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Abstract: The Generalized Travelling Salesman Problem, denoted by GTSP, is a variant of the 

classical travelling salesman problem (TSP), in which the nodes of an undirected graph are partitioned 

into node sets (clusters) and the salesman has to visit exactly one node from every cluster. In this paper 

we described six distinct formulations of the GTSP as an integer programming. Apart from the 

standard formulations all the new formulations that we describe are 'compact' in the sense that the 

number of constraints and variables is a polynomial function of the number of nodes in the problem. In 

order to provide compact formulations for the GTSP we used two approaches using auxiliary flow 

variables beyond the natural binary edge and node variables and the second one by distinguishing 

between global and local variables. Comparisons of the polytopes corresponding to their linear 

relaxations are established. 
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INTRODUCTION 

 

We are concerned with the generalized version of 

the travelling salesman problem (TSP) called the 

generalized travelling salesman problem (GTSP). Given 

an undirected graph whose nodes are partitioned into a 

number of subsets (clusters), the GTSP is then to find a 

minimum-cost Hamiltonian tour which includes exactly 

one node from each cluster. Therefore, the TSP is a 

special case of the GTSP where each cluster consists of 

exactly one node. 

The GTSP has several applications to location, 

telecommunication problems, railway optimization, etc. 

More information on this problem and its applications 

can be found in Fischetti, Salazar and Toth , Laporte, 

Asef-Vaziri and Sriskandarajah , Laporte, Mercure 

and Nobert , Pop et al. . It is worth to mention that 

Fischetti, Salazar and Toth   solved the GTSP to 

optimality for graphs with up to 442 nodes using a 

branch-and-cut algorithm and the problem was solved 

with various metaheuristic algorithms such as: random-

key genetic algorithm , ant colony algorithms , etc. 

The aim of this paper is to describe six different 

integer programming formulations of the GTSP and to 

establish relations between the polytopes corresponding 

to their linear relaxations. 

A variant of the GTSP is the problem of finding a 

minimum cost Hamiltonian tour including at least one 

vertex from each cluster. This problem was introduced 

by introduced by Laporte and Nobert  and by Noon 

and Bean . 

 

Definition and Complexity Of The Problem: Let 

 be an -node weighted undirected graph 

whose edges are associated with non-negative costs. 

We will assume w.l.o.g. that  is complete (if there is 

no edge between two nodes, we can add it with an 

infinite cost). Let  be a partition of  into  

subsets called clusters (i.e.,  

and  for all  with ). 

We denote the cost of an edge  by . 

Let  be the root cluster, and let  be an edge 

with  and . If , then  is called an 

inter-cluster edge; otherwise,  is called an intra-cluster 

edge. 

The generalized travelling salesman problem 

(GTSP) asks for finding a minimum-cost tour  

spanning a subset of nodes such that  contains exactly 

one nodes from each cluster , . The 

problem involved two related decisions:  
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• choosing a node subset , such that 

, for all . 

• finding a minimum cost Hamiltonian cycle in the 

subgraph of  induced by . 

We will call such a cycle a generalized 

Hamiltonian tour. 

The GTSP and the at least variant of the problem 

are -hard, as they reduce to travelling salesman 

problem when each cluster consists of exactly one 

node. 
 
An Exact Algorithm For the GTSP: In this section, 

we present an algorithm that finds an exact solution to 

the GTSP. 

Let  be the graph obtained from  after 

replacing all nodes of a cluster  with a supernode 

representing . For convenience, we identify  with 

the supernode representing it. We assume that  with 

vertex set  is complete. 

Given a sequence  in which the 

clusters are visited, we want to find the best feasible 

Hamiltonian tour  (w.r.t cost minimization), visiting 

the clusters according to the given sequence. This can 

be done in polynomial time, by solving  shortest 

path problems as we will describe below. 

We fix the cluster  as the root of the global 

Hamiltonian tour and  in addition we duplicate the 

cluster . The new network contains all the nodes of 

 plus some extra nodes  for each . We orient 

all the edges away from vertices of  according to the 

global Hamiltonian tour. A directed edge  

resulting from the orientation of edges of the global 

Hamiltonian tour defines naturally an orientation  

of an edge , where  and , 

having the cost . Moreover, there is an arc  for 

each  and  having cost . 

