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Abstract: Different models have been proposed to investigate the effects of various process 
parameters on shrinkage of plastic parts, which in most cases the effect of each parameter is 
obtained by changing one factor at a time. In this research, a simple flat model has been used and a 
simulation code has been developed. Then, through this simulation code, the effects of different 
process parameters have been investigated. This code was run for a typical thermoplastic 
(polycarbonate) and finally, a Design Of Experiments (DOE) approach was used to study the 
effects of multiple variables on shrinkage simultaneously. 
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INTRODUCTION 
 
Injection molding process is one of the most important 
polymer processing methods for fabrication of plastic 
parts. During this process, the polymer experiences a 
complex deformation and temperature history that 
affects the final product. The demands on high 
dimensional accuracy and quality of the product require 
knowledge of the mechanisms that influence the 
properties of the product such as shrinkage. This quality 
item is the subject of this work in which it (shrinkage) 
has been simulated considering residual stresses. In this 
regard, a simulation program has been developed as a 
part of CAE in injection molding. 
Residual stress is one of the main causes of shrinkage 
and warpage in plastic parts and is produced due to high 
pressure, temperature change and relaxation of polymer 
chains. Different researches have been carried out to 
estimate residual stresses and investigate its effects. 
Choi and Im [1] calculated residual stresses for 
amorphous thermoplastics in a flat shape based on a 
thermo-rheologically simple viscoelastic material 
model. To determine the effects of additional material 
supply during the packing stage, the reference strain 
approach was used. This approach derived from a 
model introduced by Bushko and Stokes [2]. Based on 
this approach, that initially introduced by Santhanam 
[3], the general constitutive equation must be expressed 
with respect to initial cavity dimensions at any instant 
instead of stress free state of the material. This 
approach also requires that the phase of the material 
(solid or liquid) in each layer be definite at any instant. 
In fact, amorphous thermoplastics do not exhibit a 
sharp transition between the liquid and solid states and 
therefore, a transition criterion is required to specify 
their phase. Such a criterion defined by Bushko and 
Stokes. They introduced a new material parameter titled 

as critical relaxation time and expressed that a material 
is a liquid when its characteristic relaxation time is less 
than a critical relaxation time. Using a linear 
thermoviscoelastic model, Kabanemi and Crochet [4] 
predicted residual stresses and dimensional changes in 
several parts, but the packing pressure effects were not 
studied. Liu [5] simulated residual stress and warpage 
using a visco-elastic phase transformation model and 
assumed a standard linear solid for the solidified 
polymer and a viscous fluid model for the polymer 
melt. Kabanemi et al. [6] developed a numerical 
simulation code for predicting residual stresses and 
residual deformations that arise in the post-packing 
stage. They used both elastic and viscoelastic models 
for their calculations and compared the results with 
each other. Zoetelief et al. [7] investigated the effect of 
the holding stage of the injection molding process on 
the thermal residual stress distribution using a linear 
viscoelastic model and compared this with experimental 
results. LeGrand [8] used a simple two-term tensile 
relaxation function above glass transition temperature, 
Tg, and constant elastic modulus below Tg to calculate 
transient stresses in injection molded parts. In his 
research, the effects of packing pressure were not 
investigated. 
Huang and Tai [9] used the experimental design of 
Taguchi method to determine warpage of a thin shell 
part, using the commercial software C-Mold. They 
could get the optimum combination of process 
parameters to produce plastic parts with minimum 
warpage. Chang [10] applied Taguchi method to 
investigate the effects of process conditions on the 
shrinkage of High-Density Polyethylene (HDPE), 
General-Purpose Polystyrene (GPS) and Acrylonitrile 
Butadiene-Styrene (ABS) and the optimal conditions 
predicted by Taguchi method were experimentally 
verified. 
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In this study, the model from Choi and Im [1] was used 
to investigate the effects of different process parameters 
on shrinkage and residual stresses of a flat part. Flow 
effects were neglected and material was assumed to be 
thermo-rheologically simple viscoelastic above Tg and 
elastic below Tg. The reference strain approach [3] was 
used to determine the effects of additional material 
supply during the packing stage. Considering these 
assumptions, a simulation code is developed and then 
the results are achieved for a sample amorphous 
polymer. 
Finally, to assess the percentage influence of each 
factor on shrinkage, considering simultaneous change 
of different factors, the procedure of ANOVA in 
Taguchi approach is employed. 
 
Material Model: In this study, a flat model was used 
and flow effects were neglected. Therefore, only the 
packing and cooling stages of injection molding were 
considered for investigation. Heat transfer was assumed 
to be one-dimensional and temperature gradients in 
planar directions (x and y) were ignored. 
Thermorheologically simple behavior requires that all 
molecular changes be affected by temperature in the 
same way and as a result, only amorphous 
thermoplastics may exhibit such behavior and this 
property cannot be assigned to crystalline structures [2]. 
Therefore, the model under investigation can only cover 
polymers with amorphous structures. 
 
