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Abstract: The shakedown analysis process of an offshore structure having elastic-plastic material 
presented. The finite element model of the structure has been developed first, and then a simple 
method has been applied for shakedown analysis using matrix tool. Simplifying the relationships 
together with applying the theory concepts of shakedown analysis is one of the characteristics of the 
presented method for practical problems. Here, shakedown analysis formulation discussed in four 
steps. First, the Morison equation adopted for converting the velocity and acceleration terms into 
resultant forces and it extended to consider arbitrary orientations of the structural members. Then the 
loads due to the waves have been calculated and they have been converted to specific repeating cyclic 
loads on the structure nodes. In the second step, the finite element model of the structure has been 
developed and considered under nodal loads resulted from the specific combined wave loads. Thirdly, 
the shakedown multiplier has been calculated using shakedown static theorem based upon the stress 
domain governing the problem. Finally, in the fourth step, a graph has been developed indicating the 
critical sea waves domain that cause the structure shakedown. 
 The formulation has been applied for two types of offshore structures to verify the concept employed 
and its analytical capabilities.  
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INTRODUCTION 
 

Many structural components operate under complex 
variable or cyclic loading [4, 9, 10, 12]. Usually, they are in 
normal conditions and work in elastic regime but 
sometimes suffer from external loading that cause 
partial yielding. Such a situation may occur in some 
branches of engineering. In present study, offshore 
structures are exposed to variable loading due to the 
cyclic wave loading conditions. It is one of the most 
important items to be checked in the design of bottom- 
supported offshore framed structures. 
Transient and asymptotic responses can be 
distinguished for a structure subjected to quasi-static 
repeated loading cycles above the elastic limit. The 
former is characterized by the subsequent plastic 
deformations during the load cycles [7, 15]. The transient 
phase leads to stress redistribution inside the structure 
and then the asymptotic cyclic response is achieved 
with the same time period as the external load [2, 8, 18]. 
The asymptotic response is independent of the initial 
boundary conditions and can be both elastic or elastic–

plastic depending on the intensity of loading applied to 
the structure [1, 16]. In the first case, elastic shakedown 
takes place, i.e. the plastic dissipation is finite and occur 
only in the transient phase of deformation. In the 
second case a steady plastic state is achieved and 
permanent deformations occur for each subsequent 
cycle [17, 19].  
In the present paper, a fast numerical FEM method is 
used to evaluate the shakedown safety factor for 
elastic–plastic offshore structures. The basic theories of 
this method are discussed in detail. The forces 
generated by a large number of periodic wave loading 
with different wave heights, periods and directions of 
propagation which all occur at the same time are 
estimated using regular wave theories. The application 
of the method has been limited to the finite element 
shakedown analysis of the offshore structures under 
cyclic wave loading. The two simple cases of offshore 
structures has been used here for exemplifying the 
implementation details and the numerical performances 
of the method. Its extension to more large offshore 
structures can be considered quite straightforward. The 
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present paper is organized as follows: The shakedown 
loading domain based upon Airy linear wave theory and 
a reformulation of numerical finite element method 
(FEM) analysis, suitable for shakedown analysis of  the 
offshore frames, is introduced in sections 2 and 3; in 
Section 4 two offshore structures has been used to show 
examples of the actual implementation of the method; 
further comments and finally, conclusions are given in 
section 5.  
 

Shakedown Analysis of an Offshore StructureS 
 
Occurring Shakedown: Based upon the static 
shakedown theorems [13], the offshore structure 
shakedown will happen if the plastic strains increase 
after the first cycle of a specific load combination due 
to the waves such that in any cycle loading, )(tP , the 
behavior of the structure is still elastic. This can be 
stated by the following relationship. 

( ) ( ) 0dtdvtt
0t B

PT <







∫ ∫
∞

=

εσ    (1)    

in which ( )tσ  is the stress component, ( )tPε  is the 
kinematics  plastic strain component produced due to 
loading process, )(tP , in any cycle. The time 0=t  

indicates the non-deformed initial state ( ) 00 =Pε . 
The numbers of the plastic hinges become enough for 
the structure shakedown in an incremental manner. It is 
obvious from (1) and from the above mentioned 
definition that the shakedown happens when at least in 
one cycle of the loading combination and at a specific 
time, the domain of the residual stresses in the structure 
can be stated as follows, 

( )( ) 0tf rese ≤+σλσ        

( ) domain stresste ∈∀σ    (2) 

in which ( ) tσ and ( )t eσ  are the domain of the total 
stress and the domain of the elastic stress due to the 
loading, ( )tP , respectively, which are in equilibrium 
condition. Therefore, their difference is equal to the 
residual stress, resσ . Now, the shakedown analysis of 
the offshore structure under specific combination of 
nodal loading equivalent to the wave loads is conducted 
and the shakedown load multiplier is calculated. The 
multiplier more than unity means the corresponding 
wave causes the shakedown of the structure. 
 
