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Exact Solution of a Test Particlein Presence of Thick Domain Walls

A. Al-Badawi
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Abstract: We have obtained the exact solution of the eqnatal motion of a test particle near a thick
domain walls for the case of Ricci tensqpR0. From the solution it has been shown that thaain
walls have repulsive gravitational fields.

Key words. Classical general relativity, Thick domain walBehavior of Test particle, Repulsive
properties.

INTRODUCTION energy layer with a surface energy densityl his layer
. . : H’s called domain wall.
Properties of domain wall have been object o Many author®® have discussed non-static

Intense investigation for different reasons. Onéhast solutions of the Einstein scalar field equationstfack
domains walls are objects formed in the early Safe omain wall. In these solutions the energy scadar i
the evolution of the universk and have been studied jngependent of time while the metric tensor deperds
intensively in the past decade or so, this is duthéir  oth space and time. Recently, Wéhgbtained a class
implications to cosmology. Other reason is that the of solutions to the Einstein’s equations representhe
study of topological defects has wide applicability gravitational collapse of a thick domain wall. Wanc
many areas of physics. In the cosmological arefectie  consider the domain wall as an interesting grawitai
have been put forward as a possible mechanism fasbject. Its metric is not static but time depenfefit
structure formatioff. Domain walls are considered the having a de sitter-like expansion in the plane huf t
most simple to study in the field of topologicafelets.  wall. Observers experience repulsion from the domai
They correspond to solutions in one-to-one dimersio wall, and there is a horizon at finite proper dis&
which are extended in two spatial directions tarfax  from the defect’s core. This horizon can be intetgd
wall structure. This is because they depend on tidy as a facet of the choice of coordinates, which lisua
distance from the wall. The thick domain walls areuse the flat space wall solution as a starting tpaind
solutions to Einstein’s gravity theory interactinith a ~ impose planer Ssymmetry on the domain wall space-
scalar field, where the scalar field is a standardime. However in Ref ™ they have use different set

topological kink interpolating between the minimiaao ~ ©f coordinates such that the wall has the appearafc
potential with spontaneously broken symmetry. a bubble which counteracts in from infinite radias

Domain walls are formed whenever a discreteSOmMe minimum radius, and then re-expand undergoing

symmetry is broken. For example in the Higg's Scalaunlform acceleration from the origin. The horizas |

. . . : then simple the light core of the origin in these
field © with an effective energy potentiaV (®,T) coordinates, and is somewhat similar to the horiabn

given by rindle space-time.
Vo =220 miw?o 2T 2Tt where A is the In this study we have obtained the exact solutibn

_ 2 4 24 %0 _ the geodesies equation of motion of a test pariicthe
coupling constant, T the temperature of the un&ers presence of the thick domain wall for the case of
and u a real constalft. We can determine the yacuum solution. The solution implies that the dsma

equilibrium values of® from wall have repulsive gravitational field.
V@) _ o (DZ_TCZ—TZ -0 Formulation and Calculations. Let us consider the
do general metric for a plane symmetric space-time as
follow
where Tczﬂ
N

2 _ V(X)) 42 AKXt 2 z 2

If T > T, symmetry is resorted, since ®(T) has ds_ - (_ Jat? - e € )d_z_ -/ k24 dy 3 (1)
only one minimum. Therefore the universe becomed his metric have three killing vectors namely
colder, when T becomes cooler than Tc, then théx Oy . Xd -yd, (2)
Higges scalar field®d acquires two other non-zero
exception values which |mp||es that we have twoASSUme that the scalar field a function of Zonly.
regions <@ >, and <® >.. If one goes from < >, to < Then the components of the energy momentum tensor
@ >, one should pass through the unstable regidn=< 0°d

1
= - i P - 3
= 0. Therefore, in between the regions there exist '~ 2,9, gw(zaafba ®-V(®) 3)
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is given by,

TTI T =280 @) = p "
T = —%é‘qaz +V(P) =—p

Where the scalar field equation becomes

O+ (W %(\/ “A) =¢ d\;g") 5)

Where “prime and “dot” denote derivatives with resp
to z and t respectively. Sinée = O, then it implies

1= A(2), at(w'%(\/—/l'):o- (6)
And

Gl =0=2W'-vi+Wy =0 7
This puts the line element (1) in the form

ds® = A(z)[dt? - dz* — b(t)(dx® + dy?)] (8)

3 (7): 1903-1904, 2006
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Fig. 1: The path of a test particle

The Fig. 1 (horizontal axis = z and vertical axi§
represents the path of a test particle near a thockain
wall for the values (y¥= 0.6 and gi= 10). If we release
the particle at u = 0.6 (or any value) then it liserved
that the particle repels away from the domain wiis

From the remaining three Einstein equations wdesult emphasis that the domain walls have repailsiv

can determine the functions A(z), b(t), ab¢) namely

G -G'=0=bb-b*=0 9)
" 12 2
Gi-Gi=-2 38 _C _gelen (10)
A2 A 2A A
U 2
G +G’ = -% +CA = 167GV (D) (11)

gravitational fields as had been anticipated by
Vilenkinp™?. We should notice that the shape of the
figure dose not change when we alter the valugsof
and g ).

CONCLUSION

Thick domain walls are solutions of the coupled
Einstein —scalar field equations with Kinklike smal
field distribution and vanishing energy momentum

Where C is the integration constant. Solution oftensor far away from the center of the wave. Exact

equation (9) is

b=¢' (12)

From equation’s (10) and (11) we can determine
(z) and @ (z) for a given V ¢)™.. For the case of Ricci

solution of the equation of motion of a test paeticear

a thick domain walls is given. We showed that when
Athe particle is released at an initial distangefrom the

domain wall then the particle is repelled far awgich

proves that the gravitational field of the domaiallw

tensor B, = 0 we will solve equation’s (10) and (11). has a repulsive properties.
After some mathematical manipulations, equatio®y (1

and (11) reduces ),

.2 2 5
"+gu7—b7u3:o (13)
3u 3
Where u=bz+1, The above equation (13) represenlz'

the equation of motion of a test particle near iakth

domain wall. The exact solution of eq. (13) is aitd
which is giving by

-2/3 2/3

u=bu u“’+c (14)
Integrating eq. (14) we obtain

8b ., _ /3 273 2
Co+?t—[2u-3cu1 } u +c+ 3c (15)

In [ul/3+ u2/3+C}

where ¢ and gare integration constants.
Let us now choose our initial conditions as follows

At t=0,u=yand U=V, (16)

Imposing equations (16) into equations (14) and

(15) we obtain

Co = vou05/3[5 - 3v02u02/3]+ 3¢ ?

17
|n[uol/3+U02/3V0} an
c=u,2"*[vau?’® -1
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