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Abstract:  In this study fractionally integrated ARIMA (ARFIMA) models are estimated using an 
extended version of Nelson and Plosser[1]’s data set. The analysis employs[11]’s maximum likelihood 
procedure. Such a parametric approach requires the model to be correctly specified in order for the 
estimates to be consistent. A model-selection procedure based on diagnostic tests on the residuals, 
together with several likelihood criteria, is adopted to determine the correct specification for each 
series. The results suggest that all series, except unemployment and bond yields, are integrated of order 
greater than one. Thus, the standard approach of taking first differences may result in stationary series 
with long memory behavior. 
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INTRODUCTION 

 
 Economists widely agree that numerous 
macroeconomic time series evolve smoothly over time. 
Such smooth movements were initially modelled by 
assuming that the series fluctuate around a deterministic 
trend. Subsequently,[1], following the work of[2], 
suggested that allowing for unit roots would result in a 
better understanding of their stochastic behavior[3] and 
his co-authors advocated a third modelling approach. 
Specifically, they argued that the persistent trend-
cyclical behavior of many macroeconomic time series 
tends to disappear when they are examined over long 
time periods. In particular, the auto correlations take far 
longer to decay to zero than the exponential rate 
associated with the AutoRegressive Moving Average 
(ARMA) class of models. Therefore, “long memory” 
models, which are characterized by significant 
dependence between distant observations, are more 
appropriate. One such model is the so-called 
fractionally integrated one.  This involves using the 
fractional differencing operator ∇d, where, 
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and L is the lag operator. To illustrate this in the case of 
a scalar time series, xt, t = 1, 2, …, suppose that ut is an 
unobservable covariance stationary sequence with 
spectral density that is bounded and bounded away 
from zero at any frequency and 
 

d
t t(1 L) x u , t 1, 2, ...− = =  (1) 

 
and xt = 0 for t ≤ 0.  The process it could itself be a 
stationary and a invertible ARMA sequence, with its 
autocovariances decaying exponential; however, these 

could also decay much slower than exponential. When 
d = 0 in (1), xt = ut and xt is ‘weakly autocorrelated’, or 
‘weakly dependent’. If 0 < d < 0.50, xt is still stationary, 
but its lag-j autocovariance γj decreases very slowly, as 
the power law j2d-1 as j → ∞ and so the γj are non-
asummable. Finally, as d in (1) increases beyond 0.5 
and towards 1 (the unit root case), xt can be viewed as 
becoming ‘more nonstationary’, in the sense, for 
example, that the variance of the partial sum increases 
in magnitude. Processes like (1) with a positive non-
integer d are called fractionally integrated and when ut 
is ARMA (p,q), xt is known as a fractional ARIMA 
(ARFIMA(p,d,q)) process. Thus, the model becomes 
 

d
t t(L)(1 L) x (L) , t 1, 2, ...φ − = θ ε =  (2) 

 
where, φ and θ are polynomials of order p and q 
respectively, with all zeroes of φ (L) outside the unit 
circle and those of θ (L) outside or on the unit circle 
and εt is a white noise. This kind of models was 
introduced by[4-7] and were theoretically justified by[8, 5] 
and more recently, by[9,10]. 
 In view of the preceding remarks, it is obviously 
interesting to estimate the fractional differencing 
parameter d, along with the other parameters of the 
ARMA representation. Specifically, we claim in this 
study that many macroeconomic time series may be 
described as fractionally integrated ARIMA models and 
show that the classical trend-stationary I (0) and unit 
roots (I (1)) representations may be too restrictive with 
respect to the low-frequency dynamics of the series. 
 
Earlier Studies Analyzing the Nelson and Plosser's 
Dataset:[1] analyzed fourteen annual macroeconomic 
time series for the US to establish whether they could 
be better characterized as trend-stationary or difference-
stationary processes. The time period covered by the 
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data ranged from 1860 to 1909 until 1970 and in all 
cases but one logged series were examined. Applying 
the tests of[12,13], strong evidence of unit roots was 
found. More specifically, let xt, t = 1,2,…, be the series 
under investigation. The unit-root model tested by[1] 
was essential: 
 

t t(1 L) x u , t 1, 2, ...− = α + =  (3) 

 
Where: 
 

t t(L)u , t 1, 2, ...ϕ = ε =  (4) 

 
φ is a pth degree polynomial, with all zeroes lying 
outside the unit circle and εt is a white noise sequence. 
In the terminology of[2], (3) and (4) constitute an 
ARIMA (p, 1,0) model[1] tested (3) in: 
 

t t(1 L)x t u , t 1, 2,....− ρ = α + β + =  (5) 

 
Where, the null hypothesis is: 
 

oH : 1 and 0ρ = β =  (6) 

 
with ρ  < 1 corresponding to a trend-stationary model. 
The tests failed to reject the unit root null (3) in all 
cases, with the exception of the unemployment rate, for 
various values of p in (4). 
 The influential study of[1] spawned much 
subsequent research[14]. Provided asymptotic confidence 
intervals for the largest autoregressive root of a time 
series when this root was close to one. He reported that 
the confidence intervals for the[1]’s data were typically 
wide, containing the unit root for all series except 
unemployment and bond yields, but also including 
values significantly different from one[15]. Analyzed the 
same data set, using the tests of[16,17] and questioned the 
findings of[1] in favor of unit roots[18]. 
 Pointed out that formulating the null hypothesis of 
an I (1) rather than I (0) series might lead to a bias in 
favor of the unit root hypothesis; they proposed an I (0) 
test in which the mall is a zero variance in a random 
walk and applied it to the[1] data. They concluded that 
the unemployment rate is I (0); consumer prices, real 
wages, velocity and stock prices have unit roots; real 
GNP, nominal GNP and bond yields might also have a 
unit root; for the remaining seven series neither the unit 
root nor the trend-stationary representations can be 
rejected. 
 The possibility of structural breaks was then 
analyzed by several authors. Perron (1989) showed that 
the [13] tests are invalid if the true alternative is that of 
trend-stationarity with a structural break. He proposed 
new tests and found that the unit root null could be 
rejected in ten out of fourteen cases for the[1]’s data. He 
treated the break as exogenous[19]. Proposed a variation 

of his tests, allowing the structural break to be 
endogenous, finding less evidence against the presence 
of unit roots[20]. Applied a Bayesian procedure that 
consistently classifies the stochastic component of a 
series as I (1) or I (0), with both linear detrending and 
piecewise linear detrending and found support for the[1]’s 
conclusions in the former, but not in the latter case. 
 As for fractional models,[21] applied an ARFIMA 
approach to an extended version of the[1]’s dataset to 
distinguish between trend- and difference-stationary 
models and found stronger evidence for the latter[22]. 
Analyzed the same series using[23]’s procedure for 
testing unit roots and other hypotheses. These tests 
allow one to consider the unit root  (I (1)) and the trend-
stationary I (0) hypotheses as special cases of I (d) 
processes. Their results varied substantially across the 
series and the various models for the I (0) disturbances, 
but virtually all series were found to be nonstationary 
with d greater than 0.5. 
 
