Using PLC for Custom-design of a PID/PWM Program to Control a Heater Temperature

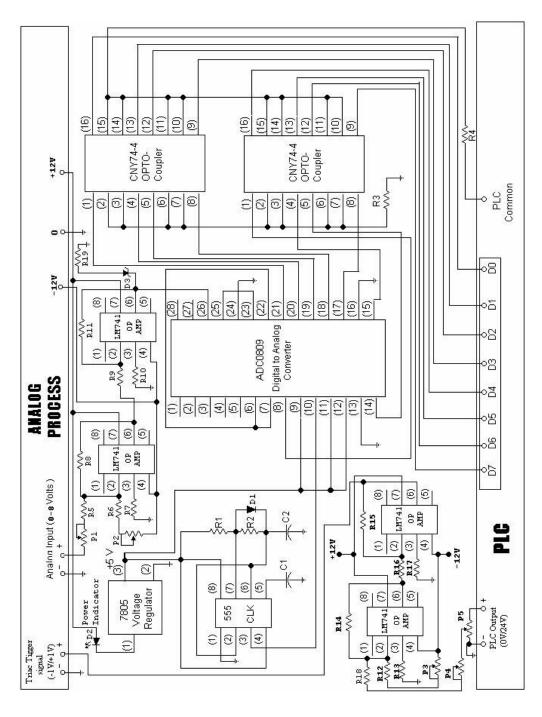
Mohammad A.K.Alia
Faculty of Engineering Technology, Al - Balqa' Applied University, Jordan

Abstract: This is a practical approach to control a continuous-time process variable (temperature) using a discrete controller (PLC) and a custom-designed software control algorithm and hardware interface, in a closed-loop system. Unlike the conventionally known technique of transforming a digital control action into a proportional analogue one by a D/A converter followed by power amplifier, the control action was formed internally by the PLC as a PID/PWM signal, which was used to trigger the power stage. This approach helped reducing the error due D/A conversion, maximized utilization of the PLC and reduced total cost. The control system is realized by utilizing the heater of the training board (RGT1), manufactured by DL-lorenzo Company and it simulates an analogue heating control system. The PLC is Siemens Simatic S7-214 model. An experimental result has shown that the control algorithm functions perfectly.

Key words: PLC, PID software program, PWM, PLC, analogue input digital output, interface board

INTRODUCTION

The use of a digital signal processor (DSP) to evaluate the actual value of an analogue process output and then compute a correction signal has many advantages. DSP does not suffer from the long-term drift effect that analogue circuits do. Changes to constants can easily be made without the actual physical change to the circuitry and simply modifying the loaded program or loading a new one can radically alter the mode of control. Realizing PWM techniques and other advanced functions is some of the vast power points of digital controllers. Actually, in most cases DSPs are designed to replace the ON-line analogue ones. This explains the continuous approaches to implement digitally the traditional analogue control modes such as PID actions.


Because of the advantages of the PLCs^[1], a PLC type S7-200 was utilized as a DSP. Nowadays most modern sequential control systems are based on PLCs, which are in fact specialized industrial computers. Thus, one of the targets of this work is to design a PLC program for PID control algorithm and to develop it to get at the PLC output a PWM signal proportional to the value at the output of PID controller. In this case there is no need for a DAC IC nor for a specific power amplifier stage. Here the PWM signal with the power static switch emulates the function of a D-type power amplifier. From another side, by using the designed interface board, one can exclude the implementation of

a high cost proprietary power interface module, this simplifies the circuit and reduces its cost.

PLC manufacturers very often provide the option of analogue I/O and support instant PID functions for extra cost. Such functions can be used directly by entering the control parameters and constants. Nevertheless, this feature is only usable if the analogue I/O module is installed. Therefore PID algorithm was designed instead of using a ready one. This, also, provides more flexibility to use the program with those PLCs, which do not support ready PID loops. Designed I/O board shown in Fig. 1 satisfies our demands and costs one third of the I/O module's cost approximately.

Because of the limited size of this paper, the design procedure of the I/O interface board is not illustrated. It will be published in a special paper. However, I would like to add that cost is not the only factor. As Johnson^[2] wrote: (every engineer has personal preferences as to which flavor of PID algorithm should be used in any particular situation). For example full PID algorithm can only be used when the signal has little noise or where suitable filtering or limiting has been applied. Another example is that the derivative action could be on the process variable only and could be on the system error depending on the severity of change of system error. In our study we make use of the digital values of the PID output to initiate a PWM signal in order to control the timing of the power switch.

