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Abstract: This study presents a method for calculating the availability of a system depicted by 
availability block diagram, with identically distributed components, in the presence of estimating 
common cause hazard, we use the Marshall and Olkin formulation of the multivariate exponential 
distribution. That is, the components are subject to failure by Poisson failure processes that govern 
simultaneous failure of a specific subset of the components. A model is proposed for the analysis of 
systems subject to common-cause failures that are not considered to have a constant rate but that are 
assumed to obey a uniqueness of maximum likelihood estimators of the 2-parameter Weibull 
distribution. The method for calculating the system availability requires that a procedure exists for 
determining the system availability from component availabilities, under the statistically independent 
component assumption. The study includes an example to illustrate the method. 
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INTRODUCTION 

 
 Common-Cause (CC) hazards are the failure of 
multiple components due to a single occurrence or 
condition. For example, contaminate fluid causes two 
pumps to fail that are operated in “parallel”. In this 
event, the availability of the “parallel” configuration 
with redundancy is less than a similar configuration 
with statistically independent components. 
 In this study, CC hazard is simultaneous hazards of 
multiple components due to a CC. 
 Most CC failure models assume that the shocks 
have constant (time-independent) rates of occurrence, 
leading to variants of the multivariate exponential 
distribution[1-4]. 
 Many parameterization has been developed[5], yet 
most of them are equivalent to (or special cases of) the 
general multivariate exponential model[6]. 
 There are two fundamentally different approaches 
for incorporating CC failure into system analysis: 
explicit and implicit method[7, 8]. 
 The component failure probability density function 
could be described by different models, such as the 
Weibull distribution calculated from either complete 
failure data or from the behavior of the parameter 
Maximum Likelihood Estimates (MLE) of a 2-
parameter Weibull distribution[9]. 
 It is the main objective of the present study to 
utilize the hazard rates, extracted from operational 
experience, to calculate the availability of a system 
depicted by an availability block diagram with Weibull 
distribution components, in the presence of common-
caused hazards. Availability formulae for a 
configuration of a definite number of components are 
provided.  

Uniqueness of MLE of the 2-parameter Weibull 
Distribution: We select an appropriate hazard rate for 
each constituent component in the system and evaluate 
its characteristic parameters. The function for the 
reliability of each component can then be easily 
derived. 
 The hazard function of a component following a 2-
parameter Weibull distribution can be described by: 
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 The partial derivatives of the natural log of the 
likelihood function are: 
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 Since (3.1) involves ßj alone, iterative methods are 
usually directed at solving (3.1); and substituting the 
resulting value into (3.2) to find αj. 
 For censorting, ti is a recorded failure time for i ≤ τ  
and i st t=  for 1 i mτ + ≤ ≤ . When all t ti (I=1, 2, …, m) 

are available, the data are complete; complete data are a 
special case of right censoring for τ = m.  
 Our empirical investigations suggest that 
choosing[9]: 
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works well. For complete data, this approximation 

simplifies to ˆ 2 / V ;β −ɶ (4) provides a quick 

approximation to β̂  and can be used as an initial 

estimate of ̂β  for iterative MLE routines. 

 
Component Availability Model: Figure 1 is the state 
transition diagram for the 1-component availability 
model:  
 
States  11. x   12. x  

 
 The general relation to the state probabilities as a 
function of time is: 
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 The first equation of (6), after much tedious 
algebra, the result is: 
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 In general, for the given:  
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System Availability Analysis with Common-cause 
Hazards: (1)

nA (t)  is the probability that the specified 

component is operating at time t, i.e. The probability 
that none of the processes that govern the simultaneous 
failure of j component, j=1, 2---, n, includes the specific 
component. Based on the S-independence of the 
Poisson processes, we have: 
 

( )n 1
j 1

n
(1)
n j

j 1
A (t) [A (t)]

−
−

=
= Π  (9) 

 
 The probability that a specific group of k 
components out of n-component system are all good is: 
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 These formulas were originally derived from 
Kyung[10] for constant hazard rates; similar arguments 
are valid for time-varying failure rates[11]. 
 The results are Ac (t) and As (t) in terms of 
availabilities Aj (t). 
 
