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Abstract: The restricted three body problem is treated in the framework of the post-Newtonian 
approximation of general relativity. The equations of motion are linear zed around the libration 
points 5,4L . Locations of the equilibrium points 5,4L  are obtained. Existence and stability of these 

points are investigated. The relativistic correction to the classical mass ratio is determined  
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INTRODUCTION 

 
 In any assumed isolated two-body massive 
orbiting system (such as the Sun and the Earth), there 
are five equilibrium points, ,5,4,3,2,1, =iLi  these 
points usually called Lagrangian or Libration points. At 
these points the gravitational pulls are in balance. Any 
infinitesimal body at any point of the Lagrangian points 
would be held there without getting pulled closer to 
either of massive bodies. ,3,2,1L  are collinear with the 

line joining the two massive bodies while the triangular 
points 5,4L  are found 060 ahead of and behind the less 

massive body along its orbit. 5,4L are forming 

equilateral triangles with two massive bodies, see Fig. 
1. The restricted three body problem (RTBP in brief) is 
now defined as a system  consisting of two massive 
bodies, the primaries, revolving in a circular orbits 
around their centre of mass, and a third body of 
infinitesimally small mass which moves in the 
primaries orbital plane. 

The post-Newtonian deviations of the triangular 
Lagrangian points from their classical positions in a 
fixed frame of reference for the first time, but without 
explicitly stating the equations of motion is 
computed[1]. 

The relativistic RTBP in rotating coordinates is 
treated[2]. He derived the Lagrangian of the system and 
the deviations of the triangular points as well. 

The triangular points are stable in the linear system for 
the values of the mass ratio in the interval ),0( µ  where  

038521.0=µ  is the Routhian value, is shown[3]. 

The global stability of these points has been studied by 
several authors: e.g. [4], [5], [6], and [7], their final 

conclusion is that in the planar case the triangular 
points 5,4L  are always stable within some domain of 

mass ratio. 

 

 
 
  

Fig. 1:   The five Lagrangian points in RTBP (Sun-Earth 

system) 

The equation of motion and the deviations of all 
Lagrangian points are derived directly from the 
equations of motion[8] . 

The existence stability of the triangular points 5,4L  in 
the relativistic RTBP is studied [9], they concluded that 

5,4L  always unstable in the whole range 5.00 ≤≤ µ  in 
contrast to the previous results of the classical RTBP 
where they are stable for ,0 0µµ ≤≤ where µ  is the 
mass ratio and 03852.00 =µ . 
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Due to this abnormal result obtained by [9], the location 
of the triangular libration points 5,4L  are recomputed 
and their stability are re-investigated to assure or to 
refuse or even to modify the above mentioned result. 

 
EQUATIONS OF MOTION 

 
 The equations of motion of the infinitesimal 
mass in the relativistic RTBP in a synodic frame of 
reference ),,( ηξ  in the primaries coordinates on the x-

axis )0,1(),0,( µµ −−  are kept fixed and the origin at 
the centre of mass, are given by[10],  
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where U, is the potential–like function of the relativistic 
RTBP, which can be written as composed of two 
components, namely the classical RTBP potential 

cU and the relativistic correction ;rU  

rc UUU +=                                         (2) 
where cU and rU  are given by 
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LOCATIONS OF THE TRIANGULAR POINTS 

The libration points are obtained from 
equations of motion after setting 

.0
......

==== ηξηξ These points represent particular 
solutions of equations of motion 
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with .0
..

== ηξ  
The explicit formulas are 
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Since 1
1
2

<<
c

  and the solution of the classical RTBP 

is ,121 == rr  then it may be reasonable in our case to 
assume that positions of the equilibrium points 5,4L  are 

the same as given by classical RTBP but perturbed due 
to the inclusion of the relativistic correction by 

quantities ( )
1

(
22,1

c
o≡ε )  

 
)1( 11 ε+=r , )1( 22 ε+=r .                                      (9) 

substituting in the second set of equations (5) and 
solving for ξ  and η  up to the first order in the small 
quantities 1ε and 2ε  we get 
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substituting the values of ξ,, 21 rr  and η  into 
equations (7) and (8) and retaining only the first order 
terms of the relativistic correction yields 
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which represent two simultaneous equations in 21 ,εε  

their solution gives  
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substituting the values of 21 ,εε  into equation (10) 

yields the coordinates of the triangular points 5,4L  
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THE STABILITY OF 5,4L  

Due to the perturbations induced by the 
relativistic corrections the position of the infinitesimal 
body would be displaced a little from the equilibrium 
point. If the resultant motion of the particle is a rapid 
departure from the vicinity of the point we can call such 
a position of equilibrium point an unstable one, if 
however the partials merely oscillates about the 
equilibrium point, it is said to be a stable position. 
To examine the stability of the orbits in the vicinity of 
the liberation points the equations of motion are 
linearized around an equilibrium point with coordinate 
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The subscript o  indicates evaluation for oξξ = and 
.oηη =  Now if equations in (1) are evaluated at  

1ξξξ += o  and ,1ηηη += o one can write                       
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which can be rewritten as 
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which are linear differential equations with constant 
coefficients so long as only first order terms are 
retained? Let a solution of the problem be  