Equilibrium Equations: Due to symmetry and lack of 
heat transfer in planar directions, in the absence of body 
forces, equilibrium equations are only functions of 
independent variable, z. Therefore, 
 

yzxz z
(z, t )(z, t ) (z, t )

0, 0, 0
z z z

∂τ∂τ ∂σ= = =
∂ ∂ ∂  (1) 

 
which have the general solution as follows: 
 

xz xz yz yz z(t); (t); q(t)τ =τ τ =τ σ =  ���  
 
The results show that the three stress components, �xz, 
�yz and �z, are constant through the thickness at any 
instant and can be estimated from their values at the 
boundaries which equal 0, 0 and q(t), respectively. Due 
to symmetry and lack of the planar heat transfer, 
another shear stress component, �xy, will also equal 
zero.  
 
Constitutive Equation: Material behavior is assumed 
to be thermorheologically simple viscoelastic. In order 
to assess polymer relaxation data in different 
temperatures, the concept of time-temperature 
equivalence is used. With this condition, the linear 
constitutive equation will be in the following form: 

( ) ( ) ( ){ } ( ) ( )t
0t L t t d t t′ ′ ′σ = ξ −ξ ⋅ ε −θ� �� � � (3) 

 
where, L(t), � and � are material relaxation modulus, 
material time and thermal strain, respectively. The 
material time or pseudotime, �, is a new time scale 
which is related to time, t, as follows: 
 

( ) ( ){ }t
0t T t d t′ ′ξ = φ ⋅�  (4) 

 
where, � is a shift function which shows the amount of 
horizontal shift of relaxation curves with respect to a 
master curve obtained in a reference temperature. In 
general, this parameter can be computed using the so-
called Williams-Landel-Ferry (WLF) equation [11], 
which is given by 
 

( )
( )

1 ref

2 ref

C T T
log

C T T
⋅ −

φ =
+ −  (5) 

 
where, C1 and C2 are material dependent constants. The 
equation for thermal strain, �, can be written as: 
 

( ) { }
0

T ( t )

T
t p , T d T′ ′θ = α ⋅�  (6) 

where, 	 is the coefficient of thermal expansion of the 
material.  
The material relaxation modulus, L(t), can be expressed 
through the following relation 
 

M
( ) ( )

1
L ( t ) A L ( t )α α

α =
= �  (7) 

 
Where, L(	)(t) are different components of matrix L(t) . 
These functions express different relaxation data for a 
polymer. The value of M and constant matrices, A(	) 
depend on the class of materials under consideration. M 
equals 2 and 6 for an isotropic and orthotropic material, 
respectively. The matrices A(	) can be written for an 
isotropic material as follows: 
 

(1)

2 1 1
2

A 1 2 1
3

1 1 2

− −� �
� �= − −� �
� �− −� �

  , ( 2 )

1 1 1
A 1 1 1

1 1 1

� �
� �= � �
� �� �

 (8) 

 
L(1) (t)=G(t), L(2)(t)=K(t) 
 
Where, G(t) and K(t) are shear and bulk relaxation 
modulus and calculated using:  

( )

( )

m
t /

1

0

G t c e

K t K

ββ − τ

β =
= ⋅�

=
  (9) 

In these equations c
 are constant values and �
 are 
different relaxation times of the material. Moreover, the 
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bulk relaxation modulus was assumed to be constant. 
Finally, the linear constitutive equation, Eq. 3, can be 
rewritten as follows: 
 

( ) ( ) ( ) ( )

( ) ( ) ( )

M isotropic
( ) ( )

1

(1) (2)

t A L t t t

A G t A K t e t

α α

α=
σ = ⋅ ⋅ ε − θ� �� =� �

� �⋅ + ⋅ ⋅� �
     (10) 

 
Reference Strain: After filling the cavity with plastic 
melt, the packing pressure is applied to compensate for 
part shrinkage in the mold by adding molten material to 
the free space created in the cavity. This pressure can 
be applied until complete solidification of the material 
in the mold. To investigate packing pressure effects, the 
general constitutive equation 10, cannot be used, 
because the strain field in this equation was stated with 
respect to stress free state of the material and the 
additional material supply during packing stage was not 
considered in this equation. The reference strain 
concept was used by Santhanam to overcome this 
problem. Based on this concept, the local strain in 
constitutive equation must be expressed with respect to 
an initial strain at each time-step. This initial strain is 
specified for each material layer as it undergoes a liquid 
to solid transition and after solidification, the value of 
this parameter will be constant. In other words, its value 
does not change in solid layers while increasing in 
liquid layers. 
The following relation represents the modified form of 
constitutive equation, considering reference strain: 
 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

