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Characterization of Reconstructed Basins Using Pattern Spectrum Procedure
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Abstract: Several classical and Fractal binary shapes, whiehakin to geophysical shapes such as
basins, lakes, and pore-grain spruce, are analymedl characterized by employing various
mathematical morphological transformations, and hoé$. By employing rhombus, square and
octagon structuring elements, these shapes arempesed into their skeletal networks and their
corresponding skeletal network subsets are dilatedhe respective degree by these structuring
elements in order to reconstruct the original skaperthermore, to test the reconstruction accyracy
the pattern spectrum procedure is applied and sbagpindices were computed. These shapiness
indices were considered as a basis to test thens&cation accuracy in a quantitative manner. A
general trend is observed while characterizingstiggpe-size complexity of these surface water bodies
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size complexity

INTRODUCTION the reconstructed region, by employing various

predefined morphological rules, we have adapted

Shape description is an important issue inPaftérn spectrum procedures. This study will have

understanding various geophysical processes. Thalgnificance with greater insight in evaluating the

examples of shapes that are encountered in geaplhysi reconstruction of various _geophyswal phenomené suc
sciences include basins, elevation regions, lajegk @S basins, lakes, pore-grain space etc.

pore-grain space etc. Investigation of such shdyass

significant scope from the point of geophysicaldats. morphologf? ¥ is a set algebra used to process and

There are certain indicators that determine theallve . .
; N analyze data based on geometric shapes. It examines
shape from the geophysical context. These indisator.

are the unique patterns such as the channel networE(he geometrical structure of an 'mage by probingish
o . . small patterns, called structuring element (SE)e Th
flow direction network, and the pore-grain connéatyi

) . discrete binary image, X is defined as a finitesaitof
networks that determine the shapes of basins, Jakes £\ i4ean two-dimensional spacé. Zet B denote a
pore-grains respectively. These unique networlepadt

S L __structuring element, which is a subset i @ith a
can be treated as minimum morphological information

emoloving  which one can make an attempt tosimple geometrical shape and certain characteristic
ploying - . P information. The morphological operators can be
reconstruct the original shapes. For instancesiatial

organization of the channel network patterns deiteem visualized as working with two images. The image
9 ; ) P being processed is referred to as the image aret oth
the basin processes. This channel network patteen,

o . L image being a structuring element. The four basic
cal as a minimum, but highly significant, : . I
. . . : morphological transformations are eroded, dilation,
morphological information, from which one can

. : . . cascade of erosion-dilation and dilation-erosiohe T
reconstruct the basin. Employing various morphaapi : : . . .
i ?_morphological erosion of a basin, X with structgrin
rules and fundamental morphological transformations : ' .
can do this. To verify the accuracy of the recarged element, B, is defined as the set of points m sheh
. : . h o y O A the translated B is contained in X. X &
basin by comparing with original basin organizasiom

spatial domain, the pattern spectrum procedurefis oB:{m:Bm ox} :QSXS‘ The deletion of a basin X, with

immense use. However, in this paper, we hav&trycturing template B is defined as the set opalhts

considered various synthetic images in binary formy, such that BM intersects the X as shown in

which are akin to threshold elevation regions of ax 0B ={m:B nxz¢=(Jx,. A cascade of erosion-
B

typical Digital Elevation Model (DEMY. These
synthetic shapes were converted into possiblalilation is called opening. The opening by a diskiB
connectivity network patterns, which are akin t@ th the combination of erosion followed by dilation Byis
minimum morphological information in the basingi, shown in X o B = (©B)0 B. Closing of X by a
Channel network patterns. These connectivity ndtwor template B is dilation by B followed by erosion By
subsets are our main focus from which we tried toviathematically it is shown as XB = (X O B) © B.
reconstruct the original shapes. To test the acyura These latter two transformations, which are based o
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the former two transformations and are idempotenthis skeletal network that could be decomposed feom
transformations. They are referred to as nonlineagiven shape, original shape can be precisely
transformations. The non-linearity is due to non-reconstructed by means of the same structuringegiem
invertible property that these two-idempotentthat is used in the process of skeleton computtion
transformations possess. However, these two lattdviorphological reconstruction of the shape is doge b
nonlinear transformations can be implementedneans of several predefined morphological rules by
iteratively by following multi-scale approaches, in changing their characteristics. It involves twapstefirst
which the size of the SE will be incremented fromwe have to derive the skeleton (networks) of thepsh
iteration to iteration. In the multi-scale approathe  The skeleton is precisely decomposed from its shape
size of the B will be increased from iteration to the morphological rule that is designed preciskiythe
iteration. next phase, these skeletal subsets, decomflofed
the shape are dilated by an explicit number oéitens
by way of trying to reconstruct the shape outline b
nB = B, 0B0O BD---D.B means of certain predefined morphological rule. The
n times (1) image reconstruction can be built by an infinitgusnce
of dilation and intersection, until the result reas
where, n is the discrete size parameter. Applyimge  Stability. In order to verify the accuracy in thepe that
basic morphological transformations, the various!S reconstructed, by considering the skeleton newo
computations can be done with shapes. Thes@€composed from the original shape, with referemce
transformations are systematically used in our ystudthe original shape, a method that can quantify and

with an aim to characterize shapes by mean of rpatte characterize the reconstruction accuracy is redsih
spectrum procedure. the section that follows.