An Empirical Application:  In this section we analyze 
an extended version of the[1]’s data set by estimating 
fractionally integrated ARMA models. As with their 
original data, the starting date is 1860 for consumer 
prices and industrial production; 1869 for velocity; 
1871 for stock prices; 1889 for GNP deflator and 
money stock; 1890 for employment and unemployment 
rate; 1900 for bond yield, real wages and wages; and 
1909 for nominal and real GNP and GNP per capita. 
All series except bond yields are transformed to natural 
logarithms and end in 1988. We estimate for each of 
them different ARFIMA (p, d, q) models with p and q 
smaller than or equal to three, using[11]’s maximum 
likelihood estimation procedure (See[11] for more 
details. To ensure stationarity and following standard 
practice, the models were estimated in first differences 
and then converted back to levels). Other parametric 
methods for estimating d based on the frequency 
domain were proposed, amongst others, by[24,25]. Small 
sample properties of these and other estimates were 
examined in[26,27]. The former authors compare several 
semi-parametric procedures with the maximum 
likelihood estimation method of[11], finding that[11]’s 
procedure outperforms the semi-parametric ones in 
terms of the bias and the mean square errors[27]. Also 
compares it with others based on the exact and the 
Whittle likelihood function in both the time and in the 
frequency domain and shows that it dominates the 
others in case of fractionally integrated models. Having 
carried out the estimation, we then perform several 
diagnostic tests for each model to ensure white noise 
residuals-in particular, normality, heteroscedasticity, 
Autoregressive Conditional Heteroscedasticity (ARCH) 
and Ljung and Box tests. 
 Table 1 summarizes the estimated d’s for the 
different ARMA representations of each series. It can 
be seen that for all of them the estimated values of d are 
greater than 1, except in the case of the unemployment 
rate (for which  they  are  smaller  than  1)  and in some 
cases for velocity and bond yields.
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Table 1: Maximum Likelihood Estimates of d in ARFIMA (p, d, q) Models for the Extended Nelson and Plosser (1982) Dataset 
       ARMA (p, q) 
Series (0,0) (1,0) (0,1) (1,1) (2,0) (0,2) (2,1) (1,2) (2,2) (3,0) (0,3) (3,1) (3,2) (1,3) (2,3) (3,3) 
Real GNP 1. 30’ 1.17’ 1.20’ 1.17’ 1.18’ 1.15 1.49 -- . 49’ 1.24’ 1.19 1.49’ -- -- -- 1.18 
Nominal GNP 1. 39 1.26 1.28 1.27 1.29 1.28 1.48 1.48 1.31 1.32 -- 1.42 1.47 1.48 -- 1.29 
Real cap. GNP 1. 24’ 1.02’ 1.09’ 1.02’ 1.03’ 1.06 -- 1.49 1.11’ 1.10’ 1.07 1.49’ 1.49’ 1.49’ 1.04 1.06 
Industrial prod. 1.15 1.17 1.18 1.49 1.23 1.49 1.49 1.14 1.49 1.23 1.49 1.49 1.49 1.49 1.49 1.49 
Employment 1. 28 1.16 1.14’ 1.17’ 1.22’ 1.21 1.21’ -- -- 1.22’ 1.48 1.21’ -- -- -- 1.49 
Unemployment 0. 87 0.25 0.43 -0.42 -. 58’ 0.40 -. 26’ -0.30 -. 28’ 0.11’ 0.31 -1.43 -1.38 -0.36 -1.45 -. 41’ 
GNP deflator 1. 40 1.29 1.32 1.28 1.28 -- 1.28 1.32 1.35 1.29 -- 1.32 1.27 1.28 1.36 1.32 
Cons. prices 1. 46 1.21 1.24 1.27 1.31 -- 1.23 1.26 1.23 1.24 -- 1.24 1.26 -- 1.21 -- 
Wages 1. 40 1.27 1.28 1.29 1.31 -- 1.38 1.28 1.42 1.33 1.35 1.38 1.49 1.49 -- 1.40 
Real wages 1. 22’ 1.16’ 1.16’ 1.17’ 1.21’ 1.24’ 1.41’ 1.41’ 1.38 1.24’ -- 1.41’ -- 1.41 1.41 1.42 
Money stock 1. 47 1.39 1.39 1.38 1.39 1.38 1.38 -- -- 1.38 -- 1.38 -- -- 1.42 1.42 
Velocity 1. 07 0.99 0.99 1.00 1.00 0.97 1.34’ 1.35 1.01’ 1.06 1.38 1.34’ 1.35’ 1.34 1.36 1.35’ 
Bond Yield 1.09 0.94 0.88 0.96 1.17 1.01 1.11 1.01 1.04 0.92 0.98 0.88 0.87 0.87 0.96 0.87 
C. Stock prices 1. 12 1.00 1.12 1.01 1.08 1.09 1.07 -- 1.42 1.08 1.42 1.07 1.42 1.42 1.42 1.45 
-: The model failed to achieve convergence after 240 iterations. ‘: The corresponding model passed the diagnostic tests of normality, 
heteroscedasticity, ARCH and Ljung and Box at the 1% level. 
 
Table 2: Maximum Likelihood Estimates of d in ARFIMA (p, d, q) Models for the Extended Nelson and Plosser Dataset, Starting at 1947 
       ARMA (p, q) 
Series (0,0) (1,0) (0,1) (1,1) (2,0) (0,2) (2,1) (1,2) (2,2) (3,0) (0,3) (3,1) (3,2) (1,3) (2,3) (3,3) 
Real GNP 1.33 1.31’ 1.31 1.31 1.34’ -- 1.34’ 1.33 -- 1.30’ 1.23 1.31’ 1.32 -- 1.27 1.30 
Nominal GNP 1.43’ 1.47’ 1.49’ 1.49’ 1.49’ 1.48’ 1.49’ 1.47 1.47 1.48’ 1.48 1.48’ -- -- 1.47 1.47’ 
Real cap. GNP 1.24 1.17’ 1.7 1.20 1.19’ 1.20 1.20’ -- 1.40 1.14’ -- 1.14’ 1.15 -- -- 1.34 
Industrial prod. 1.15’ 1.24’ 1.48’ 1.49 1.36’ 1.49’ 1.48’ 1.49 -- 1.38’ 1.48 1.49’ 1.49 1.48 -- 1.49 
Employment 1.31 1.26’ 1.21 1.25’ 1.38’ 1.40 1.36’ -- 1.36 1.34’ -- 1.34’ 1.26 -- 1.39 -- 
Unemployment 0.79 0.62’ 0.59 0.65 0.80’ 0.77 0.78’ 1.41 0.76 0.75 1.42 0.75 0.64’ -- 1.49 1.42’ 
GNP deflator 1.48 1.43’ 1.45 1.44’ 1.47’ 1.43 1.46’ 1.44 1.46 1.39 1.43 1.38 1.38 1.45 1.44 1.40 
Cons. Prices 1.47’ 1.41’ 1.39’ 1.40 1.47’ 1.41 1.46’ 1.44 -- 1.41’ 1.44’ 1.38’ 1.37 1.44 1.44 -- 
Wages 1.46 1.47 1.48 1.48 1.48’ -- 1.48’ 1.48 -- 0.93’ -- 1.36’ 1.36 1.45 -- 1.39 
Real wages 1.30’ 1.06’ 1.12’ 1.17’ 1.17’ -- 1.08’ 1.15 0.62’ 1.17’ -- 0.65’ 1.16 1.08 -- 1.18 
Money stock 1.48’ 1.46 1.47’ 1.47 1.48 1.47’ 1.48 1.48 1.47 1.48’ 1.48 1.48’ -- -- 1.48 1.48 
Velocity 1.00 0.97 0.81 0.93 1.26 1.30 1.18 1.31 1.06’ 1.09 1.25 1.10’ -- 1.31 1.13’ -- 
Bond Yield 1.09 0.94 0.88 0.95 1.17 1.02 1.12 1.02 1.06 0.96 1.01 0.92 0.90 0.92 1.00 0.90 
C. Stock prices 1.19’ 1.24’ 1.42’ 1.42’ 1.36’ 1.42 1.43’ 1.42’ 1.39’ 1.46’ 1.40’ 1.45’ 1.43’ 1.26 1.40’ 1.42’ 
--: The model failed to achieve convergence after 240 iterations. ‘: The corresponding model passed the diagnostic tests of normality, 
heteroscedasticity, ARCH and Ljung and Box at the 1% level. 
 
