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Abstract: Brain tissue is a heterogeneous material with complicated microstructural features. Models 
based on microstructure can lead to more accurate and physically realistic predictions of mechanical 
characteristics of brain tissue. A two-step Mori-Tanaka/Voigt homogenization procedure is 
implemented into a 3D microstructurally-based multi-phase composite model, composed of randomly-
oriented elastic axons, dendrites and neuronal cell bodies surrounded by an elastic matrix. The effects 
of microstructure-related scale on the effective elastic moduli of the cerebral cortex are analyzed by 
comparing the predictions from classical and micropolar continuum theories. For the first time, 
composite material rules and micropolar continuum theory have been utilized to investigate brain 
biomechanics. These findings can assist future efforts to be directed towards relating the 
microstructural aspects of the brain tissue to its macroscopic behavior. 
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INTRODUCTION 

 
 Mechanical modeling of brain tissue is important 
because it may find a variety of different applications in 
medicine such as study of hydrocephalus, robotic 
surgery and traumatic brain injury simulation [1-2]. 
Fidelity of various constitutive models proposed for 
brain tissue is highly dependent on the accuracy of the 
material properties used to describe biological tissue. 
Reported mechanical properties of brain tissue vary 
more than one order of magnitude. Clearly, brain tissue 
has a non-homogeneous nature and the structure and 
cellular composition of the brain varies regionally. 
Experimental evidence has shown significant difference 
between the stiffness of CNS gray and white matter [3]. 
Computational models have taken into account this 
difference [4]; however, the paucity of regional data has 
forced researchers to assume homogeneity within 
regions of white and gray matter. Construction of 
continuum models, based on microstructure of tissue, 
can have three important advantages; first, can lead to 
accurate models in which differences in structure and 
cellular composition of different region can be 
considered. Second, it can help provide further insight 

into how macroscopic deformations and stresses are 
transformed to the cellular structures of brain and lead 
to injuries and poor neurological outcomes. Third, it 
would grant considerable power to make hypotheses 
about changes in biomechanical behavior of brain 
microstructure in pathological states. Scientific effort to 
relate brain microstructure to its macroscopic behavior 
has been somewhat limited and this area is not fully 
mature. To investigate how the microstructure of the 
brain contributes to brain tissue biomechanical 
characteristics, mechanics and physics of heterogeneous 
composite materials which are used in modern industry 
could be one of the most useful tools. This is possible 
now because, using advanced techniques and 
equipment [5], the morphometry, material properties and 
mechanical behaviors of the microscopic brain elements 
have been explored [6]. Micromechanical composite 
models have been used to predict the response of 
biological materials (e.g., tendon) [7]. However, 
micromechanical models for brain tissue are few. In 
one study, micromechanical composite model related 
the biological architecture of the brainstem to its 
mechanical response. In that study, brainstem is 
considered as a viscoelastic fiber-reinforced composite 
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and relevant model parameters measured include the 
brainstem's composite complex moduli and relative 
fraction of matrix and fiber [8].  
 CNS gray matter is a strongly heterogeneous 
material with complicated microstructural features. 
When modeling brain tissue, especially gray matter, we 
are dealing with a material with complicated 
microstructure composed of components of various 
sizes. In composite material, where matrix material has 
a coarse microstructure, microstructural effects (size 
effects and non-local nature of the material) become 
important [9]. In this case, classical continuum theory 
should not be used and one should resort to enhanced 
continuum theories (also called enriched or generalized) 
that take the discrete nature of the materials’ 
microstructure into account. One of these generalized 
theories is micropolar theory. Experiments show large 
effects associated with generalized continuum 
mechanics for certain materials; in bone, a factor 
greater than six in effective stiffness [10]. Therefore, in 
addition to implement classical micromechanichal 
approach to determine effective moduli of CNS gray 
matter, it is worthwhile to consider it as a micropolar 
composite and estimate microstructure-related scale 
effects on the results. 
 In this research work, for the first time, 
micromechanical approach is implemented intto the 
CNS gray matter, in order to determine its effective 
elastic moduli and the microstructural effects on the 
moduli is estimated, considering CNS gray matter as a 
micropolar composite. Here, a 3D microstructurally-
based multi-phase composite model, composed of 
randomly-oriented linear elastic axons, dendrites and 
neuronal cell bodies surrounded by a linear elastic 
matrix is considered. 

