 
nucleolus, fine nucleolus, prominent nucleolus and 
multiple nucleoli present. 
 
Mitosis: This study also employs the presence of 
mitosis as one of the input data to our proposed 
diagnostic system. Mitosis is the process of nuclear 
division in cells that produces daughter cells that are 
genetically identical to each other and to the parent cell. 
Malignant cells tend to have higher mitotic activities 
compared to normal and benign cell population.  
 
Nucleus Stain: The tenth cytology is nucleus stain. 
Generally, the nucleus stain of a malignant cell is 
coarse while the benign cells display a very fine 
nucleus. 
Uniformity of Cell: In medical field, the uniformity of 
the cell could be used to differentiate between benign 
and malignant case. Uniformity of the cell is the 
measure of the cell shape and type in an extracted 
lesion. Generally, benign case is usually 
monomorphisam where a group of cells appear in 
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different cell shapes and sizes consistently. On the other 
hand, malignant cells are mostly pleomorphic. 
Pleomorphism describes a  group of different type of 
cells which appear in variety shapes and sizes.  
 
Fragility: In this study, fragility of a cell is also 
employed as a measure to distinguish the benign cell 
from the malignant cell. The nucleus of benign cells are 
said to be fragile, while the nucleus of malignant cells 
are sturdy.  
 
Cell in Cluster: The final cytology used is cell in 
cluster. It is the accumulation of cells in a group 
regardless of the cohesiveness and cellularity. The 
larger group of cells determines that the cells are more 
concentrated and is highly observed in fibroadenoma 
and some of the severe malignant cases. However, in 
the cystic category of tumors the cells are more 
distributed. 
 As a conclusion, the thirteen aforementioned 
cytology features are categorized accordingly to the 
different characteristics of the cells. Table 1 tabulates 
the proposed FNA cytology as input data for the neural 
networks. The scoring or marking of the ANN inputs 
are given based on the discussion with few experienced 
pathologists from Hospital Universiti Sains Malaysia 
(HUSM), Kelantan, Malaysia. [13] was used as a 
reference to score the characteristics of the cytology 
features. 
 
Stages of Breast Pre-Cancerous Case: In this study, 
breast disease refers to abnormal growth of 
inflammation in human breast.  They are divided into 
benign neoplasm and malignant neoplasm. Although 
the ANN has been applied in a number of researches for 
breast pre-cancerous diagnosis, from literature review 
no attempt was carried out to use the ANN to further 
classify the benign cases into more specific stages (i.e. 
in [9][14][15]). In this study, the benign cases will be 
further classified into three stages, namely 
fibroadenoma, fibrocystic and other benign disease. 

Benign tumor is an abnormal and non-cancerous 
growth of tissue that does not spread to other parts of 
the body [12][16]. Benign tumor grows slowly and 
remains locally. It pushes the surrounding normal tissue 
aside but does not infiltrate the surrounding tissues or 
spread by blood and lymphatic channels to distant sites.  

Fibroadenoma is a type of benign solid lump of 
tissue. It is thought to result from increased sensitivity 
to the female hormone estrogens. It is normally has a 
rubbery texture, smooth to the touch and moves easily 
under the skin. 

On the other hand, fibrocystic changes show a 
variant to the common benign pattern with an additional 
presence of cyst macrophages and sheets of ductal 
epithelial cells of oxyphil or apocrine. However, the 
presence of the typical features of benign pattern such 
as single bare nuclei and ductular epithelium dominates 
the smear [17]. 
 A malignant tumor is composed of less well 
differentiated cells. It grows rapidly and infiltrates the 
surrounding tissues, unlike benign tumor which grows 
by expansion. The example for four stages of breast 
pre-cancerous cases are shown in Fig.  8. 
 
Table 1: Proposed variables for classification. 
Input marker Categories 
Cellularity Scanty 

Moderate 
High 

Background 
information 

Clean 
Slightly dirty 
Dirty 

Cohesiveness More than 21 
11 – 20 
6 – 10 
Less than 5 

Cell in cluster 31 – 50 
11 – 30 
Less than 10 

Significant stromal 
component 

Present 
Nor present 

Clump thickness Monolayered 
Monolayered and folding 
Multilayered 

Nuclear membrane Normal 
Medium 
High 

Bare nuclei Present 
Not present  

Normal nucleoli No nucleolus 
Fine nucleolus 
Prominent nucleolus  
More than 1 nucleolus 

Mitosis Not present 
Present normal 
Present abnormal 

Nucleus stain Coarse/hyperchromatin 
Fine/normochromatin 

Uniformity of cells High uniformity 
Medium 
Low/pleomorphism 

Fragility Fragile 
Not fragile 
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(a) Fibroadenoma                     (b) Fibrocystic 

   
            (c) Other benign               (d) Malignant 
Fig 8:  Four categories of breast pre-cancerous cases 