M isotropic
( ) ( )

r
1

(1) (2)

t A L t t t t

A G t A K t e t

α α

α=
� �σ = ⋅ ⋅ ε − θ +ε� � �

� �= ⋅ + ⋅ ⋅� �
 (11)  

 
e(t)=�(t)-�(t)-�r(t) 
 
where, �r indicates the value of initial strain which is 
time-dependent. In this equation, � was replaced by 
�+�r to change the reference with respect to which the 
constitutive equation is expressed. 
The strain of a melt, which is stationary and under the 
hydrostatic stress �=-pl and when changes in the 
specific volume is not infinitesimal, as is the case for 
many thermoplastics [12], is given by the following 
relation: 
 

{ }melt

1
ln (t) / (0) I

3
∈ = ν ν

�

 ,  [ ]TI 1 1 1=
�

 (12) 

 
where, v is the specific volume of the material. 
According to Santhanam’s formulation, the reference 
strain parameter, which is specified for each material 
layer at its solidification time, is only dependent on the 
melt pressure and calculated by: 

r melt s s

s s

s

(z) (P (z), T (z))

(P (z), T (z))1
ln I

3 (0, T (z))

∈ = − ∈
ν= −

ν
�  (13)             

Where, Ps and Ts indicate pressure and temperature at 
solidification time and are position-dependent. 
The packing pressure effects are investigated through 
following assumptions: 
 
* The material is constrained in planar directions (x 

and y). 
* The packing pressure may be time-dependent: 

�z(t)=-p(t) 
* The change in the material thickness will be zero 

before complete solidification and until cavity 
pressure drops to zero, p(t)= 0. 
 

0

0

l / 2
0 zl / 2l ( t ) ( z , t )d z−∆ = ∈�  (14) 

 
* The value of reference strain is constant for solid 

layers while increasing in liquid layers. The 
following relations represent the increment of this 
parameter in both phases: 

r r(z, t) I∆ε = ∆ε ⋅
�

, for liquid layers, 

r (z, t) 0∆ε = , for solid layers, (15) 
 
The increment of reference strain for different liquid 
layers is the same as each other. Finally, to specify the 
phase of the material, a liquid to solid transition 
criterion must be defined. The criterion proposed by 
Bushko and Stokes, is used here. Based on this 
criterion, the material is considered to be a liquid when 
its characteristic shear relaxation time is less than a 
critical relaxation time, �c. The characteristic shear 
relaxation time of a material at a given temperature is 
calculated by: 
 

( ) ( )
(1 )

(1 ) re f
r e l T

T
ττ =

Φ  (16) 

Where, at solidification temperature it can be written 
as: 

( )
(1 )
re f

c
s o lT

ττ =
Φ  (17) 

where, 
(1)
refτ  denotes the shear relaxation  time at a 

reference temperature, usually glass transition 
temperature, and Φ  is the so-called WLF shift 
function. By using this equation, the solidification 
temperature for an amorphous thermoplastic can be 
calculated. 
Compatibility Equations: The compatibility equations 
for nonzero strain components are as follows: 
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2 2

x y2 2(z, t) 0, (z, t) 0
z z

∂ ∂∈ = ∈ =
∂ ∂

 

 
Solving these equations results in  

x x yzK∈ = ∈ −  

y y xz K∈ = ∈ −  (18) 
 
where, xε  and yε  denote the planar strains values at 

mid-plane (z=0) and Ky and Kx are components of the 
curvature around y and x, respectively. 
 
Heat Transfer Equation: The one-dimensional 
equation of heat transfer is expressed in the following 
general form: 

( l )
l 0

( u )
u 0

T (z, t ) T (z, t )
c k

t z z

T
k h T T (t ) , z l / 2

z
T

k h T T (t ) , z l / 2
z

∂ ∂ ∂� �ρ ⋅ ⋅ = ⋅� �∂ ∂ ∂� �

∂	 
� �− ⋅ = − = −� �� �� �∂
� 
∂� �� �= − =� �� �∂� �

    (19) 

 
where �, c, k denote density, specific heat and thermal 
conductivity of the material, respectively. hl and hu are 
heat transfer coefficients of lower and upper surfaces 
and T(l) and T(u) are corresponding temperatures.  
 