PLC application consideration: The SIMATIC S7-200 with CPU-214 supports many of the familiar

R1	750Ω	R7	1.2 ΚΩ	R13	39 ΚΩ	R19	75 Ω	C1	0.1µF
R2	750Ω	R8	$100 \text{ K}\Omega$	R14	$47 \text{ K}\Omega$	P1	$100 \text{ K}\Omega$	C2	100μF
R3	75Ω	R9	$2.2 \text{ K}\Omega$	R15	$2.2 \text{ K}\Omega$	P2	$500 \text{ K}\Omega$	D1	Silicon
R4	15 Ω	R10	$1.2 \text{ K}\Omega$	R16	$2.2 \text{ K}\Omega$	P3	$1 \text{ M}\Omega$	D2	2.2V LED
R5	$120 \text{ K}\Omega$	R11	$2.2 \text{ K}\Omega$	R17	1.2 KΩ	P4	$300 \text{ K}\Omega$	D3	Zener 5V
R6	$325 \text{ K}\Omega$	R12	$325 \text{ K}\Omega$	R18	$150 \text{ K}\Omega$	P5	$2.4~\mathrm{K}\Omega$		

Fig. 1: ADIC schematic

Table 1: Eight parallel lines connected to eight input points of the PLC convey the instantaneous temperature value

Input number		Input point
0	→	I 1.0
1	→	I 0.1
2	→	I 0.2
3	→	I 0.3
4	→	I 0.4
5	→	I 0.5
6	→	I 0.6
7	→	I 0.7

Table 2: PLC program written in ladder diagram and statement list forms and illustrated network by network

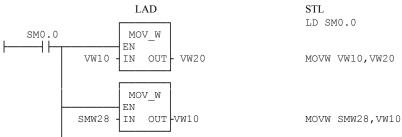
		Network 1
	LAD	STL
SM0.1	Q0.0	LD SM0.1
 	(S)	S Q0.0,1
	0	
L	(CALL)	CALL 0

- On first scan, set image register bit "High".
- Call SUBROUTINE 0.
- First scan is indicated by the special memory bit SM0.1

Network 2

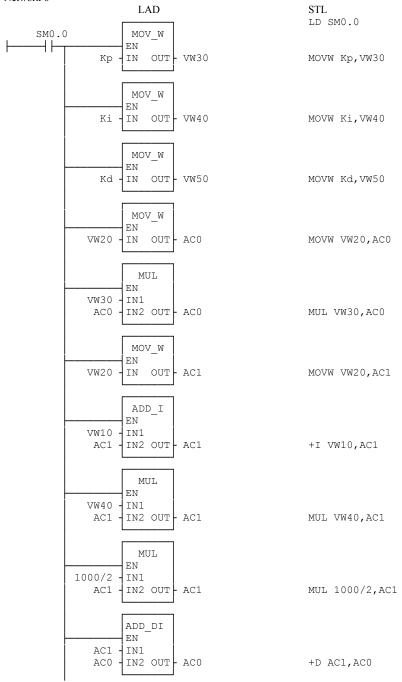
- SM0.0 is a special memory bit always set high (=1)
- The PWM output (Q0.0) is fed back to (I0.0) [see hardware connection]
- Here, we attach the rising edge event of (I0.0) to INT1.

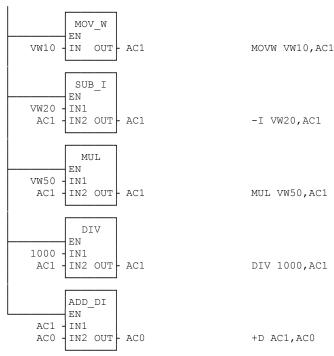
Network 3



- Transfer the status of all inputs (I0.0,I0.1 ... I0.7) as a Byte called (VB0) containing the process variable value .
- Note: this action involves (10.0), which is not technically a process variable bit, for instance, this will not cause errors and shall be treated soon.

Network 4


- Correcting the last network, replace the misplaced (V0.0) coming from (I0.0) with the actual bit obtained from (I1.0)



Each program cycle:

- Store previous error in (VW20).
- Store the set point value in (VW10), this value is generated using analog adjustment feature of CPU-214. Subtract the process variable PV (VW0) from the set point Sp (VW10) and get the result representing ERROR stored in (VW10).