 
INTELLIGENT DIAGNOSTIC SYSTEM FOR 

BREAST PRE-CANCEROUS BASED ON 
ARTIFICIAL NEURAL NETWORK 

 
From literature review, no attempt was carried out 

to use the feedforward ANNs to further classify the 
breast pre-cancerous stages into more than two classes 
(i.e. benign and malignant cases). Moreover, no attempt 
was reported of classifying the breast pre-cancerous 
stages using FNA features. In our previous study [18], 
the standard multilayered perceptron (MLP) network 
trained using the gradient descent with momentum and 
adaptive learning rate, resilient back propagation, 
Quasi-Newton and Levenberg-Marquardt algorithms 
produced 69.23%, 73.08%, 72.31% and 80.00% 
diagnosis accuracy respectively. With additional linear 
connection between input nodes and output nodes of the 
standard MLP network, we proposed a hybrid version 
of standard MLP network called hybrid multilayered 
perceptron (HMLP) network in order to improve the 
diagnosis performance. This section is dedicated to 
explanation on the the hybrid MLP (HMLP) network 
and the MRPE algorithm. 
 
Hybrid Multilayered Perceptron Network: The 
standard MLP network is highly nonlinear, therefore 
modeling a linear system using a nonlinear MLP 
network is not appreciable. [19] suggested the HMLP 
network which capable of modeling both linear and 
nonlinear systems. Nonlinear system is modeled by the 
standard connections (i.e. represented by line 
connection in Fig.  9) as of the standard MLP network, 
and the linear system could be modeled by additional 
direct connections between input nodes to output nodes 

(i.e. represented by dotted line connections in Fig.  9). 
For m output nodes, the output of the HMLP network is 
given by: 
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where 1
ijw  , 2

jkw  and l
ikw  denote the weights of the 

connection between input and hidden layer, weights of 
the connection between hidden and output layer, and 
weights of the linear connection between input and 

output layer respectively. 1
jb  and ix  denote the 

thresholds in hidden nodes and inputs that are supplied 
to the input layer respectively. )(•F  is an activation 

function and is normally be selected as sigmoid 
function. The detailed HMLP network can be found in 
[19]. 

 
Fig 9:  The HMLP network with one hidden layer. 
 
Modified Recursive Prediction Error: Learning 
algorithm for the HMLP network to determine the 

values of l
ikjkij www ,, 21 and 1

jb  have been proposed 

in [19]. To handle the additional linear connections, a 
modified version of Recursive Prediction Error (RPE) 
(the detailed RPE algorithm could be found in [20]), 
namely Modified Recursive Prediction Error (MRPE) is 
introduced [19]. The MRPE algorithm is able to improve 
the convergence rate by optimizing the way the 
momentum and the learning rate are assigned as of in 
the RPE algorithm. The detailed MRPE algorithm can 
be found in [19]. 

The standard RPE algorithm proposed in [20] 
minimizes the following cost function: 
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by updating the estimated parameter vector,
∧
Θ (consists 

of w’s and b’s), recursively using the Gauss-Newton 
algorithm: 
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and 

( ) ( ) ( ) )()()(1 tttttt gm εψαα +−∆=∆               (4) 

where )(tε and Λ  are the prediction error and a 

mm× symmetric positive definite matrix respectively, 

and m is the number of output nodes; )(tmα  and 

)(tgα are the momentum and the learning rate 

respectively. )(tmα and )(tgα  can be arbitrarily 

assigned to some values between 0 and 1, and the 

typical values of )(tmα and )(tgα  are closed to 1 and 

0 respectively. In [19], )(tmα and )(tgα  are varied to 

further improve the convergence rate of the RPE 
algorithm according to: 

( ) att mm +−= )1(αα                 (5) 

and 

( ))(1)()( ttt mmg ααα −=                                    (6) 

where a is a small constant (typically 01.0=a ); 

)(tψ  represents the gradient of the one-step-ahead 

predicted output, 
∧
y  with respect to the network 

parameters: 
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where )(tλ  is the forgetting factor, 1)(0 << tλ , and 

has been updated using the following scheme: 

)1()1()( 00 λλλλ −+−= tt                (9) 

where 0λ  and the initial forgetting factor, )0(λ  are 

the design values. The initial value of the  P(t) matrix, 
P(0) is set to Iα where I is the identity matrix and α is 
a constant, typically between 100 and 10000.  

The gradient matrix, )(tψ can be modified to 

accommodate the extra linear connections for a one-
hidden-layer HMLP network model by differentiating 

equation (1) with respect to the parameters, cθ , to 

yield: 
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The MRPE algorithm to determine the output 

)(tyk  for a one-hidden-layer HMLP network can be 

implemented as follows [19]: 

1. Initialize weights, thresholds, P(0), a, b, )0(mα , 

0λ  and )0(λ . (b is a design parameter that has a 

typical value between 0.8 and 0.9). 
2. Present inputs to the network and compute the 

network outputs according to equation (1). 
3. Calculate the prediction error according to: 

                    )()()( tytyt kkk

∧
−=ε                       (11) 

             where )(tyk  is the actual output. 