For all but four series the difference between the 
minimum and the maximum value of d is smaller than 
0.4, the main exception being again unemployment, 
with d ranging from –1.45 to 0.87. Also, Money stock, 
wages, GNP deflator, nominal GNP and consumer 
prices appear to be the most nonstationary series, with d 
ranging from 1.21 to 1.49. On the other hand, the 
unemployment rate and bond yields appear to be the 
least nonstationary ones, with d ranging from 0.87 to 
1.17 in the case of the latter series. Similar conclusions 
were reached by[22] when applying[23]’s tests of the same 
series. Finally, it should be mentioned that only in six 
out of the fourteen series we found at least one model 
where the residuals passed all the diagnostic tests at the 
1% level. Most of the models failed to pass normality 
tests, largely because of the presence of outliers 
corresponding to World War II.  
 Table 2 reports the results based on post-war data. 
They are similar to those in Table 1, with all values of d 
greater than 1 except for the unemployment rate and in 
some cases for velocity and bond yields. The latter is 
the only series for which we are unable to fit a model 
passing all the diagnostic tests on the residuals, 
evidence of heteroscedasticity being found. As in Table 
1, money stock, nominal GNP, consumer prices, wages 

and GNP deflator appear to be the most nonstationary 
series, while unemployment, followed by the velocity 
and bond yields, is the closest to stationarity. 
 As mentioned above, all these models were 
estimated by maximum likelihood. It is well known that 
parametric approaches such as this one yield 
inconsistent estimates of d if the model is not correctly 
specified. In particular, misspecification of the short-
run components of the series invalidates the estimation 
of its long-run behavior. To choose the best 
specification in each case we focused on the models 
passing all the diagnostic tests and used model-
selection criteria based on LR tests along with the 
Akaike (AIC) and Schwarz (SIC) information criteria 
This improves upon the earlier study by[21], who only 
used AIC and SIC for model selection (these criteria 
not necessarily being the best ones for applications 
involving fractional differences[7]) and accounts for 
differences in the results. For the series which failed to 
pass the tests in Table 1 we analyzed the post-war data 
instead, adopting the same type of procedure. The 
results were the following. 
 
Real GNP: Eight models pass the diagnostic tests at the 
1% significance level. The results are presented in 
Table 3a. The values of d range between 1.17 and 1.49, 
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rejecting the null of d = 0 in all cases and the unit root 
null in five. The most general specifications are the 
ARMA (2,2) and the ARMA (3,1) ones. In the former, 
the second MA coefficient is not significantly different 
from zero and in the latter the last two AR coefficients 
are also insignificant. Going backwards from the 
ARMA (3,1) to an ARMA (1,1), a LR test rejects the 
former model, but the two coefficients of the latter one 
are now close to zero. If the MA coefficient is dropped, 
the AR (1) model has an insignificant coefficient, 
whereas if the AR parameter is deleted the MA (1) 
specification seems adequate. On the other hand if we 
move from an ARMA (3,1) to an AR (3) model, a LR 
test indicates that the latter model should be preferred, 
but the last two AR coefficients are insignificantly 
different from zero. When comparing the ARMA (2,2) 
with the AR (2) specification, the former seems to be 
preferable but the second AR and MA coefficients are 
again close to zero. In view of these results, it can be 
concluded that the best two models describing the short-
run dynamics of this series are the white noise and the 
MA (1) ones. The AIC suggests the MA (1) but the SIC 
indicates that the white noise specification might be more 
appropriate. If a LR test is performed, the white noise 
model appears to be preferable. In addition, the standard 
error of d is smaller under this final parameterization. 
Thus, it appears that real GNP can be well described by 
an ARFIMA (0, 1.30, 0) model. 
 
Real Per Capita GNP: In this case there are nine 
models with possibly white noise residuals. The most 
general specification is an ARMA (3,2), but all the AR 
and the second MA coefficients are insignificantly 
different from zero. At the ARMA (3,1), the values are 
similar to the previous case, with smaller standard 
errors, though we still find non-significant coefficients. 
A LR test suggests that the ARMA (1,1) is to be 
preferred, but both coefficients in this model are now 
insignificant. When suppressing either of these two 
coefficients, both the AR (1) and the MA (1) seem 
appropriate. The AR (3) and the AR (2) models are 

both inappropriate in view of the t-values. On the other 
hand when comparing the ARMA (3,2) with the 
ARMA (2,2) the latter seems to be preferable, all the 
coefficients being highly significant. Thus, there are 
three models that might be appropriate for this series: 
the ARMA (2,2), the AR (1) and the MA (1). The AIC 
indicates that the ARMA (2,2) is the best specification, 
but the SIC, leading to a less heavily parameterized 
model, suggests the AR (1). We have chosen the 
ARMA (2,2)   since   it   has   smaller   standard errors 
and   the   highest   AIC   of   all   models. Visual 
inspection   of   the   residuals   also   corroborates   this 
choice,   the   final   parameterization   yielding   the 
closest   residuals   to   a   white   noise process. 
Therefore,  the   best   model   for   this   series appears 
to be an ARFIMA (2, 1.11, 2). 
 
Employment: Six models were selected for this series, 
with a narrower range of values of d, from 1.14 to 1.22. 
In all these models the coefficients are insignificantly 
different from zero in all cases except for the ARMA 
(1,1) and the MA (1) models. In the former, the AR 
parameter is not significant and thus the MA (1) seems 
to be more appropriate. In addition, both the AIC and 
the SIC have the highest values in this case. Therefore, 
the best model specification for employment seems to 
be an ARFIMA (0, 1.14, 1). 
 
Unemployment Rate: Again six models were selected 
for this series. The values of d oscillate now between –
0.58 and 0.25 (Models with d ranging between –0.5 and 
0 are short memory and have been described as anti-
persistent because the spectral density function is 
dominated by high frequency components).  In the most 
general specification, i.e. the ARMA (3,3), all except 
the first MA coefficient appear significant. The ARMA 
(2,2) is clearly rejected, since all coefficients are 
insignificant and when eliminating the second MA 
component the two AR coefficients are close to zero. 
We see that the AR (3) and the AR (2) models have 
insignificant coefficients, suggesting that the AR (1) 
might be more appropriate.  

 
Table 3a: Parameter Estimates of ARFIMA Models for Real GNP 

ARMA d t d = 0 t d = 1 φ1 φ2 φ3 θ1 θ2 θ3 AIC SIC 
(0, 0) 1.3 16.25 3.75 -- -- -- -- -- -- 225.5 223.13 
 -0.08           
(1, 0) 1.17 10.63 1.54’ 0.25 -- -- -- -- -- 226.06 221.32 
 -0.11   -0.16        
(0, 1) 1.2 13.33 2.22 -- -- -- 0.21 -- -- 226.01 221.28 
 -0.09      -0.1     
(1, 1) 1.17 10.63 1.54’ 0.15 -- -- 0.09 -- -- 224.16 217.05 
 -0.11   -0.37   -0.32     
(2, 0) 1.18 10.72 1.63’ 0.24 -0.05 -- -- -- -- 224.28 217.17 
 -0.11   -0.16 -0.11       
(2, 2) 1.49 149 49 1.16 -0.43 -- -1.34 0.36 -- 227.08 215.23 
 -0.01   -0.39 -0.28  -0.41 -0.41    
(3, 0) 1.24 11.27 2.18 0.24 0.18 -0.03 -- -- -- 224.26 214.79 
 -0.11   -0.11 -0.15 -0.11      
(3, 1) 1.49 149 49 0.77 -0.09 -0.11 -0.97 -- -- 227.37 215.51 
 -0.01   -0.11 -0.14 -0.11 -0.12     
All these models pass the diagnostic tests on the residuals at the 1% significance level. Standard errors in parentheses 
‘Stands for non-rejection values of the hypotheses d = 0 and d = 1 
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Table 3b: Parameter Estimates of ARFIMA Models for Real GNP Per Capita 