)(exp1 tA σξ = , )(exp1 tB ση =                            (17) 
where ,, BA  and σ  are constants. To find the 
expressions for A and B, equations (16) can be 
rewritten, using the suggested solution, as 
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This system has non trivial solution if 
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expanding the determinate yields 
0)4( 224 =−+−−+ ηξηηξξηηξξ σσ UUUUU   (21) 

where σ  is the root of the characteristic determinate, 
and 
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Evaluating the partial derivatives included in equation 
(21), and neglecting the terms of orders ( )3, ≥− nc n , 
now the characteristic equation (21) becomes 
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By substituting ωσ i=  in the equation (22), we get 
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SOLUTION OF EQUATION (22) 

 Similarly as in the nonrelativistic RTBP 
equation (22) is biquadratic in σ .This is possible only 
for the simplistic 44 ×  matrices and reflects the 
simplistic structure of the phase space of the relativistic 
RTBP which is also a consequence of the fact that the 
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equations of motion of the relativistic RTBP are derived 
from a Lagrangian. 
 In the case of linear stability, none of the 
eigenvalues' real parts is positive, i.e. if the equation 
(22) has two negative non-equal roots. The solution is 
given by 
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The following three cases for the solutions 2
2,1σ   are 

possible:- 
(1) The first case: when 2

2,1σ  is complex with non-

vanishing imaginary part: 0,2
2,1 ≠±= yiyxσ , it 

follows that 
iYX +=σ                                                          (25) 

with 
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Accordingly, there is a solution σ   with positive real 
part thus instability. 
(2) The second case: when 2

2,1σ  is real and positive. In 

this case one of the eigenvalues 2
2,1σσ ±= , namely 

the positive root  induces instability.  
(3) The third case: when 2

2,1σ  is real and negative. In 

this case two purely imaginary roots 2
2,1σσ i±=  

exist, which leads to oscillatory stable solutions. Hence 
in the following section real 02

2,1 <σ  will be 
investigated.  

 
CRITICAL MASS RATIO FOR STABLE 5,4L  

A sufficient condition for real 2
2,1σ  is 
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has a zero only for 5.0=µ , F is a monotonous function 

of [ ]5.0,0∈µ . As 00 >=µF  and ,0
5.0

<=µF  there is 

a unique solution of 0)( =µF  in this interval. 

The critical mass ratio .critµ  for the stable triangular 
points can be assumed as composed of two parts as, 
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where rc µµ , are the contributions due to the classical 
and relativistic RTBP respectively. 
Substituting from (28) into the condition (26) leads to 
the conditions 
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 The conditions (29) and (30) represent two 
simultaneous equations in two variables, namely 

cµ and .rµ  Their solution yields the mass ratios as 
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According to equation (24), 2
2,1σ  is a monotonous 

faction of µ  as well as F is.  At the points of interest 

0=µ  and .critµµ = it takes values less than or equal to 
zero, so that for ],0[ .critµµ ∈  each of the eigenvalues 
σ  has a zero real part. Finally the critical mass ratio for 
stable triangular points in the relativistic RTBP is given 
by 
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In the non dimensional units of the relativistic RTBP 

the parameter 
2

1

c
 is related to the ration of the total 

mass of the system M  and the separation of the 

primaries R  such that 
2

1

c
 becomes proportional to 

R
M

 by 

)(10970154.9
1 9
2 R

M

c
−×=  

where M  and R  are expressed in solar masses and 
astronomical unites, respectively. Now the critical mass 
ratio is given by 

)(109094.7)69
18
1

2
1

( 9
. R

M
crit

−×+−=µ              (31)  

Thus in the relativistic RTBP the critical mass ratio 

.critµ is shifted towards the greater values for increasing 

R
M

. 

RESULTS AND CONCLUSION  

 To investigate the region of stability and instability 
the roots 'ω s given by equation (23) are plotted against 
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different values of mass ratio µ , by using the 
Mathematica 5  software. See Figs. 2-6. As is clear 
from these Figures, the stability region is shifted with 
about .10209.1 4−×−=∆µ  This shift is due to the 
inclusion of the relativistic corrections in the restricted 
three body problem. A new value of the maximum mass 
ratio is obtained, i.e. the triangular points 5,4L are stable 
for the values of the mass ratio in the interval ( 0,0 µ ) 
where 03840.00 =µ instead of the classical Routhian 
value 03852.00 =µ . 
 
 

0 0.01 0.02 0.03 0.04 0.05
™ m

-0.8

-0.6

-0.4

-0.2

0

w
w1

 
Fig.2:    The real values of the root 1ω  versus µ for the   
              characteristic equation (22) 
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Fig.3:     The real values of the root 2ω versus µ for the   
              characteristic equation (22) 
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Fig.4:     The real values of the root 3ω  versus µ for 
               the characteristic equation (22) 
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Fig.5:     The real values of the root 4ω  versus µ for 
                the characteristic equation (22) 
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         Fig.6:    The stable and unstable region of the  
                       relativistic corrections in the restricted    
                       three body problem for 5,4L  
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