4. Compute matrix )(tψ according to equation (10). 

Note that, elements of )(tψ should be calculated 

from the output layer down to the hidden layer. 
5. Compute matrix P(t) and )(tλ according to 

equations (8) and (9) respectively. 

6. If btm <)(α , update )(tmα  according to 

equation (5). 

7. Update )(tgα  and )(t∆  according to equations 

(6) and (4) respectively. 

8. Update parameter vector )(t
∧
Θ  according to 

equation (3). 
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9. Repeat steps (2) to (8) for each training data 
sample. 

 
EXPERIMENTS AND RESULTS 

 
The applicability of the proposed breast pre-

cancerous diagnostic system using the HMLP network 
based on FNA features has been evaluated using 1300 
reported cases from Penang General Hospital and 
HUSM, Kelantan, Malaysia. The data distribution of 
training and testing phases for the system is tabulated in 
Table 2. Five models of the standard MLP networks 
with various training algorithms and one model of the 
standard RBF network were used to compare the 
diagnosis performance. The first MLP network model 
was trained using the gradient descent with momentum 
and adaptive algorithm, which based on [21][22]. The 
resilient back propagation algorithm for the second 
MLP network is based on [23]. The third, forth and fifth 
MLP networks were trained using Quasi-Newton, 
Levenberg Marquardt and Recursive Prediction Error 
(RPE) respectively. The details for the Quasi-Newton 
and Levenberg Marquardt can be found in [23], while the 
RPE algorithm can be found in [20][24]. The RBF 
network was implemented based on [25] and [26]. The 
adjustable weights of the network were estimated using 
linear least square algorithm.  The performance 
comparison was done using accuracy, sensitivity, 
specificity, false negative and false positive. The 
definition and procedure of those analyses in [27] was 
closely followed. 
 
Intelligent Breast Cancer Diagnostic Performance: 
Table 3 depicts the percentage of accuracy, specificity, 
sensitivity, false negative and false positive for the 
diagnostic performance results. The HMLP network 
outperformed the five MLP models and the RBF 
network in term of the percentage of accuracy by more 

than 14%. A trend is similar to that for specificity, 
sensitivity, false negative and false positive. Based on 
Table 3, in general, the four MLP network models (i.e. 
the MLP networks trained using Quasi Newton, 
gradient descent with momentum and adaptive learning 
rate, resilient back propagation and Levenberg-
Marquardt learning algorithms) and the RBF network 
successfully classified the malignant case (i.e. produced 
100% of sensitivity), but all these neural networks were 
not capable to further classify the benign case into 
fibroadenoma, fibrocystic and other benign disease. The 
specificity produced is between 63% and 66%, which 
led to high false positive rate (i.e. between 34% and 
36%). Only the standard MLP network trained using 
RPE algorithm produced good diagnostic performance 
with 91.89%, 97.47% and 89.07% of accuracy, 
sensitivity and specificity respectively. With additional 
linear connection between input nodes and output 
nodes, the result demonstrates that the HMLP network 
trained using MRPE algorithm improved the diagnostic 
accuracy produced by the standard MLP network up to 
100.00%. The HMLP network successfully determine 
all malignant cases (i.e. produced 100% sensitivity) and 
is capable to further classify the benign cases into 
fibroadenoma, fibrocystic and other benign cases (i.e. 
produced 100% specificity). 
 
Dominant Input Features Analysis: The dominant 
input analysis is simulated using the thirteen input 
features extracted from the FNA images. The objective 
of the analysis is to identify the features that highly 
contribute to the classification of breast pre-cancerous 
stage. The HMLP network with MRPE algorithm was 
selected to do this analysis as it produced the best 
diagnostic performance. The respective features were 
fed into the system one by one and the simulation result 
was measured. Table 4 summarizes the results. 