ARMA d t d = 0 t d = 1 φ1 φ2 φ3 θ1 θ2 θ3 AIC SIC 

(0, 0) 1.24 12.4 2.4 -- -- -- -- -- -- 224.72 222.35 

 -0.1           

(1, 0) 1.02 7.28 0.14’ 0.34 -- -- -- -- -- 226.92 222.18 

 -0.14   -0.18        

(0, 1) 1.09 10.9 0.90’ -- -- -- 0.27 -- -- 226.54 221.8 

 -0.1      -0.12     

(1, 1) 1.02 7.28 0.14’ 0.25 -- -- 0.09 -- -- 225.07 217.96 

 -0.14   -0.31   -0.25     

(2, 0) 1.03 7.35 0.21’ 0.35 -0.05 -- -- -- -- 225.19 218.07 

 -0.14   -0.18 -0.11       

(2, 2) 1.11 12.33 1.22’ 0.81 -0.89 -- -0.65 0.98 -- 229.45 217.6 

 -0.09   -0.1 -0.08  -0.11 -0.18    

(3, 0) 1.1 8.46 0.76 0.28 -0.02 -0.15 -- -- -- 224.86 215.38 

 -0.13   -0.17 -0.11 -0.11      

(3, 1) 1.49 29.8 9.8 0.77 -0.09 -0.1 -0.97 -- -- 225.94 214.09 

 -0.05   -0.11 -0.14 -0.11 -0.15     

(3, 2) 1.49 29.8 9.8 0.69 -0.02 -0.11 -0.89 -0.08 -- 223.95 209.72 

 -0.05   -1.12 -0.9 -0.21 -1.12 -1.11    
All these models pass the diagnostic tests on the residuals at the 1% significance level. Standard errors in parentheses ‘Stands for non-rejection 
values of the hypotheses d = 0 and d = 1 

 
Table 3c: Parameter Estimates of ARFIMA Models for Employment 

ARMA d T d = 0 t d = 1 φ1 φ2 φ3 θ1 θ2 θ3 AIC SIC 

(0, 1) 1.14 14.25 1.75 -- -- -- 0.33 -- -- 379.61 374.43 

 -0.08      -0.12     

(1, 1) 1.17 13 1.88’ -0.2 -- -- 0.48 -- -- 378.05 370.28 

 -0.09   -0.29   -0.22     

(2, 0) 1.22 12.2 2.2 0.21 -0.18 -- -- -- -- 378.43 370.67 

 -0.1   -0.14 -0.1       

(2, 1) 1.21 12.1 2.1 -0.01 0.12 -- 0.24 -- -- 376.51 366.16 

 -0.1   -0.51 -0.18  -0.54     

(3, 0) 1.22 11.09 2 0.21 -0.18 0.008 -- -- -- 376.43 366.09 

 -0.11   -0.15 -0.1 -0.11      

(3, 1) 1.21 11 1.90' -0.1 -0.1 -0.02 0.33 -- -- 374.53 361.61 

 -0.11   -0.83 -0.21 -0.19 -0.81     
All these models pass the diagnostic tests on the residuals at the 1% significance level. Standard errors in parentheses ‘Stands for non-rejection 
values of the hypotheses d = 0 and d = 1 

 
Table 3d: Parameter estimates of ARFIMA models of unemployment rate 

ARMA d t d = 0 t d = 1 φ1 φ2 φ3 θ1 θ2 θ3 AIC SIC 

(1, 0) 0.25 1.04' -3.12 0.62 -- -- -- -- -- 226.92 222.18 

 -0.24   -0.18        

(2, 0) -0.58 -0.77' -2.1 1.43 -0.52 -- -- -- -- 225.19 218.07 

 -0.75   -0.62 -0.49       

(2, 1) -0.26 -0.92' -4.5 0.59 0.17 -- 0.71 -- -- 229.45 217.6 

 -0.28   -0.36 -0.22  -0.14     

(2, 2) -0.28 -0.87' -4 0.53 0.22 -- 0.78 0.05 -- 229.45 217.6 

 -0.32   -0.64 -0.51  -0.72 -0.47    

(3, 0) 0.11 0.25' -2.06 0.9 -0.37 0.18 -- -- -- 224.86 215.38 

 -0.43   -0.38 -0.17 -0.1      

(3, 3 -0.41 -1.51' -5.22 1.15 -1 0.59 0.27 0.57 0.6 223.95 209.72 

 -0.27   -0.43 -0.39 -0.18 -0.26 -1.17 -1.11   

All these models pass the diagnostic tests on the residuals at the 1% significance level. Standard errors in parentheses ‘Stands for non-rejection 

values of the hypotheses d = 0 and d = 1 
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Table 3e: Parameter Estimates of ARFIMA Models for Real Wages 
ARMA d t d = 0 t d = 1 φ1 φ2 φ3 θ1 θ2 θ3 AIC SIC 
(0, 0) 1.22 17.42 3.14 -- -- -- -- -- -- 333.49 331 
 -0.07           
(1, 0) 1.16 11.6 1.60’ 0.11 -- -- -- -- -- 332.14 327.18 
 -0.1   -0.14        
(0, 1) 1.16 12.88 1.77’ -- -- -- 0.14 -- -- 332.36 327.4 
 -0.09      -0.14     
(1, 1) 1.17 13 1.88’ -0.26 -- -- 0.39 -- -- 330.54 323.1 
 -0.09   -0.68   -0.62     
(2, 0) 1.21 12.1 2.1 0.08 -0.1 -- -- -- -- 331 323.56 
 -0.1   -0.15 -0.11       
(0, 2) 1.24 7.75 1.50’ -- -- -- 0.03 -0.12 -- 330.92 323.48 
 -0.16      -0.23 -0.18    
(2, 1) 1.41 12.81 3.72 0.66 -0.12 -- -0.82 -- -- 331.32 321.41 
 -0.11   -0.15 -0.11  -0.13     
(1, 2) 1.41 12.81 3.72 0.48 -- -- -0.65 0.15 -- 331.22 321.31 
 -0.11   -0.21   -0.24 -0.14    
(3, 0) 1.24 11.27 2.18 0.04 -0.11 -0.07 -- -- -- 329.44 319.53 
 -0.11   -0.15 -0.11 -0.11      
(3, 1) 1.41 12.81 3.72 0.65 -0.11 -0.02 -0.81 -- -- 329.35 316.95 
 -0.11   -0.16 -0.12 -0.11 -0.15     
All these models pass the diagnostic tests on the residuals at the 1% significance level. Standard errors in parentheses 
‘Stands for non-rejection values of the hypotheses d = 0 and d = 1 
 
Table 3f: Parameter Estimates of ARFIMA Models for Velocity 
ARMA d t d = 0 t d = 1 φ1 φ2 φ3 θ1 θ2 θ3 AIC SIC 
(2, 1) 1.34 7.44 1.88’ 0.6 -0.1 -- -0.83 -- -- 313.63 302.5 
 -0.18   -0.16 -0.1  -0.1     
(2, 2) 1.01 14.42 0.14’ 0.89 -0.83 -- -0.76 0.76 -- 312.21 298.3 
 -0.07   -0.2 -0.16  -0.21 -0.26    
(3, 1) 1.34 7.88 2 0.53 -0.03 -0.14 -0.78 -- -- 313.72 299.82 
 -0.17   -0.14 -0.1 -0.1 -0.15     
(3, 2) 1.35 7.5 1.94’ 0.79 -0.2 -0.13 -1.05 0.23 -- 312.03 295.34 
 -0.18   -0.45 -0.3 -0.11 -0.48 -0.38    
(3, 3) 1.35 7.94 2.05 0.4 0.35 -0.35 -0.65 -0.43 0.28 309.98 290.52 
 -0.17   -0.48 -0.45 -0.23 -0.55 -0.53 -0.36   
All these models pass the diagnostic tests on the residuals at the 1% significance level. Standard errors in parentheses 
‘Stands for non-rejection values of the hypotheses d = 0 and d = 1 
 