Numerical Solution: The material is divided into N 
layers in the thickness direction, not necessarily of 
equal thickness. Then, both heat transfer and 
constitutive equations will be solved by numerical 
methods. 
The general form of one-dimensional heat transfer 
equation is shown as below: 
 

2

2

u c u
x k t

∂ ⋅ ρ ∂= ⋅
∂ ∂

 (20) 

 
To solve this equation the Crank-Nicolson method was 
used which its general form can be written as: 
 

( )

( )
( )

2

j 1 j 1 j 1
i 1 i i 1

j j j
i 1 i i 1

r k t / c x

r u 2 2r u r u

r u 2 2r u r u

+ + +
− +

− +

= ⋅ ∆ ⋅ρ ∆
− − − − − − − − − − − − − − − − − − − −

− ⋅ + + − ⋅

= ⋅ + − + ⋅

 (21) 

 
The numerical solution procedure for linear constitutive 
equation consists of two stages. In the first stage, a 
finite difference scheme is used to calculate the value of 
different parameters for each layer at one time-step and  
then  in  the  second  stage, a  finite  element  method  is  

implemented to determine the global variables at that 
time-step. Having performed the whole calculations at 
each time-step, the procedure has been continued for 
the next time-steps. In the following of this section, we 
will describe the summary of the numerical method, 
which has been used to find the solution. 
The material relaxation data are expressed in the 
following form: 
 

( ) ( , )m
( ) ( ,0 ) ( , ) t /

1
L t c c e

α α βα α α β − τ

β=
= + ⋅�  (22) 

 
where, c(	,
) and �(	,
) are material constants and are 
extracted from the master curve of the polymer. The 
parameter L(	)(t) in eq. 11 will be replaced by its 
equivalent from eq. 19 and then eq. 11 can be written as 
follows: 
 

( ) ( )

( )

M
( ) ( ,0 )

1

mM
( ) ( , ) ( , )

1 1

t A c e t

A c s t
α

α α

α =

α α β α β

α = β =

σ = ⋅ ⋅�

+ ⋅� �
   (23)     

 
where the vector s(	,
)(t)  is defined by: 
 

( ) ( )
( ) ( )

( , )( , ) t /

t
0 ( , )

s t e e t

t) (t
exp de t

α βα β − τ

α β

= ⋅

′ξ − ξ	 
 ′= − ⋅� � 
τ� �
   (24) 

 
while e(0) equals zero. To solve this equation a finite 
difference method is used which results in the following 
recurrence formula: 
 

j 1 j j j js P s Q e+ = ⋅ + ⋅ ∆      (25) 
 
Here, Pj and Qj are given by: 
 

j /
jP e−∆ξ τ=  ; 

j /

j
j

1 e
Q

/

− ∆ξ τ−=
∆ξ τ  

and from eq. 4, the increment of material time at jth 
time-step, 
�j, is written as: 
 

( )j j 1 j jT t+∆ξ =ξ −ξ =Φ ⋅∆   (26) 
 
Considering eqs. 23 and 25, the single-layer 
equilibrium equation can be written by the following 
relation: 

( )( )j j j j j r jj
k k g⋅∆ε =∆σ + ⋅ ∆θ + ∆ε +∆  (27) 
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Fig. 1: General Form of Simulation Algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Heat Transfer Solver Module 
 
Here, the local stiffness matrix kj (LSM) and the vector 

gj are expressed by: 
 

( )

mM
( ) ( ,0) ( , ) ( , )

j j
1 1

mM
( ) ( , ) ( , ) ( , )

j j j
1 1

k A {c c Q }

g A c 1 P s

α

α

α α α β α β

α= β=

α α β α β α β

α= β=

= + ⋅� �

∆ = ⋅ − ⋅� �
  (28) 

 

Having calculated the values of different parameters--
like stress and strain--for different layers at jth time- 
step, a finite element method is applied. In this FEM, 
the planar strains x∈  and y∈  from eq. 25 will be replaced 
by their equivalents from eq. 16 and then, this single 
layer equation is integrated through the thickness and 
the following relations are obtained: 
 

z rK x f u w v∆ =∆ +∆ − ∆σ +∆ε  
T

0 1 z 2 3 rl d d d w x∆ = ∆σ +∆ + ∆ε − ∆  (29) 
 
The global variables like cavity pressure, shrinkage and 
warpage are acquired by this equation. The relations for  
global stiffness matrix, K, planar strain vector, 
x, 
average force vector, 
f, vectors 
u, w and v and 
scalars d1, 
d2and d3 can be found in [2]. Finally, the 
thickness shrinkage, 
l0, is given by: 
 

N
i i

0 z
i 1

l z
=

∆ = ∆ ε ⋅ ∆�  (30) 

 
Simulation Algorithm: The general form of the 
simulation algorithm is shown in Fig. 1. This algorithm 
contains one input box, two sub-modules and one 
output box. The algorithms for sub-modules, Heat 
Transfer Solver and Stress and Strain Analyzer, are 
shown in Fig. 2 and 3, respectively. 
 
Case Study 
Sample Material: Polycarbonate (PC) was selected as 
a sample material to run the simulation code. Shear 
relaxation function of PC at Tg (155°C) is expressed by 
a two-term prony-series function [13] as follows:  
 
G(t)[Mpa]=781.075 exp(-t/0.1)+3.95  exp(-t/105)   (31) 
 
The bulk relaxation modulus is assumed to be constant 
with value of 3140 MPa and the characteristic shear 
relaxation time, at Tg , is calculated using eq. 30 as 
follows: 

( )
m

1
re f re l m

1

5

re f

G
T g  , p 0

G

7 8 1 .0 7 5 0 .1 3 .9 5 1 0
5 0 3 s e c .