Skeleton Computation  Via  Morphological Pattern Spectrum and Study of Reconstruction
Operations. The four fundamental transformations Accuracy: In morphology, a quantitative measurement
explained in earlier sub-section are used first toof the size distribution of objects in an imagegigen
decompose a binary shape, akin to geophysical shapey pattern spectrum. This size distribution in fbem

and a skeleton (unique pattern ex: channel netwtok) of the pattern spectrum may be used for object
reconstruct the shape of the skeleton. Subsequiii@ly recognition. The pattern spectrum procedure hasesom
application of these transformations is shown ie th invariant properties over Fourier spectrum. Theepat
pattern spectrum analysis as well as in thespectrurf? * ' of size n by a structuring element is
reconstruction accuracy analysis. A connectivitygdefined as the pixel-wise difference between thgeta
preserving way of erosion is termed as skeletolw@at  jmage morphological opened from a homothetic set of
The skeleton is a one-picture element (pixel) thiCkstructuring element of size n, and that opened by
object. That summarizes the overall shape, Sizestructuring element of size n+l. A procedure to

orientation, and association, of a geometric stnct econstruct the image from different levels of with
from which inferences can be drawn. Skeletons ére oshapes is investigat@d”’lz’ 13, 4 The dilated portions

special interest because they reflect the struaifitbe
original objects in their end pixels and vertices.
Mathematical morphologists developed the concept o
skeletonizatioft . Morphologically the skeleton
extraction phase described $ycan be achieved by
connecting the basic morphological transformatidh

as shown in equation (2,3)

are identified with the wuse of mathematical
morphological SE with different scale. This method
fFig. 2) decomposes an object into a number of lemp
components based on homothetics of a set of SE.
Mathematical morphological transformations are
employed to decompose a binary shape by means of
various SE. These procedures have been used in an
integrated manner to study certain aspects of pinar

k(X)= \
Sk(X)= (XnB) {[(«nB)0B] 0 B} image. These aspects include the derivation of

n=012..N @ morphological rules of the topological structure af
binary shape, and vice versa. To derive these rules
Sk(x):LNJSkn (X) (3) several binary shapes are simulated and the prozedu
n=0 based on mathematical morphology have been
Where: systematically implemented to verify the accurady o

Skn(X) denotes the nth skeletal subset of shape (X). I[Téc;rprlglogmal rules and in the reconstructed shapes

the above expression, subtracting from the eroded
versions of X their opening by B retains only the
angular points. The union of all such possible f®oin
produces morphological skeletal network (SK). Using Where s (x)=(( > ng§ { >0 n§- §
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X=UN,[S,(X)0nB]
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Pattern spectrum R%r, B) is given by (5), where confirmed in quantitative terms, that the Fractah be

A (X) means that the area of X and r is the scale. best packed with the highest packing efficiencywé
consider the Fractal type of structuring elemeritictv
PS.(r.B= A(Xo B) \(Xo1B)) @rf1) (5) should be homothetic of the Fractal. It is duehi® fact

that the shapiness index of the fractal by meanhef
both square and rhombus are 0.9, which is veryedios
unity. In contrast, the shapiness index of the same
Fractal by means of the octagon is 0.8 which can
considered as a rule that describes the lower pgcki
efficiency compared to the other two structuring
elements.

A(X o rB) is a measure of the pattern content of X
relative to the pattern rB. By varying both r (&al
and the shape of B (structuring element) we obgain
shape-size spectrum of X, which is the full pattern
spectrum of X relative to all the patterns that ¢i&n
inside X. The higher a spectrum at the maximurhe, t
more alike an area X is as a structuring element B.
Shapiness is a likeness between X and B. B-shapines
S«(B) [Eq. 6] is as follows, where,t, means that
maximum of scale r:

S (B)= PY fuer B /AKX)

6
S (B)=(PS (fu B+ PS( s B /AKX ©)

If X is completely similar to B, 55(B) equal to 1.
The second equation is used when the spectrup.at r
iS not maximum.