Table 3g: Parameter Estimates of ARFIMA Models for Bond Yield 
ARMA d t d = 0 t d = 1 φ1 φ2 φ3 θ1 θ2 θ3 AIC SIC 
(3, 2) 0.87 3.78 -0.56’ 0.21 -0.75 0.54 0.16 0.75 -- -153.91 -168.76 
 -0.23   -0.24 -0.11 -0.23 -0.13 -0.11    
(2, 3) 0.96 9.6 -0.40’ -0.06 -0.86 -- 0.33 0.92 0.49 -153.19 -168.04 
 -0.1   -0.07 -0.07  -0.1 -0.08 -0.11   
(3, 3) 0.87 3.78 -0.56’ 0.11 -0.78 0.41 0.29 0.79 0.18 -155.13 -172.46 
 -0.23   -0.33 -0.13 -0.33 -0.19 -0.1 -0.21   
All these models pass the diagnostic tests on the residuals at the 0.1% significance level. Standard errors in parentheses 
‘Stands for non-rejection values of the hypotheses d = 0 and d = 1 
 
Table 3h: Parameter Estimates of ARFIMA Models for Nominal GNP Starting from 1947 
ARMA d t d = 0 t d = 1 φ1 φ2 φ3 θ1 θ2 θ3 AIC SIC 
(0, 0) 1.43 28.6 8.6 -- -- -- -- -- -- 155.5 153.73 
 -0.05           
(1, 0) 1.47 49 15.66 0.31 -- -- -- -- -- 156.62 153.09 
 -0.03   -0.16        
(0, 1) 1.49 149 49 -- -- -- -0.46 -- -- 159.54 156.01 
 -0.01      -0.13     
(1, 1) 1.49 149 49 -0.003 -- -- -0.46 -- -- 157.54 152.25 
 -0.01   -0.26   -0.2     
(2, 0) 1.49 149 49 -0.46 -0.41 -- -- -- -- 161.03 155.73 
 -0.01   -0.15 -0.15       
(0, 2) 1.48 148 48 -- -- -- -0.47 -0.008 -- 157.54 152.25 
 -0.01      -0.26 -0.27    
(2, 1) 1.49 149 49 -0.54 -0.43 -- 0.09 -- -- 159.1 152.05 
 -0.01   -0.34 -0.17  -0.36     
(3, 0) 1.48 148 48 -0.44 -0.38 0.05 -- -- -- 159.13 152.07 
 -0.01   -0.16 -0.17 -0.17      
(3, 1) 1.48 49.33 16 0.27 -0.04 0.38 -0.69 -- -- 157.64 148.83 
 -0.03   -0.38 -0.21 -0.18 -0.35     
(3, 3) 1.47 49 15.66 0.24 -0.004 0.22 -0.68 -0.04 0.17 153.89 141.55 
 -0.03   -0.62 -0.6 -0.5 -0.59 -0.77 -0.63   
All these models pass the diagnostic tests on the residuals at the 1% significance level. Standard errors in parentheses 
‘Stands for non-rejection values of the hypotheses d = 0 and d = 1 
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Table 3i: Parameter Estimates of ARFIMA Models for Industrial Production Starting from 1947 

ARMA D t d = 0 t d = 1 φ1 φ2 φ3 θ1 θ2 θ3 AIC SIC 
(0, 0) 1.15 14.37 1.87’ -- -- -- -- -- -- 106.42 104.65 
 -0.08           
(1, 0) 1.24 12.4 2.4 -0.25 -- -- -- -- -- 105.9 102.37 
 -0.1   -0.19        
(0, 1) 1.48 74 24 -- -- -- 0.84 -- -- 111.34 107.81 
 -0.02      -0.12     
(2, 0) 1.36 15.11 4 -0.49 -0.39 -- -- -- -- 108.39 103.09 
 -0.09   -0.18 -0.16       
(0, 2) 1.49 149 49 -- -- -- -0.72 -0.14 -- 109.82 104.53 
 -0.01      -0.21 -0.22    
(2, 1) 1.48 74 24 0.08 -0.13 -- 0.82 -- -- 108.94 101.07 
 -0.02   -0.21 -0.2  -0.18     
(3, 0) 1.38 13.8 3.8 -0.47 -0.42 -0.05 -- -- -- 106.46 99.41 
 -0.1   -0.2 -0.19 -0.18      
(3, 1) 1.49 74.5 24.5 0.19 -0.1 0.18 -0.92 -- -- 106.83 98.01 
 -0.02   -0.25 -0.21 -0.22 -0.25     
All these models pass the diagnostic tests on the residuals at the 1% significance level. Standard errors in parentheses 
‘Stands for non-rejection values of the hypotheses d = 0 and d = 1 

 
Table 3j: Parameter Estimates of ARFIMA Models for GNP Deflator Starting from 1947 

ARMA d t d = 0 t d = 1 φ1 φ2 φ3 θ1 θ2 θ3 AIC SIC 
(1, 0) 1.43 17.87 5.37 0.51 -- -- -- -- -- 209.72 206.16 
 -0.08   -0.17        
(1, 1) 1.44 24 7.33 0.12 -- -- 0.6 -- -- 214.37 209.07 
 -0.06   -0.22   -0.13     
(2, 0) 1.47 49 15.66 0.6 -0.36 -- -- -- -- 212.43 207.13 
 -0.03   -0.15 -0.16       
(2, 1) 1.46 29.2 9.2 0.21 -0.16 -- 0.5 -- -- 212.89 205.83 
 -0.05   -0.25 -0.22  -0.22     
All these models pass the diagnostic tests on the residuals at the 1% significance level. Standard errors in parentheses 
‘Stands for non-rejection values of the hypotheses d = 0 and d = 1 

 
Table 3k: Parameter Estimates of ARFIMA Models for Consumer Prices Starting from 1947 

ARMA d t d = 0 t d = 1 φ1 φ2 φ3 θ1 θ2 θ3 AIC SIC 
(0, 0) 1.47 49 15.66 -- -- -- -- -- -- 182.1 180.33 
 -0.03           
(1, 0) 1.41 15.66 4.55 0.39 -- -- -- -- -- 185.72 182.19 
 -0.09   -0.17        
(0, 1) 1.39 19.85 5.57 -- -- -- 0.77 -- -- 196.29 192.75 
 -0.07      -0.13     
(2, 0) 1.47 49 15.66 0.51 -0.53 -- -- -- -- 193.99 188.69 
 -0.03   -0.13 -0.14       
(2, 1) 1.46 36.5 11.5 0.17 -0.4 -- 0.51 -- -- 195.81 188.75 
 -0.04   -0.21 -0.18  -0.2     
(3, 0) 1.41 10.84 3.15 0.73 -0.69 0.41 -- -- -- 196.66 189.61 
 -0.13   -0.22 -0.16 -0.21      
(0, 3) 1.44 24 7.33 -- -- -- 0.75 -0.12 -0.27 195.06 188.01 
 -0.06      -0.17 -0.2 -0.15   
(3, 1) 1.38 7.66 2.11 1.02 -0.85 0.54 -0.29 -- -- 194.81 185.99 
 -0.18   -0.42 -0.29 -0.22 -0.46     
(3, 2) 1.37 6.22 1.68 0.98 -0.69 0.48 -0.19 -0.19 -- 193.4 182.83 
 -0.22   -0.33 -0.31 -0.2 -0.31 -0.24    
All these models pass the diagnostic tests on the residuals at the 1% significance level. Standard errors in parentheses 
‘Stands for non-rejection values of the hypotheses d = 0 and d = 1 

