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Abstract: Several classical and Fractal binary shapes, which are akin to geophysical shapes such as 
basins, lakes, and pore-grain spruce, are analyzed and characterized by employing various 
mathematical morphological transformations, and methods. By employing rhombus, square and 
octagon structuring elements, these shapes are decomposed into their skeletal networks and their 
corresponding skeletal network subsets are dilated to the respective degree by these structuring 
elements in order to reconstruct the original shapes. Furthermore, to test the reconstruction accuracy, 
the pattern spectrum procedure is applied and sharpness indices were computed. These shapiness 
indices were considered as a basis to test the reconstruction accuracy in a quantitative manner. A 
general trend is observed while characterizing the shape-size complexity of these surface water bodies. 
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INTRODUCTION 

 
Shape description is an important issue in 
understanding various geophysical processes. The 
examples of shapes that are encountered in geophysical 
sciences include basins, elevation regions, lakes, rock 
pore-grain space etc. Investigation of such shapes has 
significant scope from the point of geophysical studies. 
There are certain indicators that determine the overall 
shape from the geophysical context. These indicators 
are the unique patterns such as the channel network, 
flow direction network, and the pore-grain connectivity 
networks that determine the shapes of basins, lakes, and 
pore-grains respectively. These unique network patterns 
can be treated as minimum morphological information 
employing which one can make an attempt to 
reconstruct the original shapes. For instance, the spatial 
organization of the channel network patterns determines 
the basin processes. This channel network pattern, we 
call as a minimum, but highly significant, 
morphological information, from which one can 
reconstruct the basin. Employing various morphological 
rules and fundamental morphological transformations 
can do this. To verify the accuracy of the reconstructed 
basin by comparing with original basin organizations in 
spatial domain, the pattern spectrum procedure is of 
immense use. However, in this paper, we have 
considered various synthetic images in binary form, 
which are akin to threshold elevation regions of a 
typical Digital Elevation Model (DEM)[1]. These 
synthetic shapes were converted into possible 
connectivity network patterns, which are akin to the 
minimum morphological information in the basin, i. e., 
Channel network patterns. These connectivity network 
subsets are our main focus from which we tried to 
reconstruct the original shapes. To test the accuracy in 

the reconstructed region, by employing various 
predefined morphological rules, we have adapted 
pattern spectrum procedures. This study will have 
significance with greater insight in evaluating the 
reconstruction of various geophysical phenomena such 
as basins, lakes, pore-grain space etc. 
 
Morphological Transformations: Mathematical 
morphology[2, 3] is a set algebra used to process and 
analyze data based on geometric shapes. It examines 
the geometrical structure of an image by probing it with 
small patterns, called structuring element (SE). The 
discrete binary image, X is defined as a finite subset of 
Euclidean two-dimensional space Z2. Let B denote a 
structuring element, which is a subset in Z2 with a 
simple geometrical shape and certain characteristic 
information. The morphological operators can be 
visualized as working with two images. The image 
being processed is referred to as the image and other 
image being a structuring element. The four basic 
morphological transformations are eroded, dilation, 
cascade of erosion-dilation and dilation-erosion. The 
morphological erosion of a basin, X with structuring 
element, B, is defined as the set of points m such that 
the translated Bm is contained in X. X � 

{ }m s
s S

B m : B X X
∈

= ⊆ =∩ . The deletion of a basin X, with 

structuring template B is defined as the set of all points 
m such that BM intersects the X as shown in 

{ }m s
s B

X B m : B X X
∈

⊕ = ≠ ϕ =∩ ∪ . A cascade of erosion-

dilation is called opening. The opening by a disk B, is 
the combination of erosion followed by dilation by B is 
shown in X o B = (X�B)⊕ B. Closing of X by a 
template B is dilation by B followed by erosion by B. 
Mathematically it is shown as X • B = (X ⊕ B) � B. 
These latter two transformations, which are based on 
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the former two transformations and are idempotent 
transformations. They are referred to as nonlinear 
transformations. The non-linearity is due to non-
invertible property that these two-idempotent 
transformations possess. However, these two latter 
nonlinear transformations can be implemented 
iteratively by following multi-scale approaches, in 
which the size of the SE will be incremented from 
iteration to iteration. In the multi-scale approach, the 
size of the B will be increased from iteration to 
iteration.  
 

  n times (1) 
 
where, n is the discrete size parameter. Applying these 
basic morphological transformations, the various 
computations can be done with shapes. These 
transformations are systematically used in our study 
with an aim to characterize shapes by mean of pattern 
spectrum procedure. 
 