RESULTSAND DISCUSSION

Various planar shapes that include both classical
and irregular shapes have been investigated imedésc
space with an aim to estimate the shape-size coihple Fig. 1: Small Water Bodies, Traced from IRS 1D
measure. To estimate this measure characterisiic, t Remotely Sensed Data, Situated in the Flood
shape forms the points it shapes complexity with Plain Region of Gosthani River (A.P) India
respect to the rule that has been used in the gsanfe
investigation in discrete space. In this study,stelied
different shapes such as triangle, square, reaang|
octagon, hexagon, circle, and irregular shapes for|
reconstruction and accuracy of the reconstructidn.
the n-1 scale it gives the maximum area. For $&kis
different scale required for convergence the sanage
in pattern spectrum. Fractal shape is considergd wi
different SE. It gives 80 to 90% accuracy of the
reconstruction. Square shape with square SE gives
100% accuracy. But with different SE it gives 10 to
40% of accuracy. Similarly the rectangle shape with
square SE gives 100% accuracy but with other SE it
gives 10 to 30% of accuracy. The shapiness index
(Table 1) is a parameter that is used as a medsure
compare the reconstruction accuracy of the binary
shapes. The range of this index is 0 to 1. If the
shapiness index is 1, then the two images are én th
same pattern with exact geometric similarity. IfsitO,
then the two images are geometrically and topo#dlyic
dissimilar. Incorporating various steps does theabyi
image reconstruction. Packing efficiency is based o
the set and the complement ratio after achievirgy th
full-length packing. The higher the ratio, the teghs  Fig. 2: Reconstructing Fractal Basin uses Rhomizus a
the packing efficiency. It is hypothesized, whidnde SE
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Table 1: Shapiness Index of Various Shapes

Shapes /SE Square  Rectangle Triangle Octagon Hexago Circle Irregular Shape Fractal
SE(Square) 1.0 1.0 0.5 0.6 0.6 0.4 0.6 0.9
SE(Octagon) 0.1 0.1 0.4 1.0 0.4 0.9 0.8 0.8
SE(Rhombus) 0.4 0.3 0.5 0.5 0.7 0.4 0.7 0.9
Table 2: Shape-size Complexity of Lakes REFERENCES

Name Area Shapiness Name Area Shapiness

lakel 180 079 Lake19 627 044 1. Sagar B.S.D., M. Venu and D. Srinivas, 2000.
lake2 182 076 Lake20 668  0.17 Morphological operators to extract channel
lake3 210 083 Lake21 697 041 networks from digital elevation models. Intl. J.
Lake4 256  0.91 Lake22 818 055 Remote Sensing, 21: 21-30. ,
Lake5 278 041 Lake23 875 042 2. Serra. J., 1984. Image Analysis and Mathematical
Lake6 304 049 Lake24 006 072 Morphology. New York: Springer Verlag.

lake7 340 043 Lake25 1051 040 3. Goutsias, J., Henk and J.A.M. Heimans, 2000,
Lake8 362 050 Lake26 1215 046 Fundamental morphological mathematics. [0S
lake9 413 043 Lake27 1779 036 Press, Fundamental Informatics 41: 1-33.

lakel0 443 061 Lake28 1792 042 4. Lantuejoul, C., 1980. Skeletonization in
lakell 454 053 Lake29 1818 037 quantitative metallography, in Issues of Digital
lakel? 497 033 Lake30 1822 027 image processing, R.M. Haralick and J.C. Simon,
lakeld 512 039 Lake31 2010 032 Eds. Groningen, The Netherlands: Sijthoff and
Lakel4 552 031 Lake32 2022 042 Noordhoff. o
Lakel5 555 046 Lake33 2559 033 5. Lantuejoul, C., 1982. Centre de Geostatistique e
Lakel6 588 051 Lake34 3326 027 de Morphologie Mathematique. Int. Report,
Lakel7 604 057 Lake35 4566  0.31 France. L _
lakel8 615 032 6. Blum, H., 1973. Biological shape and visual

7.

About 35 numbers of small water bodies (Fig. 1)
situated randomly over a 10 sq. km landscape is
considered to compute the shapiness indices with a8.
aim to verify the general trend to derive a shape-s
complexity relationships.

By employing the multiscale opening 9.
transformation, the implementation of which is smow
on test water bodies, each water body's shapiness
index is computed (Table 2). These shapiness ilsldicelo
range, for these water bodies, from 0.2 to 0.83,
indicates that smaller category water bodies passes
higher shapiness indices indicating more regularity

with morphology than that of larger water body 11,

categories. In this paper, ideas from the pattern
spectrum procedure are employed to test the
reconstruction accuracy in the basins. In addition
this, randomly situated surface water bodies oifower
sizes and shapes are also considered, and their
shapiness indices are computed. A general trend is
observed while characterizing the shape-size
complexity of these surface water bodies.
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