It is easy to observe that the best (w.r.t cost 

minimization) Hamiltonian tour  visiting the clusters 

in a given sequence can be found by determining all the 

shortest paths from each  to each  with 

the property that visits exactly one node from clusters 

. 

The overall time complexity is then 

, i.e.  in 

the worst case. We can reduce the time by choosing 

 as the cluster with minimum cardinality. 

Notice that the above procedure leads to an 

 time exact 

algorithm for the GTSP, obtained by trying all the 

 possible cluster sequences. So, we have 

established the following result: 

Theorem 1: The above procedure provides an exact 

solution to the generalized travelling salesman problem 

in  time, where  

is the number of clusters in the input graph. 

Clearly, the above is an exponential time 

algorithm unless the number of clusters  is fixed. 

 

INTEGER PROGRAMMING FORMULATIONS 

 

Formulations based on Hamiltonian tours 

properties: In order to formulate the GTSP problem as 

an integer program we introduce the binary variables 

,  and , , to indicate 

whether an edge  respectively a node  is contained in 

the Hamiltonian tour. A feasible solution to the GTSP 

can be seen as a cycle with  edges, connecting all the 

clusters and exactly one node from every cluster. 

Therefore the GTSP can be formulated as the following 

integer programming problem: 

 

 

 

Here we use the notations: ,  

and ,  and for , the cutset, 

denoted by , is defined as usually: 

  

In this formulation, the objective function clearly 

describes the cost of an optimal generalized tour. 

Constraints (1) guarantee that from every cluster we 

select exactly one node, constraints (2) are degree 

constraints: they specify that if a node of  is selected 

than it is left and entered exactly once. Constraints (3) 

are subtour elimination constraints: they prohibit the 

formation of subtours, i.e. tours on subsets of less than 

 nodes. Because of the degree constraints, subtours 

over one node (and hence, over  nodes) cannot 

occur. Therefore, it is valid to define constraints (3) for 

 only. Finally, constraints (4) and (5) 

impose binary conditions on the variables. 
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This formulation, introduced by Fischetti et al. , is 

called the generalized subtour elimination formulation 

since constraints (3) eliminate all the cycles on subsets 

of less than  nodes. 

Since in the GTSP exactly one node from each 

cluster must be visited, we can drop the intra-cluster 

edges. In view of this reduction constraints (2) are 

equivalent to  

 
 

and constraints (3) are equivalent to  
 

We may replace the subtour elimination constraints (3) 

by connectivity constraints, resulting generalized cutest 

formulation, as well introduced in : 

 

Both formulations that we have described so far 

have an exponential number of constraints. The 

formulations that we are going to consider next will 

have only a polynomial number of constraints but an 

additional number of variables. 
 

Flow based formulations: In order to give compact 

formulations of the GTSP one possibility is to introduce 

'auxiliary' flow variables beyond the natural binary edge 

and node variables. 

We wish to send a flow between the nodes of the 

network and view an edge variable  as indicating 

whether the edge  is able to carry any flow or not. 

We consider three such flow formulations: a single 

commodity model, a multicommodity model and a 

bidirectional flow model. In each of these models, 

although the edges are undirected, the flow variables 

will be directed. That is, for each edge , we 

will have flow in the both directions  to  and  to . 

In the single commodity model, the source cluster 

 sends one unit of flow to every other cluster. Let  

denote the flow on edge  in the direction  to 

. This leads to the following formulation: 

 

where  and 

 . In this model, 

constraints (7) restrict  units of a single 

commodity flow into cluster  and 1 unit of flow out 

of each of the other clusters. These constraints are 

called mass balance equations and imply that the 

network defined by any solution  must be 

connected. Since the constraints (1) and (2) state that 

the network defined by any solution one node from 

every cluster and satisfy the degree constraints, every 

feasible solution must be a generalized Hamiltonian 

tour. Therefore, when projected into the space of the 

 variables, this formulation correctly models the 

GTSP.  

We let  denote the projection of the feasible 

set of the linear programming relaxation of this model 

into the -space. 

A stronger relaxation is obtained by considering 

multicommodity flows. In this model every node set 

 defines a commodity. One unit of 

commodity  originates from  and must be delivered 

to node set . Letting  be the flow of commodity  

in arc  we obtain the following formulation: 

 

 

 

where  and the binary  

 

variables ,  indicate whether an arc  is 

contained in the Hamiltonian tour and the directed  
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graph  is obtained by replacing each edge 

 by the opposite arcs  and  in  

with the same weight as the edge . 