 
MATERIALS AND METHODS 

 
Effective moduli for CNS gray matter as a classical 
composite: For a Cauchy material, Eshelby derived the 
solution for a homogeneous material in which an 
ellipsoidal region is subjected to a uniform 
eigenstrain[11]. The total strain inside the transformed 
inclusion is written in the form 

*
klijklij S εε =                                                      (1)                                                                

where summation from 1 to 3 is implied with respect to 
the repeated Latin indices k  and l . Eshelby’s result is 
widely used to determine the stress in an ellipsoidal 

inhomogeneity, and to compute the effective modulus 
of composite materials via homogenization  
approaches. [12]. The main objective of mean-field 
homogenization is to relate the volume averages of 
symmetric stress Ωσ  and strain Ωε  by 

ΩΩ = σε :cD , within a statistically representative 

volume element (RVE). Here, cD  is the classical 
effective compliance tensor for the composite and a 
colon designates a tensor product. The RVE occupies a 
domain Ω  with subdomains  0Ω  for the matrix (of 
volume fraction 0f ) and 1Ω  for the inclusions’ phase 
(of volume fraction )1( 01 ff −= ). A model which 
works particularly well for moderate values of  1f  is 
the Mori and Tanaka (M–T) model [13]. The classical 
effective compliance tensor cD  for the composite with 
randomly oriented inclusions via M–T model reads 
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where  sI  is the fourth-rank symmetric identity tensor 
and 0D  and 1D  are compliance tensor of  matrix and 
inclusion, respectively. To incorporate random 
orientation of inclusions, an orientational averaging 
should be performed and 

oriave
.  stands for the 

orientational average of the said quantity [14].  In order 
to determine the effective elastic moduli of CNS gray 
matter, we are dealing with a multi-phase composite 
such that a matrix material is reinforced with multiple 
phases of misaligned axons, dendrites and neuronal cell 
bodies. Mean-field homogenization of multi-phase 
composites has been studied in linear thermo-elasticity 
[15]. We adopt a two-step M–T/Voigt homogenization 
procedure. This M–T/Voigt procedure ensures 
physically acceptable results and a symmetric effective 
stiffness tensor [16].  
 Consider a RVE containing a matrix and a large 
number of randomly located axons, dendrites and 
neuronal cell bodies. Homogenization of the RVE can 
be performed in two steps: (1) decomposing of 
inclusions into two-phase pseudo-grains and 
homogenization of each pseudo-grain, individually, via 
M-T method and (2) homogenization over all pseudo-
grains via Voigt method. Axons, dendrites and neuronal 
cell bodies are separated via decomposing the RVE into 
three infinitesimal pseudo-grains. The two-step 
homogenization procedure is illustrated in Fig.  1.   
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Fig. 1: Two-step homogenization. First step: the RVE is decomposed into a set of pseudo-grains and each one is 

homogenized. Second step: homogenization over all pseudo-grains. 
 
Each pseudo-grain occupying a domain ω  with 
subdomains ω  for the matrix and 0ω  for the 
inclusions’ phase (of the same volume fraction as in 
the RVE), is a two-phase composite. Pseudo-grains 
containing axons and dendrites are considered as 
composites with randomly-oriented cylindrical 
inclusions. Pseudo-grain containing neuronal cell 
bodies is considered as a composite with orientation-
irrelevant spherical inclusions for which orientational 
averaging is not performed.  
 