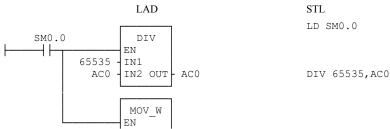
PID control action output:

The discrete representation of the PID control loop is given by the equation:

$$G(t) = KpE(kT) + \frac{kiT}{2} \sum_{k=0}^{n} [E(kT) + E((k+1)T)] + \frac{Kd}{T} [E((k+1)T) - E(kT)]$$

This equation consists of three parts implemented as follows :

I- Proportional part Gp(t) = KpE(kT)

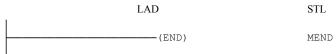

- Put previous error in accumulator (AC0)
- Multiply it by Kp
- Store the result in (AC0)

II- Integral part
$$G_i(t) = \frac{kiT}{2} \sum_{k=0}^{n} [E(kT) + E((k+1)T)]$$

- Put previous error in accumulator (AC1)
- Add recent error to (AC1)
- Multiply result by Ki and accumulate in (AC1)
- Multiply the value of (AC1) by the time period T and store the value in (AC1)
- Add the integral part to the overall output in (AC0)

III- Differential part
$$G_d(t) = \frac{Kd}{T} [E((k+1)T) - E(kT)]$$

- Put recent error in accumulator (AC1)
- Subtract previous error from (AC1) and store result in (AC1)
- Multiply the result by Kd and accumulate in (AC1)
- Divide output by T
- Add the differential action output to the overall output stored in (AC0)



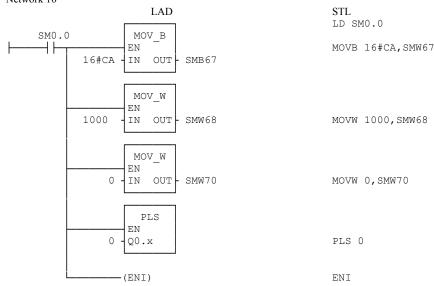
Am. J. Applied Sci., 4 (5): 307-316, 2007

Scaling:

This network is necessary for scaling the output to comply with the next steps and give a flexible range of variation for the controller constants. 65535 is the maximum possible 16-bit (word) value.

Network 8

Main program END:


This network flags the end of the main program, Subroutines and interrupts are not parts of the main program; they are written afterwards as stand-alone units.

Network 9

INITIALIZATION SUBROUTINE:

This subroutine is executed once at the first scan, its purpose is to initialize the function of the PWM featured by CPU-214 as follows. Network 10

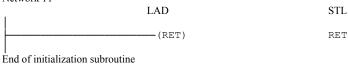
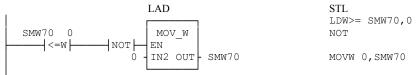

Control byte for PWM is stored in special memory byte (SM67) as illustrated in the following Table:

Table (2.1.1): PWM Control Byte

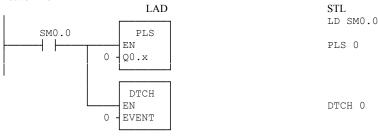
	SM67.x												
Bit no.	7	6	5	4	3	2	1	0					
Bit value	1	1	0	0	1	0	1	0					
effect	Enable PWM	Select PWM	Not	used	(msec/tick) increments	No update for pulse count	Update pulse width time value	No update for cycle time					

- The hexadecimal equivalent for (2 # 1100 1010) is (16 # CA)
- Cycle time is stored in the special memory word (SM68)
- Pulse width is initialized to be (zero) and stored in the special memory word (SM70)
- Invoke PWM operation (PLS 0 → activate Q 0.0)
- Enable all interrupts (ENI)

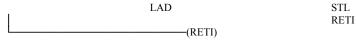
Network 11


Each time (10.0) transitions from OFF to ON , increase/decrease the pulse width depending on the sign and magnitude of controllers output stored in (VW100)

Network 14


OUTPUT LIMITATION:

If the pulse width (SM70) exceeds the duty cycle (due to controller output) ignore the excessive increment and store the maximum applicable pulse width, which is equal to the cycle time (SM68). Network 15


this network prevents negative values of pulse width and stores a (zero) in (SM70) if such values occur.