7 8 1 .0 7 5 3 .9 5

β

α β

β

β =

β =

⋅ τ�
τ = τ = =

�

× + ×τ = =
+

  (32) 

 
To assess the solidification temperature of the material, 
Tsol, eq. 17 is used. The shift function, Φ , is computed 
by eq. 5 in which the reference temperature corresponds 
to Tg. Now one can obtain the solidification 
temperature from eqs. 5 and 17, 
 

( )

( )

1 g

2 g

ref
c

sol

C (T T )
log T

C (T T )

T

⋅ −	 

φ =� �+ −� �

�� 

τ� �τ =

� �φ� �
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2 ref c
sol g

1 ref c

C log( )
T T

C log( )
⋅ τ τ= +
− τ τ  (33) 

Assuming the critical relaxation time of 0.01 sec, Tsol 
will equal 179°C. The values for different process 
parameters are shown below: 
Ejection time, te,=10 sec. 
Initial melt temperature=290°C 
Mold wall temperature=80°C 
Packing pressure=250 bar 
Final temperature=20°C 
Part thickness=2 mm 
 
 

Parametric Results: Using input data given in the 
previous section, the process is simulated through 
which the effects of different process parameters such 
as critical relaxation time, melt temperature, mold 
temperature and packing pressure on shrinkage and 
residual stress will be studied. Figure 4 shows the 
variation of temperature distribution through thickness 
at different time-steps. The initial melt temperature is 
290°C, which decreases abruptly in the boundary 
layers. The whole material solidifies at 4.2 sec. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Stress and Strain Analyzer Module 
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Fig. 4: Temperature Distributions through Thickness in 

Different Time-steps 
 
Planar stresses, before and after ejection (BE and AE), 
are shown in Fig. 5a and 5b, respectively. Due to high 
temperature gradients, the variation of stress in side 
layers will be considerable, but stress is constant in the 
central region, which is in liquid phase. After complete 
solidification, the compressive stresses reduce rapidly 
due to reduction in the cavity pressure. At ejection time, 
the release of the material from planar constraint results 
in a sudden change in stress distribution, which can be 
observed in Fig. 5b. The final distribution consists of 
two side regions and a central region, which are termed 
as skin and core regions, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5a: Variation of Stress Distribution in Different 

Time-steps BE 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5b: Variation of Stress Distribution in Different 

Time-steps AE 

Figures 6a and 6b present the evolution of thickness 
strain for different layers before and after ejection, 
respectively. These strains were obtained relative to the 
reference strain for each layer. 
The reference strain distribution through thickness is 
shown in Fig. 7. As shown in the figure, the reference 
strain is increased in liquid layers before solidification, 
but its value is constant after solidification. 
Furthermore, the reference strain curve will have a 
constant shape after complete solidification time (CST), 
as shown in the Fig. 7 at time-step t = 4.2 sec. Also, all 
liquid layers have the same reference strain value at any 
instant. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6a: Variation of Thickness Strain distribution in 

Different Time-steps BE 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6b: Variation of Thickness Strain Distribution in 

Different time-steps AE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Variation of Reference Strain Parameter 

through Thickness with Time 
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Effect of critical relaxation time: Higher critical 
relaxation times (CRT) result in lower solidification 
temperatures, as represented by eq. 32, and as a result, 
the core width decreases by increasing CRT. 
Decreasing core width corresponds to adding more 
material to the cavity during packing stage and leads to 
less shrinkage. Figure 8 shows the variations of 
shrinkage respect to logarithm of CRT. As shown in the 
figure, the effect of CRT on thickness shrinkage is more 
than its effect on planar shrinkage. 
The effect of CRT on residual stress distribution is 
shown in Fig. 9. This figure presents that higher CRTs 
result in lower residual stresses. In fact, the complete 
solidification time increases with CRT and also, 
pressure drop occurs more slowly due to lower 
relaxation times. Moreover, figure 9 presents that the 
core width decreases by increasing CRT. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8: Variation of Shrinkage Versus Logarithm of 

CRT 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9: Residual Stress Distribution Curves for Different 

CRTs 
 
Effect of Initial Melt Temperature: Figures 10 and 11 
present that the initial melt temperature has a very small 
effect on shrinkage and residual stresses, respectively. 
As a matter of fact, the core width is partially 
influenced   by   this   parameter   and consequently, 
there   is   a   very   slight   change   in shrinkage. 
Furthermore,   the   initial   melt   temperature   has 
small effect on the rate of pressure drop and 
consequently on residual stress distribution as shown in 
Fig. 11. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10: Variation of Shrinkage Versus Initial Melt 