 
Table 3l: Parameter Estimates of ARFIMA Models for Wages Starting from 1947 

ARMA d t d = 0 t d = 1 φ1 φ2 φ3 θ1 θ2 θ3 AIC SIC 
(2, 0) 1.48 148 48 -0.21 -0.3 -- -- -- -- 194.24 188.95 
 -0.01   -0.17 -0.17       
(2, 1) 1.48 148 48 -0.48 -0.37 -- 0.28 -- -- 192.96 185.91 
 -0.01   -0.34 -0.16  -0.32     
(3, 0) 0.93 5.16 -0.38’ 0.38 0.006 0.58 -- -- -- 196.46 189.41 
 -0.18   -0.2 -0.18 -0.16      
(3, 1) 1.36 5.23 1.38’ 0.37 -0.11 0.55 -0.47 -- -- 196.61 187.79 
 -0.26   -0.24 -0.18 -0.16 -0.19     
All these models pass the diagnostic tests on the residuals at the 1% significance level. Standard errors in parentheses 
‘Stands for non-rejection values of the hypotheses d = 0 and d = 1 
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Table 3m: Parameter Estimates of ARFIMA Models for Money Stock Starting from 1947 

ARMA d t d = 0 t d = 1 φ1 φ2 φ3 θ1 θ2 θ3 AIC SIC 

(0, 0) 1.48 148 48 -- -- -- -- -- -- 198.53 196.75 
 -0.01           
(0, 1) 1.47 49 15.66 -- -- -- 0.34 -- -- 200.6 197.07 
 -0.03      -0.13     
(0, 2) 1.47 36.75 11.75 -- -- -- 0.32 -0.02 -- 198.61 193.31 
 -0.04      -0.24 -0.21    
(3, 0) 1.48 148 48 0.29 -0.28 -0.03 -- -- -- 198.51 191.45 
 -0.01   -0.16 -0.16 -0.16      
(3, 1) 1.48 148 48 -0.54 -0.02 -0.39 0.86 -- -- 199.37 190.55 
 -0.01   -0.18 -0.18 -0.15 -0.14     
All these models pass the diagnostic tests on the residuals at the 1% significance level. Standard errors in parentheses 
‘Stands non-rejection values of the hypotheses d = 0 and d = 1 
 
Table 3n: Parameter Estimates of ARFIMA Models for Common Stock Prices Starting from 1947 

ARMA d t d = 0 t d = 1 φ1 φ2 φ3 θ1 θ2 θ3 AIC SIC 

(0, 0) 1.19 13.22 2.11 -- -- -- -- -- -- 52.42 50.65 
 -0.09           
(1, 0) 1.24 11.27 2.18 -0.12 -- -- -- -- -- 50.79 47.25 
 -0.11   -0.19        
(0, 1) 1.42 14.2 4.2 -- -- -- -0.5 -- -- 52.64 49.11 
 -0.1      -0.19     
(1, 1) 1.42 14.2 4.2 0.19 -- -- -0.62 -- -- 51.25 45.95 
 -0.1   -0.26   -0.22     
(2, 0) 1.36 15.11 4 -0.27 -0.34 -- -- -- -- 52.76 47.47 
 -0.09   -0.17 -0.15       
(2, 1) 1.43 20.42 6.17 -0.05 -0.34 -- -0.35 -- -- 52.45 45.39 
 -0.07   -0.23 -0.16  -0.23     
(1, 2) 1.42 14.2 4.2 -0.13 -- -- -0.24 -0.22 -- 50.02 42.97 
 -0.1   -0.43   -0.42 -0.2    
(2, 2) 1.39 13.9 3.9 0.4 -0.74 -- -0.84 0.73 -- 55.67 46.85 
 -0.1   -0.2 -0.15  -0.17 -0.23    
(3, 0) 1.46 36.5 11.5 -0.49 -0.51 -0.38 -- -- -- 55.98 48.93 
 -0.04   -0.15 -0.14 (0.14      
(0, 3) 1.4 14 4 -- -- -- -0.6 -0.07 0.37 52.32 45.27 
 -0.1      -0.17 -1.14 -0.15   
(3, 1) 1.45 29 9 -0.73 -0.59 -0.47 0.29 -- -- 54.82 46.01 
 -0.05   -0.29 -0.17 -0.15 -0.32     
(3, 2) 1.43 17.87 5.37 -0.67 -0.74 -0.48 0.27 0.26 -- 53.6 43.03 
 -0.08   -0.32 -0.21 -0.16 -0.39 -0.27    
(2, 3) 1.4 12.72 3.63 0.4 -0.75 -- -0.85 0.74 -0.01 53.67 43.09 
 -0.11   -0.21 -0.17  -0.26 -0.33 -0.2   
(3, 3) 1.42 17.75 5.25 -0.57 -0.41 -0.73 0.09 -0.02 0.59 53.03 40.69 
 -0.08   -0.23 -0.22 -0.15 -0.25 -1.21 -0.28   
All these models pass the diagnostic tests on the residuals at the 1% significance level. Standard errors in parentheses 
‘Stands non-rejection values of the hypotheses d = 0 and d = 1 

 
Table 4: Best Model Specification for the Extended Version of Nelson and Plosser’s Dataset 
        AR estimates   MA estimates 
    ------------------------------------- - ----------------------------------------- 
Series ARFIMA t d = 0 t d = 1 φ1 φ2 φ3 θ1 θ2 θ3 
Real GNP (0, 1.30, 0) 16.25 3.75 -- -- -- -- -- -- 
Nominal GNP+ (2, 1.49, 0) 149 49 -0.46 -0.41 -- -- -- -- 
Real cap. GNP (2, 1.11, 2) 12.33 1.22’ 0.81 -0.89 -- -0.65 0.89 -- 
Industrial prod. + (0, 1.48, 1) 74 24 -- -- -- 0.84 -- -- 
Employment (0, 1.14, 1) 14.25 1.75’ -- -- -- 0.33 -- -- 
Unemployment (1, 0.25, 0) 1.04’ -3.12 0.62 -- -- -- -- -- 
GNP deflator+ (2, 1.47, 0) 49 15.66 0.6 -0.36 -- -- -- -- 
Cons. prices+ (0, 1.39, 1) 19.85 5.57 -- -- -- 0.77 -- -- 
Wages+ (3, 1.36, 1) 5.23 1.38’ 0.37 -0.11 0.55 -0.47 -- -- 
Real wages (0, 1.22, 0) 17.42 3.14 -- -- -- -- -- -- 
Money stock+ (0, 1.47, 1) 49 15.66 -- -- -- 0.34 -- -- 
Velocity (2, 1.01, 2) 14.42 0.14’ 0.89 -0.83 -- -0.76 0.76 -- 
Bond Yield (2, 0.96, 3) 9.6 -0.40’ -0.06 -0.86 -- 0.33 0.92 0.49 
C. Stock prices+ (3, 1.46, 0) 36.5 11.5 -0.49 -0.51 -0.38 -- -- -- 
+ Indicates that the series were analyzed only for the post-war data ‘Stands for non-rejection values of the null hypotheses: d = 0 and d = 1 
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 The AIC suggests that the ARMA (3,3) is 
preferable to the AR (1) model; however, in view of the 
small number of parameters used in the AR (1) case, 
(leading to a higher value at the SIC) and the easier 
interpretation of the fractional differencing parameter 
(which also has a smaller standard error), we select this 
model, choosing as a final specification the ARFIMA 
(1, 0.25, 0). 
 
Real Wages: Ten models were considered here, with 
the values of d ranging between 1.16 and 1.41. Starting 
from the ARMA (3,1), we see that the last two AR 
coefficients are insignificantly different from zero. 
Going backwards to an ARMA (2,1), the second AR 
coefficient still remains insignificant and in the ARMA 
(1,1) both parameters are close to zero. In the AR (3) 
model, which is preferred to the ARMA (3,1) on the 
basis of a LR test, all parameters are insignificant, as in 
the AR (2) and AR (1) models. The ARMA (1,2) has an 
insignificant second MA coefficient and the MA (1) 
also appears inappropriate. A white noise specification 
appears to be the best to describe the short-run 
dynamics of this series, as it yields the smallest 
standard error for d and the highest values of the AIC 
and SIC. Thus, real wages can be characterized as an 
ARFIMA (0, 1.22, 0). 
 