Network 16

- Update the pulse width
- De-attach the event 0 to disable rising edge interrupt.

Network 17

End of interrupt 1

End of PLC program

instructions for logic operations, math operations, data moves and program control functions as calls, interrupts, subroutines and so on. Some functions are of the PLC's advanced features such as the instant PWM, which depends on special memory bytes (SM67, SM68). So, a ready function of PWM is utilized in order to reduce the size of the program, assuming that programming of this function from scratch is straight

forward, [3]. The block diagram of the control system is shown in Fig. 2.

The instantaneous temperature value is conveyed by eight parallel lines connected to eight input points of the PLC as given in Table 1.

The desired output of the control loop is a digital level passed to one output point of the PLC, (Q 0.0). Due to programming demands in order to avoid

Table 3:	Temperature	readings	for proportional	mode	Gain = 20%

Time	Temp.										
[sec]	[C]										
10	29.3	410	47.3	810	46.7	1210	46.4	1610	46.2	2010	45.5
20	29.8	420	46.9	820	46.8	1220	46.4	1620	46.2	2020	45.4
30	31.9	430	46.5	830	46.8	1230	46.4	1630	46.2	2030	45.3
40	32.2	440	46.0	840	46.8	1240	46.4	1640	46.2	2040	45.2
50	33.0	450	45.5	850	46.8	1250	46.3	1650	41.8	2050	45.1
60	33.8	460	45.2	860	46.7	1260	46.3	1660	42.5	2060	44.9
70	34.6	470	44.2	870	46.6	1270	46.3	1670	43.6	2070	43.7
80	35.3	480	44.1	880	46.5	1280	46.3	1680	44.0	2080	43.8
90	36.4	490	44.1	890	46.4	1290	46.3	1690	44.5	2090	45.0
100	37.6	500	44.0	900	46.3	1300	46.3	1700	46.1	2100	45.3
110	38.7	510	44.6	910	45.8	1310	46.2	1710	46.9	2110	45.3
120	39.7	520	45.8	920	46.5	1320	46.1	1720	47.9	2120	45.1
130	40.8	530	46.4	930	45.5	1330	45.9	1730	48.3	2130	44.8
140	42.1	540	46.7	940	45.4	1340	45.6	1740	48.7	2140	44.6
150	43.3	550	46.9	950	45.3	1350	45.7	1750	49.3	2150	44.6
160	44.4	560	47.1	960	45.2	1360	45.9	1760	49.7	2160	44.6
170	45.6	570	47.2	970	45.4	1370	46.2	1770	49.9	2170	44.5
180	47.6	580	47.3	980	45.7	1380	46.2	1780	50.1	2180	44.5
190	48.4	590	47.3	990	46.3	1390	46.2	1790	50.2	2190	44.3
200	49.4	600	47.2	1000	46.5	1400	46.2	1800	50.2	2200	44.0
210	50.1	610	47.2	1010	46.6	1410	46.2	1810	50.2	2210	44.0
220	50.6	620	47.1	1020	46.6	1420	46.2	1820	50.1	2220	44.1
230	50.9	630	47.1	1030	46.6	1430	46.2	1830	50.0	2230	44.0
240	51.3	640	46.9	1040	46.5	1440	46.2	1840	49.9	2240	44.0
250	51.4	650	46.8	1050	46.6	1450	46.2	1850	49.8	2250	43.8
260	51.4	660	46.6	1060	46.4	1460	46.2	1860	49.7	2260	43.8
270	51.3	670	46.5	1070	46.3	1470	46.2	1870	49.5	2270	43.7
280	51.3	680	46.2	1080	46.1	1480	46.2	1880	49.2	2280	43.7
290	51.1	690	45.5	1090	45.8	1490	46.2	1890	49.0	2290	43.5
300	50.9	700	45.5	1100	45.6	1500	46.2	1900	48.8	2300	43.6
310	50.6	710	45.2	1110	45.4	1510	46.2	1910	48.6	2310	43.6
320	50.3	720	44.4	1120	45.3	1520	46.2	1920	48.5	2320	43.4
330	50.0	730	44.5	1130	45.4	1530	46.2	1930	48.2	2330	43.2
340	49.7	740	44.3	1140	45.6	1540	46.2	1940	48.0	2340	43.2
350	49.4	750	44.9	1150	46.2	1550	46.2	1950	47.7	2350	43.2
360	49.1	760	45.6	1160	46.3	1560	46.2	1960	47.6	2360	43.2
370	48.6	770	45.7	1170	46.3	1570	46.2	1970	47.4	2370	43.2
380	48.3	780	46.3	1180	46.4	1580	46.2	1980	46.3	2380	43.2
390	48.0	790	46.5	1190	46.4	1590	46.2	1990	45.5	2390	43.2
400	47.6	800	46.6	1200	46.4	1600	46.2	2000	45.6	2936	43.2