Shakedown Loading Domain Based upon Airy 
Linear Wave Theory: Usually, the offshore structures 

consist of pipe members in different directions. On the 
other hand, the wave force applying on an element with 
variable direction can be easily decomposition into 
horizontal and vertical components. Consider a pipe 
element with arbitrary direction in xyz system as shown 
in Fig. 1. Now, if the movement of the fluid consisting 
of horizontal component of velocity, v, vertical 
component of velocity, u, horizontal component of 
acceleration, xa , and vertical component of 

acceleration, ya  is known, the force resulted from the 
waves applying on the pipe element can be calculated. 
In cylindrical system, φ  and ψ  indicate the direction 
of the cylinder. The component of the velocity of the 
water perpendicular to the cylinder axis, V, can be 
found using the following relationship [14]. 
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Fig. 1: A typical tubular element in cylindrical 
coordinate 

 
The components of the velocity in x, y and z directions 
are computed from the following relationships. 

)vcuc(cuu yxxn +−=  

)vcuc(cvv yxyn +−=                               (4) 

)vcuc(cw yxzn +−=  
where  

θφCosSincx = ,      

 φCoscy = ,              

θφSinSincz =                                                 (5) 
Also, the components of the wave acceleration in x, y 
and z directions can be determined as follows, 

)acac(caa yyxxxxnx +−=

)acac(caa yyxxyyny +−=      (6) 

)acac(ca yyxxznz +−=  
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The components of the force applying per unit length of 
the cylinder in x, y and z directions are calculated as 
follows, 

nx

2

1nDx a
4
DCDVuC

2
1f πρρ +=                                                                                

ny

2

1nDy a
4
DCDvC

2
1f πρρ +=                        (7) 
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4
DCDwC

2
1f πρρ +=  

in which ρ  is the density of the water, D is the 
diameter of the pipe element of the structure and 

ID CC  and  are the drag coefficient and the inertia 
coefficient of the water particles, respectively. The 
force perpendicular to the unit length of the pipe 
element is 

2
12

z
2

y
2

x )fff(f ++±=           (8) 
The sign of the force is chosen concerning the signs of 

zyx fff  and  ,  components. So, typically an offshore 
structure element is under a non-uniform distributed 
loading along the length of the member based upon (8).  
 
Finite Element Formulation for Shakedown 
Analysis: Consider a prismatic pipe element to be used 
for analyzing the offshore structure as shown in Fig. 2. 
In the modeling, the near and far ends of the element 
are indicated by i and j, respectively. In the member 
coordinate system, { }yx, , the x axis is the axis of the 
member, and the components of the displacement is 
stated by the movement perpendicular to the cross 
section of the member in xy plane, such that u(x) is the 
axial displacement, w(x) is the transverse displacement 
and ( )xθ  is the rotation component. Also, the stresses 
are corresponding to the axial force, N(x), shear force, 
V(x), and bending moment, M(x), applying at the cross 
sections of the member.  
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Fig. 2: Kinematics parameters and natural modes for 

element of structure 

The axial and shear components are constant but the 
moment varies linearly. Therefore, the components can 
be shown as follows [3], 

))21(mm(
2
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m
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ea ξ−+=−==       (9)  

So, 
jiejisa MMm,MMm,Nlm −=+==  (10) 

where ij xxl −=  is the member length and 

( ) lxx i−=ξ  is a dimensionless coordinate which 
varies in the interval [0,1]. The strain energy of the 
member can be calculated as follows, 
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in which A, k and I are the cross sectional area, the 
shear multiplier of the section and the moment of 
inertia of the section, respectively. E and G are 
elasticity and shear modulus, respectively. Moreover, 
the strain energy can be obtained using Clapeyron 
theorem as follows, 