Velocity: Five models were selected in this case, with 
the values of d oscillating between 1.01 and 1.35. The 
ARMA (3,3) has various insignificant parameters. 
When dropping the first, the third and then the second 
MA coefficients, we still find that the AR parameters 
are not significantly different from zero. In the ARMA 
(2,2) specify all the parameters are significant, unlike in 
the ARMA (2,1) and the standard error of d is smaller. 
Therefore, velocity appears to be well described by an 
ARFIMA (2, 1.01, 2). 
 
Bond Yields: This series has required special attention 
since none of the models passed the diagnostics at the 
1% level, as a result of lack of normality in the 
residuals. Visual inspection suggests that this might be 
due to the presence of outliers corresponding to World 
War II. One possibility would be to focus on the post-
war data, though even then heteroscedastic residuals are 
obtained. We decided to consider only those models 
which pass all the diagnostics at the 0.1% level. Three 
potential models were then found. The values of d are 
0.87 and 0.96 and the unit root hypothesis cannot be 
rejected in any of them. The ARMA (3,3) has 
insignificant parameters in both the AR and the MA 
components. On the basis of LR tests, the ARMA (3,2) 
and the ARMA (2,3) seem to be more appropriate. At 
the ARMA (3,2), the first AR and MA coefficients are 
insignificant and in the ARMA (2,3) only the first AR 
coefficient is close to zero. The standard errors are 
much smaller in the latter model and the AIC and SIC 
also suggest that this might be the correct specification. 

Therefore, we   model   this   series   as   an ARFIMA 
(2, 0.96, 3).  
 As mentioned before, for the remaining seven 
series, all the estimated ARFIMA models failed to pass 
the diagnostic tests on the residuals, presumably owing 
to the presence of outliers corresponding to World War 
II. Thus, for these series we only modelled the post-war 
data. 
 
Nominal GNP: Ten models were selected, with the 
values of d ranging between 1.43 and 1.49 and both the 
I (0) and then I (1) hypotheses been rejected in all 
cases, clearly indicating the nonstationary nature of this 
series. The most general specification is the ARMA 
(3,3), but all its parameters are not significantly 
different from zero. There is an improvement when 
adopting an ARMA (3,1) specification, as the last AR 
and MA coefficients both appear to be significant. 
Going one step further, we move to an AR (3) and the 
parameters change substantially with respect to the 
previous parameterization, with the first two 
coefficients being significantly different from zero. A 
LR test indicates that this model is to be preferred to the 
ARMA (3,1), but the AR (2) seems an even better 
specification. LR tests suggest that the AR (2) model is 
preferable to the AR (1) and the white noise 
specification. Also, From the ARMA (3,1), we can 
move to an ARMA (2,1) and since the MA coefficient 
is not significantly different from zero and again the 
AR (2) appear preferable. A MA (2) has a second 
parameter close to zero, suggesting that an MA (1) is a 
better fit and similarly, the MA (1) seems more 
appropriate than the ARMA (1,1). Therefore, we have 
to decide between the AR (2) and the MA (1) models. 
The AIC indicates that the AR (2) is more adequate, but 
the SIC suggests the MA (1) instead. Visual inspection 
of the residuals indicates that the AR (2) produces 
residuals which are closer to being white noise. Thus, 
we can conclude that nominal GNP can be well 
described as an ARFIMA (2, 1.49, 0). 
 
Industrial Production:  Eight models were selected for 
this series, with the values of d ranging between 1.15 
and 1.49. The ARMA (3, 1) appears to be outperformed 
by the ARMA (2, 1), which in turn is outperformed by 
the MA (1) model, indicating the importance of the MA 
coefficient. Evidence in favor of the MA (1) is also 
found from the MA (2), where the  second coefficient 
appears insignificant. On the other hand an AR (3) is 
clearly rejected in favor of an AR (2), which is to be 
preferred to an AR (1) on the basis of a LR test. 
Therefore, we have to choose between the AR (2) and 
the MA (1) specifications and since both the AIC and 
the SIC have higher values in the case of the MA 
representation, the specification finally selected is an 
ARFIMA (0, 1.48, 1). 
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GNP Deflator: Only four models were found to be 
adequate, with the values of d oscillating between 1.43 
and 1.47 and the unit root hypothesis rejected in all 
cases. The ARMA (2,1) is rejected since the AR 
coefficients are both insignificantly different from zero. 
Similarly, the ARMA (1,1) is rejected because of the 
insignificance of the AR coefficient. A LR test favors 
the AR (2) to the AR (1) specification. The former also 
has smaller standard errors and higher values of AIC 
and SIC. Thus, the GNP deflector can be characterized 
as an ARFIMA (2,1.47, 0). 
 
Consumer Prices: Nine models were selected here. 
When modelling the series as an ARMA (3,2), the two 
MA coefficients are close to zero and similarly, if we 
estimate an ARMA (3,1), the MA coefficient is 
insignificantly different from zero. The AR (3) seems to 
be appropriate, but when comparing it with the AR (2) 
and AR (1) models, the test statistics suggest that the 
AR (2) might be more adequate. In addition, this model 
has smaller standard errors. A LR test was again 
performed to choose between the ARMA (3,1) and the 
ARMA (2,1) and evidence was found in favor of the 
latter model, but the AR (2) appears to produce a better 
fit. The MA (3) has the last two coefficients close to 
zero and the MA (1) seems preferable, having a highly 
significant coefficient. Therefore, potential models are 
the AR (2) and the MA (1). We choose the MA (1) as 
the correct specification in view of the higher values of 
both the AIC and the SIC. Thus, the series may be 
described as an ARFIMA (0, 1.39, 1). 
 
Nominal Wages: Four models were selected for this 
series. The most general specification is an ARMA 
(3,1), but the first two AR coefficients are not 
significantly different from zero. Moving to an 
ARMA (2,1), the first AR coefficient is still 
insignificant along with the MA one. The 
corresponding AR (2) without the MA parameter has 
again a first coefficient close to zero. It seems 
difficult to determine the best specification in this 
case. Visual inspection of the residuals suggests that 
the AR (3) and the ARMA (3,1) exhibit the closest 
residuals to a white noise process and performing a 
LR test indicated that the latter model is to be 
preferred. Thus, we adopt an ARFIMA (3, 1.36, 1) 
specification for this series. 
 
Money Stock: Five models were selected on the basis 
of the diagnostic tests, with values of d between 1.47 
and 1.48. The most general specification, which is an 
ARMA (3,1), has the second AR coefficient close to 
zero. A LR tests suggest that an AR (3) model is 
preferable, though all its coefficients appear to be 
insignificant and this model is also rejected in favor of 
the white noise specification. The MA (2) model has 

the second coefficient close to zero and when moving 
backwards to the MA (1) the coefficient becomes 
highly significant. Thus, we need to choose between the 
MA (1) and the white noise model, a LR test favoring 
the former. This model also has the highest values at 
the AIC and the SIC of all possible specifications. 
Therefore, the money stock is modelled as an ARFIMA 
(0, 1.47, 1). 
 