Table 4:	Temperature	readings	for PI	mode with	disturbance
I auto 4.	1 Chipciatuic	readings	101 1 1	mouc with	uistuibance

Time	Temp. [C]	Time	Temp	Time	Temp. [C]						
[sec]		[sec]	[C]	[sec]		[sec]		[sec]		[sec]	
10	24.0	410	50.0	810	54.7	1210	53.3	1610	44.5	2010	52.3
20	26.0	420	50.0	820	54.8	1220	53.3	1620	44.7	2020	52.0
30	27.5	430	49.9	830	54.9	1230	53.3	1630	44.7	2030	51.8
40	30.4	440	49.8	840	54.8	1240	53.3	1640	45.6	2040	51.6
50	32.6	450	49.6	850	54.9	1250	53.3	1650	46.4	2050	51.4
60	35.2	460	49.8	860	55.0	1260	53.3	1660	46.7	2060	51.2
70	37.0	470	49.7	870	54.9	1270	53.3	1670	47.6	2070	51.3
80	38.4	480	49.8	880	54.9	1280	53.3	1680	48.2	2080	51.2
90	40.7	490	49.9	890	54.8	1290	53.3	1690	48.8	2090	51.3
100	41.7	500	50.0	900	54.8	1300	53.3	1700	49.0	2100	51.3
110	42.6	510	50.1	910	54.7	1310	53.3	1710	49.2	2110	51.4
120	43.6	520	50.2	920	54.5	1320	53.3	1720	50.0	2120	51.5
130	44.8	530	50.3	930	54.0	1330	53.3	1730	50.2	2130	51.6
140	45.9	540	50.4	940	53.9	1340	53.3	1740	50.6	2140	51.7
150	47.2	550	50.6	950	53.3	1350	53.3	1750	51.0	2150	51.9
160	48.5	560	50.9	960	53.2	1360	53.3	1760	51.2	2160	52.0
170	49.7	570	50.9	970	53.0	1370	53.3	1770	51.5	2170	52.1
180	50.8	580	51.0	980	52.8	1380	53.3	1780	52.0	2180	52.3

190	51.8	590	51.1	990	52.6	1390	53.3	1790	51.9	2190	52.4	
200	52.7	600	51.3	1000	52.5	1400	53.3	1800	52.5	2200	52.6	
210	53.4	610	51.2	1010	52.4	1410	53.3	1810	53.4	2210	52.7	
220	54.0	620	51.4	1020	52.4	1420	53.3	1820	54.5	2220	52.7	
230	54.3	630	51.3	1030	52.5	1430	53.3	1830	55.0	2230	52.7	
240	54.6	640	51.4	1040	52.5	1440	53.3	1840	56.0	2240	52.7	
250	54.7	650	51.3	1050	52.7	1450	53.3	1850	56.7	2250	52.6	
260	54.6	660	51.3	1060	53.0	1460	53.3	1860	58.0	2260	52.7	
270	54.6	670	50.5	1070	53.1	1470	53.3	1870	58.3	2270	52.6	
280	54.4	680	50.7	1080	53.2	1480	53.3	1880	58.3	2280	52.5	
290	54.1	690	50.8	1090	53.1	1490	53.3	1890	58.0	2290	52.7	
300	53.8	700	50.8	1100	53.4	1500	53.3	1900	57.5	2300	52.8	
310	53.4	710	51.0	1110	53.5	1510	53.3	1910	57.1	2310	52.9	
320	53.1	720	51.2	1120	53.6	1520	53.3	1920	56.7	2320	52.9	
330	52.7	730	51.4	1130	53.6	1530	53.3	1930	56.1	2330	53.0	
340	52.3	740	51.6	1140	53.7	1540	53.3	1940	55.6	2340	53.1	
350	51.8	750	52.2	1150	53.7	1550	53.3	1950	55.0	2350	53.2	
360	51.4	760	52.5	1160	53.5	1560	53.3	1960	54.5	2360	53.2	
370	51.1	770	52.8	1170	53.5	1570	53.3	1970	53.4	2370	53.3	
380	50.8	780	53.4	1180	53.5	1580	53.3	1980	53.1	2380	53.3	
390	50.5	790	53.9	1190	53.4	1590	53.3	1990	52.1	2390	53.3	
400	50.2	800	54.7	1200	53.4	1600	53.3	2000	52.4	2936	53.3	