Effective moduli for CNS gray matter as a 
micropolar composite: The matrix in CNS gray 
matter composite has a complicated microstructure of 
different constituents and, as mentioned before, 
where matrix material has a coarse microstructure, 
size effects become important. Thus, we are 
interested in predicting the effects of this 
microstructure of different constituents on effective 
elastic moduli. In such cases, the matrix material is 
considered as a micropolar material. The micropolar 
theory is one of the simplest higher-order theories to 
incorporate the scale of the microstructure of a 
heterogeneous material within the continuum 
framework, in which a micro-volume is associated 
with the every point of a continuum and the 
interaction between neighboring material points is 
governed by a moment vector in addition to the force 
vector from classical continuum theory. As a result, 
next to displacements, rotations are introduced as 
kinematic quantities. Curvatures and couple stresses 
(a torque per unit area) account for the effect of 
neighboring material points.  For the case of a centro-
symmetric isotropic homogenous micropolar 
material, the constitutive equations are given as [17]  

ijkkjiijij δλεεκµεκµσ +−++= )()(                    (3a) 

 ijkkjiijij kkkm δαγβγβ +−++= )()(                  (3b)                                                                         

where µ , λ  are classical Lame's constants,  αβγκ ,,,  
are the new elastic constants introduced in micropolar 
theory, and ijδ  is Kronecker delta. 

 Due to the dimensional difference between the two 
sets of moduli, three intrinsic characteristic lengths can be 
defined [18] 

21
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1 )(,)(,)( µαµβµγ === lll          (4)   for 

simplicity, the characteristic lengths are assumed to be 
equal ( )321 llll ===  throughout the modeling.  The 
following relations for the Young’s modulus, Poisson’s 
ratio and bulk modulus kE and, ν  still hold [17]  
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 These constants relate the symmetric parts of stress 
and strain just as a Cauchy material. For a centro-
symmetric isotropic homogenous micropolar composite, 
the effective material parameters can be evaluated and 
estimated considering homogenization procedure similar 
to the one known for the classical composite materials [19]. 
To perform Two-step homogenization procedure, adopted 
in this paper, the first step of homogenization should be 
applied on each pseudo-grain, individually, as a 
micropolar composite. In order to determine the classical 
effective properties of the composite with spherical or 
cylindrical inclusions, only the average symmetric part of 

the Eshelby tensor  
I

symK , which relates the symmetric 

part of strain and eigenstrain, should be considered and 
we have the following form [20-21] 
 

Decomposition 

First step 

Second step 
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where  4)( jimnjimnijnmijmn
sym
ijmn KKKKK +++=  for 

a fourth-order symmetric tensor and 

2
)( jiijsym

ij
εεε +=   for a second-order symmetric 

tensor. Therefore, following the concept of Mori-
Tanaka’s method, the equations for effective 
properties will have the same form as the Cauchy 
composite material, but size-dependence of the 
inclusions will be implicitly induced in the average 

micropolar Eshelby tensor 
I

symK . The classical 

effective compliance tensor for the micropolar 
composite can be expressed as [19] 
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where sym

cM , sym
0M  and 1M  are the symmetric 

compliance tensor of the composite, matrix and 
inclusion, respectively. Micropolar Eshelby tensor 

I

symK  can be obtained from the expressions given 

in Appendix A. It has been shown that when the 

fiber’s size is sufficiently large, 
I

symK  is reduced 

to the classical Eshelby tensor S   [21], so the classical 
results can be recovered. In order to determine the 

micropolar Eshelby tensor 
I

symK , in addition to 

characteristic length of the matrix and classical 
Lame's constants µ  and λ , the constant κ  should 

be determined. κ  is defined by 
2

2

1

2

N

N

−
= µκ , where 

N  is the coupling factor. The bounds on N  are 
10 << N . 1=N  corresponds to ∞→0κ , a 

situation which is permitted by energetic 
considerations, as is incompressibility in classical 
elasticity [22]. The determination of constants for a 
micropolar material still remains a challenge, while 
different techniques and methods can be found in the 
literature [22].  
 