Temperature 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11: Residual Stress Distribution Curves for 

Different Initial Melt Temperatures 
 
Effect of Mold Temperature: The effects of mold 
temperature on shrinkage and residual stresses are 
represented by Fig. 12 and 13, respectively. Higher 
mold temperatures result in higher thickness shrinkage, 
as shown in Fig. 12. In fact, increasing mold 
temperature leads to higher core width and therefore, 
more thickness shrinkage, while there is a very slight 
change in planar shrinkage due to mold constraint. 
Moreover, when mold temperature exceeds 125°C, 
layers in rubbery-solid state exist at ejection time, 
which results in a sudden change in both shrinkages. 
Figure 13 also shows that an abrupt change occurs in 
the distribution of residual stresses above 125°C. At 
this condition, the material is ejected while rubbery 
solid layers with low relaxation times exist and 
consequently, high stresses are produced. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12: Variation of Shrinkage Versus Mold 

Temperature 
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Fig. 13: Residual Stress Distribution Curves for 

Different Mold Temperatures 
 
Effect of Pack Pressure: Figure 14 shows the variation 
of shrinkage with respect to packing pressure. Packing 
pressure changes both shrinkages in large scale, as 
shown in the figure. More material will be added to the 
cavity with increasing packing pressure and as a result 
material shrinks less. 
The effect of packing pressure on residual stress 
distribution is shown in Fig. 15. This figure presents 
that higher packing pressures result in higher residual 
stresses. Residual stress distribution has no change 
when cavity pressure drops to zero after complete glass 
transition time (CGT = 5.8 sec), because of the fact that 
the rates of pressure drop in these cases are the same 
until CGT, as shown in Fig. 16. In this figure, vertical 
line corresponds to CGT. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14: Variation of Shrinkage Versus Packing 

Pressure 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15: Residual Stress Distribution curves for 

Different Packing Pressures 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16: Variation of Cavity Pressure Versus Time for 

Different Pack Pressures 
 
Effect of Gate Freezing: The effects of packing 
pressure is investigated on condition that the gate 
freezes before complete solidification time (CST) and 
gate solidification time is assumed to be 3 seconds (tfre 
= 3 sec.). 
When gate freezing occurs before CST, the molten 
material cannot be added to compensate for shrinkage. 
In this case, shrinkage will increase compared to a fully 
packed material. Figure 17 shows the variation of 
shrinkage respect to packing pressure in a partially 
packed material. 
The distributions of residual stresses for different 
packing pressures, while gate freezing occurs, are 
shown in Fig. 18. The residual stresses increase with 
packing pressure until pressure drops to zero after CGT, 
which is the same as fully packed condition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 17: Variation of Shrinkage Versus Packing 

Pressure: Gate Freezing Occurred at tfre=3 sec 
 
Procedure of ANOVA 
Designing the Experiments: The foregoing results 
have been obtained through changing one factor while 
other factors are constant. In this research, a 
DOE/Taguchi approach is used to study the effects of 
multiple variables simultaneously. Five factors 
including critical relaxation time, melt temperature, 
mold temperature, pack pressure and gate freezing time 
will be investigated and their percentage of influence 
will be specified through ANOVA. Based on known  
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Fig. 18: Residual Stress Distribution curves for 

Different Packing Pressures: Gate Freezing 
Occurred at tfre=3 sec 

 
variation of shrinkage with respect to different factors, 
which usually seems nonlinear from resultant curves, 
each factor is considered to have three levels. So there 
are five three-level factors and a L-18 orthogonal array 
must be selected to run the experiments. Table 1 shows 
the factors and their levels and the layout for the 
selected array is presented in Table 2. 
 
Table 1: Influential Factors on Shrinkage and Their 

Selected Values 
Factors Level 1 Level 2 Level 3 
A:log CRT -5 -2 0 
B:Melt Temp(°C) 220 290 360 
C:Mold Temp(°C) 60 85 110 
D:Pack (bar) 200 450 700 
E:GFT 60% 80% 100%= CST* 

*CST stands for complete solidification time 
 
Table 2: A Standard L-18 (18 Experiment Runs) Array 

for Five Three-level Factors 
 1 2 3 4 5 6 7 8 
Trial 1 0 1 1 1 1 1 0 0 
Trial 2 0 1 2 2 2 2 0 0 
Trial 3 0 1 3 3 3 3 0 0 
Trial 4 0 2 1 1 2 2 0 0 
Trial 5 0 2 2 2 3 3 0 0 
Trial 6 0 2 3 3 1 1 0 0 
Trial 7 0 3 1 2 1 3 0 0 
Trial 8 0 3 2 3 2 1 0 0 
Trial 9 0 3 3 1 3 2 0 0 
Trial 10 0 1 1 3 3 2 0 0 
Trial 11 0 1 2 1 1 3 0 0 
Trial 12 0 1 3 2 2 1 0 0 
Trial 13 0 2 1 2 3 1 0 0 
Trial 14 0 2 2 3 1 2 0 0 
Trial 15 0 2 3 1 2 3 0 0 
Trial 16 0 3 1 3 2 3 0 0 
Trial 17 0 3 2 1 3 1 0 0 
Trial 18 0 3 3 2 1 2 0 0 
 
The experiments are carried out using the simulation 
code and the planar and thickness shrinkages obtained  
from each experiment are shown in Table 3. 