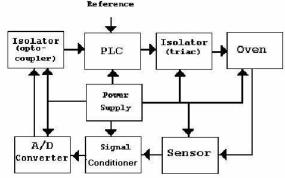


Fig. 2: Control block diagram

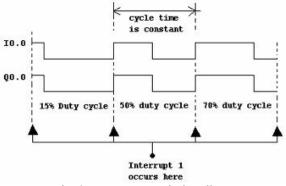


Fig. 3: PWM output timing diagram

undesirable jitter in the controlled variable synchronous updates to the pulse width are realized by feeding back the pulse output to the interrupt input point. By enabling (attaching the event) the rising edge interrupt of the input (I 0.0), PWM cycle is synchronized^[4], as illustrated in Fig. 3.

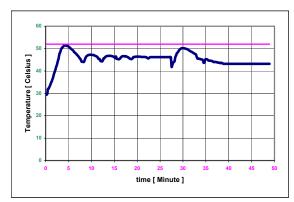


Fig. 4: Practical output characteristic of proportional action with 20% gain

PLC program: The Table 2 contains the PLC program written in ladder diagram and statement list forms and illustrated network by network. Important to note that interrupts and subroutines are not parts of the main program body. They function as independent units when called.

EXPERIMENTAL RESULTS

The control system has been tested with different controller settings of the PID actions. Experiment took place in the process control laboratory by using the heater of the training board (RGTI),^[5]. The initial temperature of the heater was equal to room temperature. Figure 4 and Table 3 show the time characteristic of the controlled variable when the controller was in the proportional mode. After temperature has settled in a steady state mode, at the

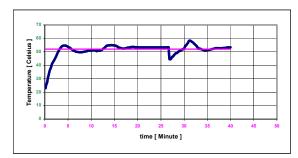


Fig. 5: Practical output characteristic of proportional integral action

27th minute the heater was subjected to an external disturbance for an instant. The figure shows the reaction of the controller and how the variable settled again into a new steady state. The response was obtained with a 20% gain. Consequently the offset is considerably high. When the gain was increased to 60%, a noticeable overshoot occurred and the offset decreased. Note that the curve is not perfectly smooth this is due to external disturbances such as the opening and closure of the doors of the laboratory and the AC unit, which has also participated, in some noisy values included in the reading. Another factor is the small heat capacity of the heater.

Figure 5 and Table 4 show system response in the PI mode. The load was disturbed at the 27th minute and the controller cleared the error and retrieved the previous steady state.

CONCLUSION

* Using PLC a custom design of a software PID/PWM control algorithm was carried out and implemented to control a heater temperature in a closed-loop system. At the same time a PLC analogue input binary output interface board was specifically designed to be compatible with the software program.

- * Power interface between the controller output and the load was realized by transforming the PID digital output into a PWM signal in order to trigger the power switch. This helped reducing the error due D/A conversion, maximized utilization of the PLC and reduced the total cost.
- * The programmed software could be used with other PLCs which do not support PID kit or PLC analogue input binary output interface board.

REFERENCES

- 1. Webb, J.W. and R.A. Reis, 1995. Programmable Logic Controllers. Principles and Applications, Prentice Hall, Ohio. U.S.A
- Johnson, G.W., 1994. LabVIEW Graphical Programming, Practical Applications in Instrumentation and Control. Mc. Graw-hill, INC, U.S.A.
- Alia, M.A.K., 2002. Realizing Programmable PWM By Using PLCs. Helwan University, Faculty of Engineering, Engineering Research Journal, Vol. 82, Egypt.
- 4 Siemens, Simatic S7, Step 7-microprogramming. 6ES7 022-1 AX00-8BH0, Release 02, 1995, Germany.
- Dellrenzo, Viale Romagna, 20-20089 Rozzono, Electronic laboratory board for study of temperature control, Milano-Italy.