RESULTS AND DISCUSSION 
 

 Axons with average diameter of 0.4 mµ and 
volume fraction of 25.2, dendrites with average 

diameter of 2.25 mµ and volume fraction of 25.9 and 
neuronal cell bodies with average diameter of 22 mµ and 
volume fraction of 7.2 are considered as the three kinds of 
inclusions embedded in the matrix in cerebral cortex [6]. 
Because the cytoskeleton of the neuron cell body is 
continuous with the ultrastructural fibers of axons and 
dendrites, it is expected and assumed that neuron cell 
bodies, axons and dendrites have the same stiffness of 4 
kPa [23]. It is predicted that the myelinated axon is three 
times stiffer than the matrix surrounding myelinated 
axons in CNS tissue [8]. This was the only study in the 
literature on the stiffness of the matrix. We assumed that 
approximation to be valid in CNS gray matter, as well. In 
a study that modeled the head of the optic nerve as a 
biomechanical structure, the Young’s modulus of 
myelinated axons is estimated to have a value of 55 kPa 
[24]. It is assumed that the CNS gray matter structure (as a 
whole) and its components are linear elastic isotropic 
materials. Although it was shown that CNS tissue 
responds non-linearly to mechanical deformation over a 
broad range of strains [25], at certain strains the assumption 
of linearity is reasonable. As strain magnitude increases, 
non-linear representation becomes important. Elastic 
constants for matrix and inclusions, used in calculations, 
are summarized in Table 1. 
 
Table 1: Elastic constants of inclusions and matrix used in 

calculations 
Modulus Inclusions Matrix 
E (kPa) 4 18.3 

ν  0.49 0.49 
µ (kPa) 1.3 6 

λ  (kPa) 65.5 301 
 
 Analytical predictions of micropolar characteristic 
lengths have been developed for a variety of structures. 
Human compact bone was found to be micropolar elastic 
material with characteristic lengths on the order of the 
size of the osteons, which are fiber-like structures, about 
0.2 mm 

 
in diameter, within bone [26]. For a variety of foam 
materials characteristic lengths are on the order of the size 
of the cells in the foams [27]. In fibrous composites, the 
characteristic length may be on the order of the spacing 
between fibers; in cellular solids it may be comparable to 
the average cell size [22]. 
 We carried out calculations for the fixed values of 
coupling factor and different values of the characteristic 
length of the matrix )10( mml <<  in order to investigate 
the influence of the internal length scale on effective 
elastic moduli. Cylindrical inclusions (axons and 
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dendrites) in CNS may be quite long [28].  In order to 
calculate Eshelby tensor 

