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Abstract: In this study we investigate the nonlinear dynamics of the traditional cobweb model with two 
types of heterogeneous producers who are risk averse and seek to learn the distribution of asset prices, in 
terms of the sample mean and variance of historical prices, using the Arithmetic Learning Processes 
(ALP) over different window lengths. We show that heterogeneity has a double edged effect on the 
dynamics in the sense that heterogeneous learning can stabilize an otherwise unstable dynamics in some 
cases and destablize an otherwise stable dynamics in other cases as well. When the steady state becomes 
unstable, the model displays complicated dynamics through a variety of types of bifurcations.  
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INTRODUCTION 

 
 Consider the well-known cobweb model: 

e
t tp aq b= +  for the supply and pt = αqt+β for the demand, 

where qt and pt are quantities and prices, respectively, at 
period t, e

tp  is the price expected at time t based on the 

information at t-1 and a,b,β(>0) and α<0 are constants. It 
is well known that, under the naive expectation scheme 

e
t t 1p p −= , the price either converges to the optimal market 

equilibrium (when |α/a|<1) or explodes (when |α/a|>1). 
When the producers are homogeneous, it has been shown 
that non-linearities in the supply or demand curves may 
lead the cobweb model to exhibit both stable periodic and 
chaotic behavior (see for example, Artsein[1], Jensen and 
Urban[19], Chiarella[7], Holmes and Manning[17], 
Hommes[18], Puu[21] and Day[13]). These authors consider a 
variety of backward looking mechanisms for the formation 
of the expectations etp  ranging across the traditional naive 

expectation e
t t 1p p −= , learning expectations (e.g., learning 

by arithmetic mean et t 1 t Lp (p p ) L− −= + + /⋯ ) and adaptive 

learning expectation e e e
t t 1 t 1 t 1p p w(p p )− − −= + −  with 0≤w≤1.  

 With risk averse producers, the traditional linear 
cobweb model becomes nonlinear (e.g., Boussard and 
Gerard[3], Burton[6] and Boussard[4]). By assuming that the 
actual price pt is uncertain so that etp  has mean tp  and 

variance tv , Boussard[4] shows that, under the simplest 

learning scheme t p̂p =  and 2
t t 1 ˆ(p p)v −= −  with constant 

p̂ , the nonlinear model may result in the market 

generating chaotic price series and market failure (the 
source of risk is the risk itself). Consequently, 
Boussard’s study “casts a new light on expectations. 
Not only are expectations pertaining to mean values 
important for market outcomes. Those pertaining to 
variability can be just as crucial". 
 Among various learning schemes, the properties of 
recursive learning processes under homogeneous 
expectations have been studied extensively (e.g., Evans 
and Ramey[15], Balasko and Royer[2], Evans and 
Honkapohja[14]). Under the assumption of bounded 
rationality, producers are somewhat uncertain about the 
dynamics of the economic system in which they are to 
play out their roles, so they need to engage in some 
learning scheme. Apart from Boussard[4], a great deal of 
the literature on learning has been devoted to schemes 
for the mean, but very little to schemes for the variance. 
Chiarella and He[7, 9] extend Boussard’s framework in a 
way that takes account of the risk aversion of producers 
and allows them to learn about the distribution of the 
unknown price over the next period. By assuming that 
producers’ subjective estimates of mean and variance 
follow the Arithmetic Learning Process (ALP): 

L1
t it L i 1

pp −=
= ,∑

L 21
t t i tL i 1

[p ]pv −=
= −∑  with some integer 

L≥1, Chiarella and He[7, 9] show that the resulting cobweb 
dynamics form a complicated nonlinear expectations 
feedback structure whose dimensionality depends upon 
the length of the window of past prices (the lag length) 
used to estimate the moments of the price distributions. It 
is found that an increase of the window length L can 