Skeleton Computation Via Morphological 
Operations: The four fundamental transformations 
explained in earlier sub-section are used first to 
decompose a binary shape, akin to geophysical shape, 
and a skeleton (unique pattern ex: channel network), to 
reconstruct the shape of the skeleton. Subsequently the 
application of these transformations is shown in the 
pattern spectrum analysis as well as in the 
reconstruction accuracy analysis. A connectivity 
preserving way of erosion is termed as skeletonization. 
The skeleton is a one-picture element (pixel) thick 
object. That summarizes the overall shape, size, 
orientation, and association, of a geometric structure 
from which inferences can be drawn. Skeletons are of 
special interest because they reflect the structure of the 
original objects in their end pixels and vertices. 
Mathematical morphologists developed the concept of 
skeletonization[4, 5]. Morphologically the skeleton 
extraction phase described by[6] can be achieved by 
connecting the basic morphological transformation[5, 6] 
as shown in equation (2,3) 
 

{ }Sk(X) (X nB) \ [(x nB) B] B= Θ Θ Θ ⊕   

n = 0, 1, 2, ..., N (2) 
 

N

n
n 0

Sk(X) Sk (X )
=

= ∪  (3) 

 
Where: 
Skn(X) denotes the nth skeletal subset of shape (X). In 

the above expression, subtracting from the eroded 
versions of X their opening by B retains only the 
angular points. The union of all such possible points 
produces morphological skeletal network (SK). Using 

this skeletal network that could be decomposed from a 
given shape, original shape can be precisely 
reconstructed by means of the same structuring element 
that is used in the process of skeleton computations. 
Morphological reconstruction of the shape is done by 
means of several predefined morphological rules by 
changing their characteristics. It involves two steps, first 
we have to derive the skeleton (networks) of the shape. 
The skeleton is precisely decomposed from its shape by 
the morphological rule that is designed precisely. In the 
next phase, these skeletal subsets, decomposed[7] from 
the shape are dilated by an explicit number of iterations 
by way of trying to reconstruct the shape outline by 
means of certain predefined morphological rule. The 
image reconstruction can be built by an infinite sequence 
of dilation and intersection, until the result reaches 
stability. In order to verify the accuracy in the shape that 
is reconstructed, by considering the skeleton network 
decomposed from the original shape, with reference to 
the original shape, a method that can quantify and 
characterize the reconstruction accuracy is revisited in 
the section that follows. 
 
Pattern Spectrum and Study of Reconstruction 
Accuracy: In morphology, a quantitative measurement 
of the size distribution of objects in an image is given 
by pattern spectrum. This size distribution in the form 
of the pattern spectrum may be used for object 
recognition. The pattern spectrum procedure has some 
invariant properties over Fourier spectrum. The pattern 
spectrum[8, 9, 10] of size n by a structuring element is 
defined as the pixel-wise difference between the target 
image morphological opened from a homothetic set of 
structuring element of size n, and that opened by 
structuring element of size n+1. A procedure to 
reconstruct the image from different levels of dilated 
shapes is investigated[8, 11,12, 13, 14]. The dilated portions 
are identified with the use of mathematical 
morphological SE with different scale. This method 
(Fig. 2) decomposes an object into a number of simple 
components based on homothetics of a set of SE. 
Mathematical morphological transformations are 
employed to decompose a binary shape by means of 
various SE. These procedures have been used in an 
integrated manner to study certain aspects of binary 
image. These aspects include the derivation of 
morphological rules of the topological structure of a 
binary shape, and vice versa. To derive these rules 
several binary shapes are simulated and the procedure 
based on mathematical morphology have been 
systematically implemented to verify the accuracy of 
morphological rules and in the reconstructed shapes 
[Eq. 4]: 
  

 
( )

( ) ( )( )
N
n 1 n

n

X U S X nB

where s (x) X nB \ X nB B

== ⊕  

= Θ Θ �
 (4) 

nB B B B B= ⊕ ⊕ ⊕ ⊕...
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 Pattern spectrum PSx (r, B) is given by (5), where 
A (X) means that the area of X and r is the scale. 
 

( ) ( ) ( )( )xPS r,B A X B \ X rB ( rf1)= � � □  (5) 

 
A(X ο rB) is a measure of the pattern content of X 
relative to the pattern rB. By varying both r (scale) 
and the shape of B (structuring element) we obtain a 
shape-size spectrum of X, which is the full pattern 
spectrum of X relative to all the patterns that can fit 
inside X. The higher a spectrum at the maximum r, the 
more alike an area X is as a structuring element B. 
Shapiness is a likeness between X and B. B-shapiness 
Sx(B) [Eq. 6] is as follows, where rmax means that 
maximum of scale r: 
 

( ) ( )
( ) ( )( )

X max 1

X X max X max 1

S B PS r ,B / A(x)

S (B) PS r ,B PS r ,B / A(X)

−

−

=

= +
  (6)  

 
 If X is completely similar to B, SX (B) equal to 1. 
The second equation is used when the spectrum at rmax-1 
is not maximum.  
 