I

symK , aspect ratio is 
considered to have a value of 100 for cylindrical 
inclusions. Effective shear modulus cµ  and Young’s 
modulus cE  of cerebral cortex, as a function of 
characteristic length of the matrix l , for the fixed 
values of coupling factor N , are plotted in Fig.  2 (2a 
and 2b). Prediction from classical composite model 
and micropolar composite model is considered. 
Calculations reveal that for ,0=N  no scale effect is 
presented and cerebral cortex behaves as a classically 
elastic material and for other values of micropolar 
factor, the prediction based on micropolar theory 
deviates rapidly from that predicted by classical 
continuum theory and is slightly higher than that for 
classical composite. Reduction of the effective 
moduli to that predicted by classical continuum 
theory can be seen for small values of the 
characteristic length of the matrix l . The 
effective shear modulus of cerebral cortex is 
predicted to have a value in the range 3.42-3.9 kPa. 
Considering Poison’s ratio of 49.0=cν and coupling 
factor 9999.0=N ,  the effective Young’s modulus 
of cerebral cortex effective Young’s modulus of 
cerebral cortex is predicted to have a value in the 
range 10.2-11.8 kPa. The predicted value for 
Young’s modulus is close to the values of 3.240 kPa 
and 2.1 kPa introduced for brain tissue in 
macroscopic based investigations [29-30]. The 
estimation is also close to the value of 3.8 kPa for 
“dried” brain network elasticity, derived by fitting 
poroelastic model to experimental data [31]. Besides, 
the predicted value for effective Young’s modulus of 
cerebral cortex is also close to the evaluated value of 
2.46 kPa for CNS gray matter, considering the 
vasculature (stiffest component in gray matter) as a 
geometric foam packed with closed, fluid-filled cells 
[6]. In addition, predicted range for shear modulus of 
cerebral cortex is also very close to the value of 5.3 
kPa introduced for CNS gray matter by magnetic 
resonance elastography [32]. 
 In order to compare the role of axons and 
dendrites to the role of neuronal cell bodies on 
stiffness of CNS gray matter, the effective shear 
modulus of cerebral cortex (micropolar composite 
with 95.0=N  and characteristic length comparable 
to the inclusions’ size ml µ10= ) as a function of the 
volume fraction of inclusions embedded in the matrix 
is shown in Fig.  3a, for two cases. First, we have the 
case in which the composite has two phases of matrix 
and cylindrical inclusions (axons and dendrites) and 
second, for the case in which the composite has two 
phases of matrix and neuronal cell bodies as spherical 
inclusions. It is shown that, for the same volume 
fraction of inclusion phase, comparing to the case of 
embedding axons and dendrites, when the matrix is 
embedded with neuronal cell bodies, the effective 
shear modulus is reduced. This means that, compared 
to neuronal cell bodies, axons and dendrites have 
more roles in the stiffness of the CNS gray matter 

compared to neuronal cell bodies. The same result can be 
seen in Fig.  3b for cerebral cortex as a classical 
composite. This result is in agreement with the results in 
the literature related to the change in effective elastic 
moduli of composites with change in inclusions’ aspect 
ratio [19], and this validates our calculations. It can be 
concluded that in different region of the CNS gray matter, 
for constant percent of volume fraction of inclusion 
phase, when the ratio of volume fraction of neuronal cell 
bodies to the volume fraction of fibrous components 
increases, the stiffness of the CNS gray matter decreases. 
Note that the inclusions are less stiff than the matrix and 
therefore, when the volume fraction of inclusion phase 
increases, the effective shear modulus of composite 
decreases. It has been shown that the characteristic length 
for a homogenous micropolar material that best mimics 
the heterogeneous Cauchy material can be derived when 
the inclusions are less stiff than the matrix.  However, 
when these are equal to or stiffer than the matrix, 
micropolar effects have been shown to be excluded [33]. 
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Fig. 3: Effective shear moduli of cerebral cortex as a function 

of volume fraction of inclusions embedded in the 
matrix (a) micropolar composite with coupling factor 

95.0=N and characteristic length ml µ10= ; (b) 

classical composite. 
 

CONCLUSION 
 
 Through the use of a microstructurally-based 

composite model, a range for the microstructure-
related scale effects on the effective elastic moduli of 
the cerebral cortex is estimated, comparing the 
predictions from classical and micropolar continuum 
theories. Enhancement of elastic effective moduli due 
to the microstructural effects is shown, considering 
cerebral cortex as a micropolar composite. We 
emphasis that the exact experimental results in 
physiological and pathological conditions, regarding 
recent innovative and state-of-the-art experimental 
techniques and equipment to probe the structural and 

mechanical properties of   biostructures, from the micro- 
down to picoscale, can open a more clear way to 
biomechanics of brain tissue. Based on our findings, it 
can be concluded that the composite material rules and 
micropolar continuum theory can be highly useful tools in 
order to relate the microstructural aspects to macroscopic 
behavior of the brain tissue. This work is regarded as an 
initial step in this way. One major question that remains 
to be addressed in future works, when implementing 
micropolar continuum theory, is the determination of the 
additional parameters related to the microstructure of 
brain tissue. 
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