Am. J. Appl. Sci., 2 (13): 45-56, 2005 
 

46 

enlarge the parameter region (in terms of |α/a) of the local 
stability of the steady state. In addition, through a detailed 
normal form and bifurcation analysis for window length of 
2, it is revealed that, at the crossover from local stability to 
instability, the dynamics exhibit resonance behavior which 
is indicative of quite complicated dynamical behavior and 
even chaos (for the model with constant elasticity supply 
and demand functions).  
 Given that it is more realistic to assume that the 
producers are heterogeneous, instead of homogeneous, 
in forming their expectations, this study extends the 
study in Boussard[4] and Chiarella and He[8, 9] and 
considers a simplest case of heterogeneous producers by 
assuming that there are two types of heterogeneous 
producers undertaking bounded rationality learning. The 
aim of this study is twofold. To incorporate risk aversion 
of the two types of heterogeneous producers into the 
traditional linear cobweb model and to analyze the effect 
of the heterogeneous arithmetic learning process (with 
different window length) on the dynamics of the model.  
 The study is organized as follows. A general cobweb 
model with heterogeneous producers is established in 
Section 2. The heterogeneous arithmetic learning 
processes is introduced and the existence of the steady-
state is then discussed in Section 2. In Sections 3 and 4, the 
dynamical behavior of the heterogeneous model, including 
stability and bifurcation analysis, is analyzed. In a 
companion paper Chiarella et. al.[12] consider the 
alternative heterogeneous geometric decay learning 
scheme, which is also widely studied in the literature.  
 
The cobweb model with heterogeneous producers: 
This section establishes a cobweb model when 
producers are heterogeneous in their risk and 
expectation formulation of both the mean and variance. 
In the case of linear supply and demand functions, the 
model may be written as Eq. 1 and 2:  
 

{ e
i t i i t iSupply p a q b (i 1 2), ,: = + , = , ;  (1) 

 
{ t tDemand p q ( 0): = α + β α < ,  (2) 

 
where qt corresponds to the aggregate supply, qi,t and 

e
i tp ,  are, respectively, the quantity and price expected of 

producer i at time t based on the information set at t-1 and 
pt is the price and ai, bi, β(>0) and α<0 are constants. Our 
approach to the formation of expectations will be 
somewhat different in that we assume that the actual price 
pt is uncertain so that the heterogeneous producers treat 

e
i tp ,  as a random variable drawn from a normal distribution 

whose mean and variance they are seeking to learn. It 

would of course be preferable (and more in keeping with 
models of asset price dynamics in continuous time 
finance) to treate

i tp ,  as log-normally distributed. 

However this would then move us out of the mean-
variance framework so we leave an analysis of this 
approach to future research.  
 
The market clearing price and the heterogeneous 
model: Let i tp ,  and i tv ,  be, respectively, subjective mean 

and variance of price ei tp ,  of producer i formed at time t 

based on the information set at t-1 and qt be quantity at 
time t. With constant absolute risk aversion Ai, the 
marginal revenue certainty equivalent of producer i is 
With constant absolute risk aversion Ai we assume the 
certainty equivalent of the receipt r = pq is 

t

2
i tt t i tiR(q ) q A qp v ,,= −  Then maximisation of this function 

with respect to qt leads to the marginal revenue certainty 

equivalent 
t

i ti tt i t

q

R
2A qp p v ,,

∂= = −
∂

ɶ  We recall that this 

objective function is consistent with producers having 
the utility of receipts function iA r

iU (r) e−= −  Eq. 3: 

 
i ti i ti t i t 2A qp p v , ,, ,= − .ɶ  (3) 

 
 Assume a linear marginal cost, as in (1), so that the 
supply equation, under marginal revenue certainty 
equivalent becomes Eq. 4: 
 

i i t ii t a q bp .,, = +ɶ  (4) 

 
 It follows from (3) and (4) that: 
 

i ti t i i i ti taq b 2A qp v ,, ,,+ = −  

 
 and hence the supply for producer i is given by Eq. 5: 
 

ii t
i t

i ti i

bp
q

a 2A v
.,

,
,

−
=

+
 (5) 

 
 Denote by ni the proportion of type i producers in 
general, the proportion ni is a function of time t that is, ni,t, 
which could be measured by a certain fitness function and 
discrete choice probability, as in Brock and Hommes[5]. 
Because of the complexity of the dynamics, we consider 
only the case with fixed propitiation and leave the 
changing proportions problem to future work. then it 

follows from (1), (5) and t i i tq n q ,=∑  that the market 

clearing price is determined by Eq. 6: 



Am. J. Appl. Sci., 2 (13): 45-56, 2005 
 

47 

ii t
t i

i i ti i

bp
p n

a 2A v
,

,

−
= β + α .

+∑  (6) 

 
The homogeneous cobweb model: As a special case of 
the heterogeneous model (6), assume that producers are 
homogeneous, that is, ai = a, bi = b, i t tp p, = , Ai = A, 

i t tvv , = , then the corresponding homogeneous model has 

the form Eq. 7: 
 

t
t

t

bp
p

a 2Av

−
= β + α ,

+
 (7) 

 
which has been considered in Chiarella and He[8].  
 