)MM)ww(V)uu(N(
2
1

ijjiijijb θθΠ −+−+−=                                    

     (12) 
On the other hand, the natural strains can be defined as 
follows, 

lwwlluu ijijeijsija /)(2/)(,/)(,/)( −−−=−=−= θθφθθφφ

                          (13) 
So, using (9) through (13) the strain energy can be 
found as follows, 
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     (15) 
Based upon Fig. 2, the components of the displacement 
field for the two ends of the member are, 

{ }T
jjjiiib wuwuu θθ=         (16) 

Using the transform matrix of the X and Y coordinate, 
the relationship between the natural strains and the 
components of the displacement field can be indicated 
in the form of the following formula [6]. 
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in which α  is the angle between the global coordinate 
system and the local coordinate system. Finally, the 
strain energy can be computed from the following 
relationship. 
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The elastic stiffness matrix and the vector of the 
internal forces are determined as follows, 
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 So, the total elastic stiffness matrix, sK , and the 

internal forces vector, sF , in global coordinate system 
for an offshore structure is found by assembling the 
values concerning each element as follows, 

∑∑ ==
b

b
b

sbs FF,KK            (20) 

Admissible Shakedown Domain: Defining an 
admissible domain for yield condition and for forming 
the plastic hinge in the member is one of the main 
points in shakedown analysis. For simplicity of the 
analysis, the bending moment, M, is considered for 
plastic state only. So, the problem is defined as follows, 

)x(MM)x(M yy
+= ≤≤           (21) 

in which [ ]lx ...0∈  and ( ) ( )xMxM yy
−+  and  are the 

positive and negative yield moments, respectively. The 
response of the basic external elastic moments is as 
follows, 
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E
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       (22) 

Therefore, the maximum and minimum of the responses 
of the elastic moments are as follows, 
 

))x(Mmax()x(M)),x(Mmin()x(M E
E

E
E == +−                                                

                                              (23) 
Now, using the values as determined in the above, the 
admissible shakedown analysis domain for a member of 
an offshore structure with i and j ends can be easily 
defined by the following relationships 

++−− −≤≤− EiyiiEiyi MMMMM λλ   (24) 
++−− −≤≤− EjyjjEjyj MMMMM λλ   (25) 

 
 The following relationship can be found using (10), 

2/)mm(M esi += ,             

2/)mm(M esj −=           (26) 
Finally, the largest admissible load multiplier is as 
follows, 
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Where m  relates to the control at the end section of all 
elements of the offshore structure.  
 
Calculation of Shakedown Multiplier under Nodal 
Equivalent Wave Forces: A collapse mechanism for 
the plastic rotation, mθ , at the section m  is defined 
first. The plastic hinge will be formed under one of the 
following conditions. 
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where  M pm

+ and −
pmM are the maximum and 

minimum values of plastic moment, respectively, and 
parameter mm  is the residual moment at the sections 

{ },...3,2,1m =  and are under equilibrium condition. 
Therefore, the following relationship can be obtained 
based upon the virtual work [11]. 

∑
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Substituting (28) into (29) the following general 
equation is obtained. 

∑
=

−

+

=⋅












+−
−

1m
mmin

mpm

max
mpm 0

MM
MM

θ             (30) 

Using transform variable −+ −= mmm θθθ  the following 
relationship is determined. 
∑ ∑
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                                  (31) 
and the parameters of maximum and minimum elastic 
moment can be indicated as follows, 
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Substituting (32) into (31) the following equation is 
obtained. 
 

∑ ∑
= =
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1m 1m
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                                   (33) 
Using Melan statics theorem [13], the shakedown 
analysis is done through the following relationship. 
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Now, considering the equivalent nodal loads due to the 
waves obtained in section 2.2 of this paper and applying 
Quadratic Programming optimization algorithm the 
relationship (34) is controlled for all the members of the 
structure and finally the multiplier of the shakedown 
load, Sλ , is computed. It must be noted if the 
multiplier of the shakedown load is more than unity the 
multiplier obtained will be the same as a collapse load 
multiplier. 
 
Domain of the Shakedown Unsafe Waves: For any 
offshore structure it is necessary to find a repeating 
wave loads domain under which shakedown of the 
structure certainly happens. Here, after shakedown 
analysis of the structure, if the multiplier of the 
shakedown load is more than unity, the corresponding 
load combination will be consider as critical shakedown 
load. In this study, the domain of the waves which 
cause shakedown is called "unsafe waves domain" for 
offshore structure shakedown. Now, having different 
water depth to wave length ratios, Lh , and different 
wave height to wave length ratios, LH , for the 
critical shakedown load waves, the graph of the domain 
of the shakedown unsafe  waves can be drawn. 
 