Common Stock Prices: Fourteen out of the sixteen 
ARMA representations passed all the diagnostics. 
Starting with an ARMA (3,3), the first two MA 
coefficients are insignificantly different from zero. 
Going backwards, either to an ARMA (3,2) or to an 
ARMA (2,3), we find that in the former model both 
MA parameters are close to zero and in the latter only 
the last MA coefficient appears insignificant. Deleting 
this parameter and thus moving to an ARMA (2,2), all 
parameters become significant. This model also 
appears more appropriate than the ARMA (2,1) and 
the ARMA (1,2). Similarly, the AR (3) model seems 
to provide a better fit than the ARMA (3,1) and the 
ARMA (3,2), given the non-significance of the MA 
coefficients in the latter models. LR tests indicate 
that amongst the AR (3) and the AR (2), AR (1) and 
white noise specifications, the AR (3) is the best one. 
The ARMA (1,1) has an insignificant AR coefficient 
and the MA (1) appears more appropriate. Therefore, 
we have to choose between the ARMA (2,2), the AR 
(3) and the MA (1) models. In view of the fact that it 
has the lowest standard errors and the highest value 
at the AIC, the AR (3) appears to be the best 
specification to characterize the short-run dynamics 
in this series. Thus, the final selected model is an 
ARFIMA (3, 1.46, 0). 
 Table 4 reports the best model specification for 
each series. One can see that the unemployment rate is 
the only series for which we cannot reject the null of I 
(0) stationary residuals (i.e., d = 0). For five series (real 
per capita GNP, employment, wages, velocity and bond 
yield), the unit root (i.e., d = 1) cannot be rejected. For 
the remaining eight series, both hypotheses are rejected, 
with all the orders of integration being greater than one. 
In other words, even when taking first differences, there 
is still significant dependence between observations far 
apart in time. 
 In brief, nominal GNP, industrial production, GNP 
deflator, money stock, common stock prices and 
consumer prices are the most nonstationary series, with 
the unit root null rejected in all cases; the unit root 
hypothesis is also rejected for real GNP and real wages; 
it cannot be rejected instead for real per capita GNP, 
employment, wages and velocity, though higher orders 
of integration are also estimated; bond yields may be 
modelled as a unit root process, though the order of 
integration seems slightly smaller than one.  
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Table 5: Impulse Response Functions for the Growth Rate in the Extended Version of Nelson and Plosser’s Dataset 

Series    1    2    3   4   5    6    7    8    9   10   11   12   13   14   15   16   17 

Real GNP .300 .195 .149 .123 .106 .093 .084 .076 .070 .065 .061 .061 .058 .052 .049 .047 .045 

Nom. GNP .030 -.058 .317 .142 .041 .139 .120 .070 .093 .094 .079 .079 .078 .073 .071 .070 .067 

Cap. GNP .270 .208 .029 -.101 -.064 .073 .146 .079 -.043 -.085 -.011 -.011 .083 .016 -.056 -.047 .024 

Ind. prod. 1.319 .758 .591 .502 .443 .401 .369 .343 .322 .304 .289 .289 .276 .254 .245 .237 .230 

Employm. .470 .126 .083 .063 .051 .043 .038 .033 .030 .028 .025 .025 .023 .020 .019 .018 .017 

Unemploy. .870 .695 .548 .435 .350 .288 .241 .207 .181 .160 .145 .145 .132 .113 .106 .100 .094 

GNP def. 1.070 .627 .275 .186 .233 .273 .266 .234 .208 .195 .189 .189 .184 .169 .163 .158 .153 

Cons. Price. 1.159 .571 .424 .349 .301 .268 .242 .223 .207 .193 .182 .182 .173 .157 .150 .144 .139 

Wages+ .260 .061 .621 .437 .192 .424 .431 .270 .334 .377 .294 .294 .292 .286 .267 .279 .265 

Real wages .219 .134 .099 .079 .067 .058 .052 .047 .042 .039 .036 .036 .034 .030 .028 .027 .026 

Money st. .810 .505 .401 .343 .304 .276 .254 .236 .222 .210 .199 .190 .190 .175 .169 .163 .158 

Velocity .139 .052 -.062 -.095 -.030 .054 .075 .023 -.040 -.054 -.013 .033 .033 .010 -.025 -.030 -.005 

Bond Yield 1.229 1.243 1.479 1.402 1.173 1.229 1.405 1.330 1.711 1.233 1.356 1.286 1.286 1.176 1.319 1.257 1.182 

C. Stock P. -.030 -.159 -.011 .336 .113 -.029 .007 .134 .098 .028 .025 .070 .070 .070 .035 .048 .053 

All the series have been first-difference except the unemployment rate 

 
Finally, the unemployment rate seems to be stationary 
and although the I (0) hypothesis cannot be rejected, it 
can be better modelled with an order of integration 
greater than zero, thus indicating the presence of mean 
reversion. These results are consistent with those of[22], 
where it was shown that this series could be better 
characterized using fractional integration rather than the 
classical I (1) or I (0) models. The only exception is 
industrial production, for which d is estimated to be 
equal to 1.48, while in[22] this series was found to be 
close to stationary. 
 The estimates of the remaining parameters are also 
of interest. Consider, for instance, the unemployment 
rate for which the best model appears to be a short-
memory one (i.e., the estimated d is insignificantly 
different from zero). In this case, the short-run 
dynamics are described by the AR (1) model, with an 
estimated parameter of 0.62, which implies that more 
than 95% of the effects of a shock die away in 
approximately six years. However,  if   we  allow d  to 
be fractional rather than zero (specifically, d = 0.25), 
they disappear after a much longer time. 
 Table 5 reports the impulse responses for the first 
17 periods for the growth rates of the all series expect 
the unemployment rate and bond yields (which are at 
levels), based on the previously selected models. We 
see that shocks to the unemployment rate, though 
disappearing in the long run, still have 10% of their 
initial impact after 15 years. This illustrates the 
importance of distinguishing between short memory (d 
= 0) and long memory (d > 0) behavior. In the case of 
bond yields,  shocks  seem to  persist over time, though, 
as the estimated value of d is smaller than one, they 
disappear in the long run. For the remaining twelve 
series, shocks to the growth rates also tend to disappear, 
though at different rates. Thus, for example, in the case 

of wages, 26.5% of the initial impact is still present 
after 17 years; the corresponding percentages of 
industrial production, money stock, GNP deflator and 
consumer prices are 23%, 15.8%, 15.3% and 13.9% 
respectively. These results corroborate the finding of 
Gil-Alana and Robinson (1997) that these series are the 
most nonstationary ones, the only exception being again 
industrial production. On the other hand almost 90% of 
the initial shock to the growth rates of real wages, real 
per capita GNP, velocity and employment disappear 
after three years. 
 

CONCLUSION 
 
 Different ARFIMA models have been estimated in 
this study using an extended version of the[1]’s series. 
They provide a greater degree of flexibility in 
modelling the low-frequency dynamics compared with 
the standard ARMA and ARIMA specifications, which 
can be seen as special cases. 
 We have employed[11]’s maximum likelihood 
estimation procedure and first selected various models 
for each series on the basis of several diagnostic tests 
on the residuals. Then, a model selection procedure, 
based on LR tests and other likelihood criteria, was 
adopted to choose the best specification in each case. 
This is crucial when adopting parametric estimation 
approaches, since misspecification of the short-run 
components invalidates the estimation of the fractional 
differencing parameter. Our approach represents an 
improvement relative to the earlier study of[21], where 
the model selection was based only on AIC and SIC, 
which might not be the best criteria in the case of 
fractional differencing; our using a larger set of model 
selection criteria also accounts for differences in the 
chosen specification in each case. 
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 The empirical findings indicate that the 
unemployment rate is the only stationary series, with an 
order of integration of approximately 0.25. The t-value 
on this parameter implies that the I (0) hypothesis 
cannot be rejected. The remaining thirteen series all 
appear to be non-stationary, with orders of integration 
ranging from 0.96  (bond yields) and 1.01 (velocity) to 
1.49 (nominal GNP). Then I (1) hypothesis cannot be 
rejected for bond yields, velocity, real per capita GNP, 
wages and employment. For all the other series, d 
appears to be much higher than one and thus the 
standard approach of taking first differences does not 
guarantee I (0) stationary residuals. In fact, the impulse 
response functions based on the growth rates of the 
series show that, even ten years after a shock has 
occurred, almost 20% of its impact still remains in the 
case of industrial production, GNP deflator, wages, 
consumer prices and the money stock, clearly indicating 
the presence of long memory. 
 Possible extensions to our analysis, aimed at 
shedding further light on the stochastic behavior of 
macroeconomic time series, include testing the[28] 
exponential model for the description of the short-run 
components of the series and adopting a semi-
parametric and non-parametric methods of estimating d. 
These issues will be addressed in future work. 
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