Table 3: The Values of Planar and Thickness 
Shrinkages (P. Sh and T. Sh) in all 18 Trials 

Trial No. P. Sh (%) T.Sh(%) 
1 0.826 0.884  
2 0.699 0.671  
3 0.474 0.489  
4 0.598 0.328  
5 0.395 0.175  
6 0.845 1.198  
7 0.731 0.445  
8 0.664 0.684  
9 0.431 0.173  
10 0.51 0.542  
11 0.806 0.601  
12 0.781 1.04  
13 0.461 0.365  
14 0.808 0.798  
15 0.572 0.21  
16 0.553 0.41  
17 0.491 0.327  
18 0.788 0.644  
 
Analyzing the Results: At first, considering planar 
shrinkage   as   a   target   function, the results are 
analyzed. The   main   effects   table,   which presents 
the   mean   value   of   shrinkage   for   each factor at 
all   levels,   is   shown  in   Table   4. Having 
performed  the  analysis of means (ANOM), the 
procedure of ANOVA is used to calculate the 
percentage influence of each factor to the target 
function, i.e.   planar  shrinkage. From results of 
ANOVA shown in Table 5 as was expected the packing 
pressure is the most influential factor (86.292%) while 
the mold temperature has the least influence (0.23%) on 
planar shrinkage. 
 
Table 4: The Mean Value of Planar Shrinkage for Each 

Factor at All Levels  
Factors Level 1 Level 2 Level 3 
A:CRT 0.682 0.613 0.609 
B:Melt Temp. 0.613 0.643 0.648 
C:Mold Temp. 0.62 0.642 0.642 
D:Pack 0.8 0.644 0.46 
E:GFT 0.678 0.638 0.588 
 
Predicted   optimum   combination   of    factors is 
shown in Table 6. It   also   presents   each   factor 
contribution   to   the     target    function. The   
predicted   result   at   optimum    combination  and 
confidence   interval    (CI)    are   calculated   from   
the  following relations: 
 

opt i j kY T (A T) (B T) (C T)= + − + − + −  (33a) 
 
 

( )2 e

e

F 1 , n V
C . I .

N
×

=   (33b) 
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Table 5: ANOVA Table for Planar Shrinkage 
Factors DOF Sum of squares  Variance F- ratio Pure sum Percent P% 
A:CRT 2 0.02 0.01 21.058 0.019 4.814 
B:Melt Temp 2 0.004 0.002 4.576 0.003 0.858 
C:Mold Temp 2 0.001 0 1.958 0 0.23 
C:Pack 2 0.348 0.174 360.522 0.347 86.292 
E:GFT 2 0.024 0.012 25.013 0.023 5.763 
Error Term 7 0.002 0   2.043 
Total 7 0.402    100% 
 
Table 6: Optimum Condition for Planar Shrinkage
Factors Value Level Contribution
A:CRT 0 3 -0.026 
B:Melt Temp 220 1 -0.023 
C:Mold Temp 60 1 -0.015 
D:Pack 700 3 -0.175 
E:GFT 100% 3 -0.047 
Total contribution of factors -0.286 
Grand average of performance 0.635 
Expected result at optimum 0.349 
 

In the first equation, T  is the grand average of 
performance and 

iX denotes the average effect of factor 
X at its optimum level. In the second equation, F(1, fe) 
is the F value from the F Table [14] for a given 
confidence level and Ve denotes the variance of the 
error term and Ne is calculated by: 
 
Ne =total DOFs / (1 + DOF of all factors Included in  
the study) 
 
Now, the predicted optimum value and confidence 
interval for 90% confidence level are obtained from eq. 
33, 
OCF = [ A3 B1 C1 D3 E3] 
Yopt = 0.349    
C.I. = 0.026 
Therefore, the expected result at optimum condition 
must be in the following range: 
 
0.323�ERatOpt�0.375 
               
Furthermore, Each factor contribution to the Grand 
Average of Performance (GAP) is represented in the 
form of a bar diagram in Fig. 19. It shows that the 
average of performance is improved about 50% by 
equating all factors to their optimum values. 
The same procedure is used to analyze the results for 
thickness shrinkage as a target function. The results of 
ANOM and ANOVA are presented in Table 7 and 8, 
respectively. 
 