 
Table 2: Data distribution for training and testing phases 
Category of breast pre-cancerous stage Number of training data Number of testing data 
Fibroadenoma 240 150 
Fibrocystic 240 150 
Other benign disease 50 30 
Malignant 270 170 
Total 800 500 

 
Table 3: Diagnostic performance comparison between the six MLP network models, the RBF and the HMLP 

networks 
Type of Neural Networks Accuracy Sensitivity Specificity False Negative False Positive 
MLP with QN 75.38 100.00 65.22 0.00 34.78 
MLP with GDX  76.00 100.00 65.71 0.00 34.29 
MLP with RPROP 75.38 100.00 63.97 0.00 36.03 
MLP with LM 74.62 100.00 64.13 0.00 35.87 
MLP with RPE 91.89 97.47 89.07 2.59 10.93 
RBF 81.82 100.00 79.87 0.00 20.13 
HMLP 100.00 100.00 100.00 0.00 0.00 

Note: QN, Quasi-Newton algorithm, GDX - gradient descent with momentum and adaptive algorithm, RPROP resilient back propagation 
algorithm, LM – Levenberg Marquardt, RPE- Recursive Prediction Error algorithm.  
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Table 4: Results for dominant input features analysis 
Input Marker Performance Marker Percentage (%) 
Cellularity Accuracy 74.3 

Sensitivity 50.00 
Specificity 85.19 
False Negative 50.00 
False Positive 14.81 

Background information Accuracy 79.49 
Sensitivity 81.67 
Specificity 78.51 
False Negative 18.33 
False Positive 21.49 

Cohesiveness Accuracy 58.97 
Sensitivity 0.00 
Specificity 85.18 
False Negative 100.00 
False Positive 14.82 

Cell in clusters Accuracy 58.97 
Sensitivity 0.00 
Specificity 85.18 
False Negative 100.00 
False Positive 14.82 

Significant stromal component Accuracy 58.97 
Sensitivity 0.00 
Specificity 85.18 
False Negative 100.00 
False Positive 14.82 

Clump thickness Accuracy 58.97 
Sensitivity 0.00 
Specificity 85.18 
False Negative 100.00 
False Positive 14.82 

Nuclear membrane Accuracy 82.57 
Sensitivity 78.33 
Specificity 84.44 
False Negative 21.67 
False Positive 15.56 

Bare nuclei Accuracy 65.13 
Sensitivity 76.67 
Specificity 60.00 
False Negative 23.33 
False Positive 40.00 

Normal nucleoli Accuracy 76.41 
Sensitivity 71.67 
Specificity 78.52 
False Negative 28.33 
False Positive 21.48 

Mitosis Accuracy 62.05 
Sensitivity 10.00 
Specificity 85.19 
False Negative 90.00 
False Positive 14.81 
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Nucleus stain Accuracy 80.00 
Sensitivity 83.33 
Specificity 78.52 
False Negative 16.67 
False Positive 21.48 

Uniformity of cells Accuracy 75.38 
Sensitivity 55.00 
Specificity 84.44 
False Negative 45.00 
False Positive 15.56 

Fragility Accuracy 63.07 
Sensitivity 16.67 
Specificity 83.70 
False Negative 83.33 
False Positive 16.30 

 
From Table 4, it is shown that cellularity, 

cohesiveness, cell in clusters, significant stromal 
component, clump thickness, nuclear membrane, 
mitosis, uniformity in cells and fragility cytology 
features highly contribute to the specificity performance 
(i.e. more than 83%). The finding demonstrates that 
these features carry the strong weight for the HMLP 
network to determine the benign cells from the 
malignant cells. On the other hand, background 
information and nucleus stain produce high percentage 
of sensitivity (81.67% and 83.33% respectively). The 
result suggests that these features are highly significant 
to be used as input data for the HMLP network to 
determine the malignant cells. The results also proved 
that each cytology feature is significantly important in 
determining either benign or malignant case. Thus, 
combination of all cytology features is capable of 
producing up to 100% of accuracy, sensitivity and 
specificity as proven in Section 4.1. 

 
CONCLUSION 

 
In this paper, an intelligent diagnostic system based 

on the HMLP network to determine the four stages of 
breast pre-cancerous, namely malignant, fibroadenoma, 
fibrocystic disease, and other benign diseases was 
proposed. The effectiveness of the proposed diagnostic 
system has been demonstrated empirically using 1300 
reported cases. The HMLP network outperformed the 
five MLP network models (i.e. the MLP networks 
trained using Quasi Newton, gradient descent with 
momentum and adaptive learning rate, resilient back 
propagation, Levenberg-Marquardt and recursive 
prediction error algorithms) and the RBF network 
trained using linear least square algorithm. 

This project has also successfully demonstrated 
that the combination of all thirteen cytology of fine 
needle aspiration image (i.e. cellularity, background 
information, cohesiveness, significant stromal 
component, clump thickness, nuclear membrane, bare 
nuclei, normal nuclei, mitosis, nucleus stain, uniformity 
of cell, fragility and number of cells in cluster) has high 

capability to be used as input data for the HMLP in 
order to classify the breast pre-cancerous cases and is 
capable of producing up to 100% of accuracy, 
sensitivity and specificity without any case of false 
negative and false positive. 

Although the results obtained so far are 
encouraging, more investigations on both theoretical 
and practical aspects are needed to further vindicate the 
applicability of the proposed diagnostic system to 
screen for breast pre-cancerous stages based on FNA 
cytology features. 
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