RESULTS AND DISCUSSION 
 
 Various planar shapes that include both classical 
and irregular shapes have been investigated in discrete 
space with an aim to estimate the shape-size complexity 
measure. To estimate this measure characteristic, the 
shape forms the points it shapes complexity with 
respect to the rule that has been used in the process of 
investigation in discrete space. In this study, we studied 
different shapes such as triangle, square, rectangle, 
octagon, hexagon, circle, and irregular shapes for 
reconstruction and accuracy of the reconstruction. At 
the n-1 scale it gives the maximum area. For SE it takes 
different scale required for convergence the same image 
in pattern spectrum. Fractal shape is considered with 
different SE. It gives 80 to 90% accuracy of the 
reconstruction. Square shape with square SE gives 
100% accuracy. But with different SE it gives 10 to 
40% of accuracy. Similarly the rectangle shape with 
square SE gives 100% accuracy but with other SE it 
gives 10 to 30% of accuracy. The shapiness index 
(Table 1) is a parameter that is used as a measure to 
compare the reconstruction accuracy of the binary 
shapes. The range of this index is 0 to 1. If the 
shapiness index is 1, then the two images are in the 
same pattern with exact geometric similarity. If it is 0, 
then the two images are geometrically and topologically 
dissimilar. Incorporating various steps does the binary 
image reconstruction. Packing efficiency is based on 
the set and the complement ratio after achieving the 
full-length packing. The higher the ratio, the higher is 
the packing efficiency. It is hypothesized, which can be 

confirmed in quantitative terms, that the Fractal can be 
best packed with the highest packing efficiency, if we 
consider the Fractal type of structuring element, which 
should be homothetic of the Fractal. It is due to the fact 
that the shapiness index of the fractal by means of the 
both square and rhombus are 0.9, which is very close to 
unity. In contrast, the shapiness index of the same 
Fractal by means of the octagon is 0.8 which can 
considered as a rule that describes the lower packing 
efficiency compared to the other two structuring 
elements. 
 

 
 
Fig. 1: Small Water Bodies, Traced from IRS 1D 

Remotely Sensed Data, Situated in the Flood 
Plain Region of Gosthani River (A.P) India 

 

 
 

Fig. 2: Reconstructing Fractal Basin uses Rhombus as 
SE 
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Table 1: Shapiness Index of Various Shapes 

Shapes /SE Square Rectangle Triangle Octagon Hexagon Circle Irregular Shape Fractal 

SE(Square) 1.0 1.0 0.5 0.6 0.6 0.4 0.6 0.9 
SE(Octagon) 0.1 0.1 0.4 1.0 0.4 0.9 0.8 0.8 
SE(Rhombus) 0.4 0.3 0.5 0.5 0.7 0.4 0.7 0.9 

 
Table 2: Shape-size Complexity of Lakes 

Name  Area Shapiness Name  Area Shapiness 

Lake1 180 0.79 Lake19 627 0.44 
Lake2 182 0.76 Lake20 668 0.17 
Lake3 210 0.83 Lake21 697 0.41 
Lake4 256 0.91 Lake22 818 0.55 
Lake5 278 0.41 Lake23 875 0.42 
Lake6 304 0.49 Lake24 906 0.72 
Lake7 340 0.43 Lake25 1051 0.40 
Lake8 362 0.50 Lake26 1215 0.46 
Lake9 413 0.43 Lake27 1779 0.36 
lake10 443 0.61 Lake28 1792 0.42 
Lake11 454 0.53 Lake29 1818 0.37 
Lake12 497 0.33 Lake30 1822 0.27 
Lake13 512 0.39 Lake31 2010 0.32 
Lake14 552 0.31 Lake32 2022 0.42 
Lake15 555 0.46 Lake33 2559 0.33 
Lake16 588 0.51 Lake34 3326 0.27 
Lake17 604 0.57 Lake35 4566 0.31 
Lake18 615 0.32    

 
 About 35 numbers of small water bodies (Fig. 1) 
situated randomly over a 10 sq. km landscape is 
considered to compute the shapiness indices with an 
aim to verify the general trend to derive a shape-size 
complexity relationships. 
 By employing the multiscale opening 
transformation, the implementation of which is shown 
on test water bodies, each water body’s shapiness 
index is computed (Table 2). These shapiness indices 
range, for these water bodies, from 0.2 to 0.83, 
indicates that smaller category water bodies possess 
higher shapiness indices indicating more regularity 
with morphology than that of larger water body 
categories. In this paper, ideas from the pattern 
spectrum procedure are employed to test the 
reconstruction accuracy in the basins. In addition to 
this, randomly situated surface water bodies of various 
sizes and shapes are also considered, and their 
shapiness indices are computed. A general trend is 
observed while characterizing the shape-size 
complexity of these surface water bodies. 
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