We let  denote the projection of the feasible set 

of the linear programming relaxation of this model into 

the -space. 

 

Proposition 1:  . 

Proof. Let , then  

  

 

with  for every , we find 

.          

We obtain a closely related formulation by eliminating 

the variables . The resulting formulation consists of 

constraints (1), (2), (4), (5), (10), (12) plus  (13)  

 

. 

 

We refer to this model as the bidirectional flow 

formulation of the GTSP and let  denote its set 

of feasible solutions in -space. 

In the bidirectional flow formulation, constraints 

(13) which are called the bidirectional flow inequalities, 

link the flow of different commodities flowing in 

different directions on the edge . These constraints 

model the following fact: in any feasible generalized 

spanning tree, if we eliminate edge  and divide the 

nodes in two sets; any commodity whose associated 

node lies in the same set as the root node set does not 

flow on edge ; any two commodities whose 

associated nodes both lie in the set without the root both 

flow on edge  in the same direction. So, whenever 

two commodities  and  both flow on edge , they 

both flow in the same direction and so one of  and 

 equals zero. 

Proposition 2:  . 

Proof. If , using (11) we have 

that  

  

for all  and for all .  

 

On the other hand, assume that . By  

(13)  

 

Hence we can choose  such that  and 

 for all . For example 

take: 

 

Clearly, .                                

 

Local-global formulation: Our last model arises from 

distinguishing between global variables, i.e. variables 

modelling the inter-cluster (global) connections, and 

local ones, i.e. expressing wether an edge is selected 

between two clusters linked in the global graph . 

Recall the construction of graph  obtained by 

shrinking each cluster of  into a single node. 

We introduce variables   to 

describe the inter-cluster (global) connections. Hence 

 if cluster  is connected to cluster  and 

 otherwise. We assume that  represents a 

Hamiltonian tour. The convex hull of all these -

vectors is generally known as the Hamiltonian tour 

polytope on the global graph . 

Following Miller et al.  this polytope, denoted by 

, can be represented by the following polynomial 

number of constraints: 

 

 

where the extra variables  represent the sequence in 

which city  is visited, . 

The constraints (14) ensure that the solution 

contains no subtour on a set of nodes  with 

 and hence, no subtour involving less than 

 nodes. Constraints (15) ensure that the  variables 

are uniquely defined for any feasible tour. 

If the vector  describes a Hamiltonian tour on the 

global graph , the corresponding best (w.r.t. cost 

minimization) generalized Hamiltonian tour 

 can be obtained either by 
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determining all the shortest paths from each  to 

each  with the property that visits exactly one 

node from clusters , or by solving the 

following 0-1 programming problem: 

 

 

 

where  and . 

For given , we denote the feasible set of the linear 

programming relaxation of this program by . 

 

Pop et al . proved that if  is the 0-1 incidence 

vector of a spanning tree of the contracted graph then 

the polyhedron  is integral. But as we are 

going to show in the next example a similar result 

doesn't hold when  is the incidence vector of the 

Hamiltonian tour, namely if  is the 0-1 incidence 

vector of a Hamiltonian tour on the contracted graph 

then  may not be integral. 

 
 

Fig. 1:   Example showing that  may have fractional 

extreme points if  is the is the 0-1 incidence vector of a 

Hamiltonian tour on the contracted graph 

 

If the lines drawn in the Figure 1 (i.e., , 

 etc.) have cost 1 and all the other lines (i.e., 

,  etc.) have cost , then  and 

 on the drawn lines is an optimal solution of 

, showing that the polyhedron  is not 

integral. 

The observations presented so far lead to our final 

formulation, called the local-global formulation of the 

GTSP as an 0-1 mixed integer programming problem: 

 

 

 

This new formulation of the GTSP was obtained by 

incorporating the constraints characterizing , with 

, into . 

 

CONCLUSION 
 

In this paper we present six distinct formulations of 

the Generalized Travelling Salesman Problem as an 

integer programming. Apart from the standard 

formulations all the new formulations that we describe 

are compact in the sense that the number of constraints 

and variables is a polynomial function of the number of 

nodes in the problem. Comparisons of the polytopes 

corresponding to their linear relaxations are established. 
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