Numerical Studies 
Example 1: An offshore platform Frame with X 
Bracings: Fig. 3 shows the characteristics of the 
offshore platform structure. The structure has been 
divided into 14 elements. The crest of the wave 
amplitude is taken such that the maximum shear force 
and bending moment is developed in the structure. 
Then, the forces caused by a wave with specific 
characteristics are determined using Airy wave theory 
and converted into equivalent nodal loads.  
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1 2
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y
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l

l
l

  
Fig. 3: Offshore platform frame considered in 

numerical example 1 
 

l=6943 Cm 
D=120 Cm  Column Diameter 
D1=60 Cm  Beam & Bracing Diameter 
t=2.5 Cm  thickness of D 

t1=1.25 Cm  thickness of D1 

22400 Cm
Kg

yF =
 

2
61003.2 Cm

KgE ×=
 

 
Afterwards, the shakedown analysis has been done 
using static Melan theorem and an optimization 
algorithm and the shakedown multiplier has been found 
for the specific wave. If the shakedown multiplier is 
more than or equal to unity, the wave is critical and its 
characteristics will be recorded. This process is 
repeated for all the waves that are possibly encountered 
the structure. At the end, the critical region in which the 
shakedown happens is assigned on a graph. The details 
of the information obtained for example 1 is shown in 
Fig. 4. As it can be seen, the graph has been drawn for 
all the values of ratios Lh  and LH  obtained from 
Airy theory. The hashed region shows the waves that if 
apply on the structure repeatedly, the collapse 
mechanism forms and the structure shakedown 
happens. So, a part of the region is critical. For other 
values, the region is called "safe for shakedown".  

 
Fig. 4: Critical region for shakedown in example 1 

 
Example 2: A Frame with K Bracings: The second 
example studied in this paper is a usual and practical 
offshore structure with K bracings under sea waves 
loading as shown in Fig. 5. The geometric and the 
material characteristics of the structure members are 
also indicated in the figure. The materials of the 
structure members are of the elastic-plastic type having 
hardening part with the moment-rotation curve showed 
in Fig. 6.  
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Fig. 5: Offshore structure considered in numerical 

example 2 
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  (b) column 
Fig. 6: Material behavior models for  structure 

considered in numerical example 2 
 

The finite element model of the structure including 
members and nodes has been prepared first, and then 
the wave loading defined by Airy theory has been 

applied on the structure. In the next step, the 
shakedown multiplier for the equivalent nodal load due 
to the maximum wave amplitude has been calculated 
using shakedown analysis. Then, the unsafe region for 
critical shakedown load multiplier has been drawn as 
shown in Fig. 7. As mentioned before, the dashed 
region indicates the waves characteristics that cause the 
structure shakedown when they arise. 

 
Fig. 7: Critical region for shakedown in example 

 

 

 
CONCLUSION 

 
In this paper a simple and practical formulation for 
shakedown analysis of offshore structures under wave 
loads has been developed. The static Melan theorem for 
shakedown analysis of the structures having elastic-
plastic behavior have been stated first. Then a simple 
finite element model with pipe type elements have been 
used for analyzing the structure frames of the offshore 
structure. In the next step, the loads due to the sea 
waves that may arise during the structure life have been 
evaluated using Airy wave theory. The maximum 
forces that may be applied on the structure members 
regarding the velocity and acceleration of the pick 
waves using Morison relationships. The equivalent 
nodal loads due to the maximum of the sea waves have 
been used for shakedown analysis of the structure in 
order to find the shakedown load multiplier. Finally, the 
waves that cause forming the collapse mechanism in the 
members and so, the structure shakedown, when they 
arise and are repeated, have been distinguished from the 
other waves by a graph.  
As a conclusion, it is recommended that the offshore 
structures designed, manufactured and erected 
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previously must be evaluated for shakedown and if the 
unsafe waves concerning shakedown may happen at the 
site that those structures are located, they must be 
strengthen in this regard. The method developed in this 
paper is suitable for large offshore structures because of 
its simplicity. Also, the proposed method can help the 
designers for designing the geometry of the structure 
and choosing the materials characteristics.     
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