 

 
 
 
 
 
 
 
 
 
Fig. 19: Bar Diagram of Each Factor Contribution to 

the GAP 
 
From Table 8, the packing pressure is again the most 
influential (35.214%) while the melt temperature has 
the least influence (2.742%) on thickness shrinkage. 
 
Table 7: The Mean Value of Thickness Shrinkage for 

Each Factor at All Levels 
Factors Level 1 Level 2 Level 3 
A:CRT 0.704 0.512 0.447 
B:Melt Temp. 0.495 0.542 0.625 
C:Mold Temp. 0.42 0.556 0.686 
D:Pack 0.761 0.557 0.345 
E:GFT 0.749 0.526 0.388 
 
Table 9 shows the predicted Optimum Combinations of 
Factors (OCF), each factor contribution to the target 
function and the predicted value at optimum condition. 
From Table 9 and Table 6 it can be observed that both 
Optimum combinations are the same as each other. The 
predicted optimum value and confidence interval for 
90% confidence level are calculated by eq. 33: 
OCF = [ A3 B1 C1 D3 E3] 
Yopt = -0.125    
C.I. = 0.11 
And the permissible limit for the result of optimum 
experiment is: 
 
-0.235�ERatOpt�-0.015 
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Table 8: ANOVA Table for Planar Shrinkage 
Percent P% Pure Sum  F-ratio  Variance  Sum of Squares DOF  Factors 

14.025 
2.742 
13.89 
35.214 
26.799 

0.202 
0.039 
0.2 
0.508 
0.386 

17.27 
4.18 
17.113 
41.849 
32.088 

0.107 
0.025 
0.106 
0.26 
0.199 

0.214 
0.051 
0.212 
0.52 
0.399 

2 
2 
2 
2 
2 

A: C.R.T 
B: Melt Temp 
C: Mold Temp 
D: Pack 
E: GFT 

7.33   0.006 0.042 7 Error Term 

100 % Total:                      17           1.442 

 
Table 9:Optimum Condition for Thickness Shrinkage 
Factors Value Level Contribution 
A:CRT 0 3 -0.108 
B:Melt Temp 220 1 -0.159 
C:Mold Temp 60 1 -0.135 
D:Pack 700 3 -0.21 
E:GFT 100% 3 -0.167 
Total contribution of factors -0.68 
Grand average of performance 0.554 
Expected result at optimum -0.125 
 
Confirming the Predicted Results: Having performed 
the analysis of results, the predicted optimum result 
must be verified through carrying out experiments at 
optimum combination of factors. If the result of 
optimum experiment is within the permissible limit the 
predicted result will be verified and otherwise, the DOE 
experiments must be redesigned and rerun considering 
interactions between factors. 
Running the experiments at optimum combination for 
both shrinkages results in 
Planar Shrinkage (%)  = 0.369 
Thickness Shrinkage (%) = -0.056 
Both values are within the permissible limit and 
therefore, the predicted results for both shrinkages are 
confirmed. Here, confirmation means that, for 90% CL, 
there is no need to repeat the procedure of DOE with 
counting for interactions between factors. In other 
words, if an experiment design considering factor 
interactions is performed, it can be predicted that these 
interactions have such a small effect--from test of 
significance for 90% CL--that can be pooled from 
ANOVA Table. 
 

CONCLUSION 
 
A simple flat model has been used to investigate the 
effects of different process conditions on shrinkage and 
residual stresses. Material was assumed to be 
thermorheologically simple with WLF shift function. 
To study the effects of packing pressure, the reference 
strain   concept  was  used  and  using  this  concept, the  
linear constitutive equation was expressed with respect  

to initial cavity dimensions. In this regard, a phase 
transition criterion was used to specify the phase of the 
material at any instant. Then, heat transfer and 
constitutive equations has been solved by numerical 
methods and based on these solutions a simulation code 
has been developed. 
A parametric study has been performed through 
running the simulation code for a sample polymer. The 
results showed that the packing pressure highly 
influences planar and thickness shrinkages, while the 
effect of initial melt temperature is very small. Mold 
temperature has very small effect on planar shrinkage, 
while its effect on thickness shrinkage is considerable. 
Moreover, Gate freezing before complete solidification 
increases both shrinkages in constant packing pressures.     
The foregoing simulation results have been obtained by 
changing one factor at a time. To study the effects of 
different factors simultaneously, a Taguchi approach 
was implemented. Based on this approach, different 
tests (simulations) have been carried out using a 
standard L-18 orthogonal array. The ANOVA tables 
presented that the order of significance, changing 
factors simultaneously, is the same as what was 
acquired from simulation, changing one factor at a time. 
Finally, the predicted results were confirmed. This 
confirmation means that the experiments need not be 
repeated with considering interactions between factors. 
In fact, if experiments are rerun counting for 
interactions between factors, the test of significance 
will result in pooling these interactions from ANOVA 
Table. 
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