Illustrative Example: Let the given Fig. 2 is the 
availability block-diagram. 
 

 
 
Fig. 1: Component Availability State-transition Diagram 
 

 
 
Fig. 2: Availability Block-Diagram for Example 
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Table 1: Compute Estimate of the Parameters βj and αj, and Assuming Repair Rates µj for Number of Simultaneous Failures 
Number of Simultaneous Failures 

 Ordered Failure Time t ij 

For j= 1,2,…, 5 and i= 1, 2,...,10  Vj β j=2 / Vj  j j
j

10
1/

ij
i 1

( t /10)=
β β

=
α ∑   µ j 

j  1 2 3  4 5 6 7  8  9  10      
1 37 58 72 88 115 136 152 165 185 213 0.6819 2.42 138.07 0.06 
2 31 43 56 65 73 82 96 101 111 195 0.948 2.12 97.220 0.05 
3 27 35 66 83 96 101 131 145 199 222 0.884 2.26 128.41 0.04 
4 24 32 41 66 79 89 98 120 180 235 1.117 1.79 111.66 0.03 
5 18 26 39 53 77 93 108 135 220 253 1.216 1.64 118.84 0.02 

 

 
 
Fig. 3a: System Availability Plot Response for i.i.d 

Components 
 

 
 
Fig. 3b: System Common-cause Availability Variation 

by Time 
 
 For identically distributed components with 
statistically-independent failure processes, the 
availability AS (t) of the whole system can then be 
evaluated as: 
 

2 3 4 5
SA (t) 3A (t) A (t) 2A (t) A (t)= − − +  (11) 

 
 For comparison purposes, the one-component 
availability remains at the value of a component in the 
five-component common-causc system, but the system 
consists statistically-independent and identically 
distributed (i.i.d) components that are, calculate AS(t) 
when (1)

5A(t) A (t)=  in equation (11) 

 The resulting availability neglects, the system 
effects of common-cause failures and represents the 
prediction of a practitioner assessing all failures causes 

against a component, but assuming a “statistically-
independence” model. In that case, we have: 
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 When the identically distributed components have 
common-cause failures, we have: 
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Where: 
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 Making use of the data provided and assumed 
Table 1, the available functions of Eqs. (11) and (12) in 
terms of (1) (k)

5 5A (t), and A (k 2,3,4,5)=  respectively 

vary with time as shown in Fig. 3 (a) and 3 (b). Thus, 
for this case, the system availability, assuming 
common-cause, failures, is appreciably lower than the 
i.i.d system availability. 
 
Notation: 
 
n =Number of components in the system; 

k =Number of good components that allow the 

system to operate; 

A j (t) =Availability of component j at time t; 

Ac (t) =System availability at time t with CC hazard; 

As (t) =System availability without CC hazard; 

An 
(k)(t) =Probability that all the components of a 

specific k-component subset out of an n-

component system are operating at time t; 
hj(t) =Hazard rate; hj(t)dt= conditional probability of an 

event failing specific j components, and no 
others, during (t,t+dt), given no such event 
during (0,t);  

hj(t) =
t

j

0

h (u)du∫ : cumulative hazard function; 
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( )n
j  =Number of combinations of j items out of 

possible n items. 
αj, ßj =Positive [scale, shape] parameter of 

component j 
m =Number of items tested; 
ti =Failure time of item i under test; 
R (ti ) =Reliability of a single component at time ti; 
F (ti ) =Probability density function of time ti; 
ts =Maximum test time for censoring; 
τ  =Number of items that fail before ts; 
Pj (t) =Individual state probabilities; 
µj =Constant repair rate for component j; 
Si =Event that component i is good. 
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