A cobweb model with two types of heterogeneous 
producers following ALP: In the following discussion, 
the simplest heterogeneous model when there are two 
types of producers is considered. Let n1 = (1+w)/2 and n2 = 
(1-w)/2 with -1≤w≤1. Then (6) has the form Eq. 8: 
 

1 21 t 2 t
t

1 t 2 t1 1 2 2

b bp p
p (1 w) (1 w)

2 a 2A 2 a 2Av v
, ,

, ,

− −α α= β + + + − .
+ +

 (8) 

 The model (8) is incomplete unless producers’ 
expectations are specified. In this study, the Arithmetic 
Learning Processes (ALP) is assumed. More precisely, 
assume that producers form their subjective estimates 
of the mean and variance from the sample mean and 
variance, by considering past market clearing prices 
over a window of length Li, that is Eq. 9: 
 

i

i

t 1 t 2 t Li t
i

L
2

i t t ji t
j 1i

1
[p p p ]p

L

1
[ p ]pv

L

− − −,

, −,
=

 = + + + ,


 = − ,


∑

⋯

 (9) 

 
where, i = 1,2 and L1, L2 are integers.  
 
Existence and uniqueness of the steady state: Denote 
by p* the state steady. Then, under the ALP, it is found 
from (6) and the relation i i ii

p n (p b ) a∗ ∗= β + α − /∑  that 

p* is given by: 
 

i

i

i

b
i a

1
i a

n
p 0 since 0

1 n

∗ β − α
= > , α < .

− α

∑
∑

 

 
 In particular, for the two-type-producer model (8), 
the steady-state p* is given by Eq. 10: 
 

1 2

1 2

1 2

b b
2 a a

1 1
2 a a

[(1 w ) (1 w ) ]
p

1 [(1 w) (1 w ) ]

α
∗

α

β − + + −
= .

− + + −
 (10) 

 The following sections study the dynamics of the 
two-type-producer model (8) when producers follow the 
arithmetic learning process by using different window 
lengths Li. Assume L1≤L2 and denote L = max {L1, L2} = 
L2. Because of the dependence of the subjective mean tp  

and variance tv  on price lagged L periods, equation (8) 
is a difference equation of order L (see system (A.1) in 
Appendix A.1). The local stability of the unique steady 
state pt = p* is determined by the eigenvalues of the 
corresponding characteristic equation (equation (A.2) in 
Appendix A.1), which is difficult to analyze in general. 
We therefore focus first on the case when L1 = L2 = L 
in Section 3 and then some special cases when L1 ≠ L2, 
such as, L1, L2 = 1,2,3,4 in Section 4.  
 
 Set: 
 

1 2
1 1 2 2

1 1
(1 w ) (1 w )

2 a L 2 a L

α αγ = − + , γ = − − ,  

 
 and Eq. 11: 
 

1 2
1 2

(1 w) (1 w)
2a 2a

α αβ = − + , β = − − .  (11) 

 
 Then γ1 = β1/L1>0 and γ2 = β2/L2>0. From the 
following discussions, we can see that the local stability of 
the steady state depends on the parameters, including those 
from supply and demand functions a1, a2, a, the 
proportional difference of the two types of producers w 
and the window lengths L1 and L2 used by the 
heterogeneous producers. Our discussion here focuses on 
two different aspects. On the one hand, for a fixed window 
length combination of (L1, L2), we consider how the 
demand parameter α and the proportional difference w of 
producers affect the local stability of the steady state and 
bifurcation. On the other hand, for a set of fixed 
parameters, we examine how these results on the local 
stability and bifurcation are affected by different 
combination of the window lengths. Regarding the first 
aspect, it is found that both the local stability region and 
bifurcation boundary are easy to construct geometrically 
by using the parameters β1 and β2, instead of w and α. The 
one-one relation (11) between (w,α) and (β1,β2) makes it 
possible to transform the results between the different sets 
of parameters and in addition, to preserve the geometric 
relation of the local stability regions. Note that the 
determinant of the Jacobian of the transformation (11) 
does not change the sign, implying the preservation of the 
transformation. In the following discussion, because of the 
geometric advantage just discussed, the results are 
formulated in terms of (β1,β2), although some of the 
stability regions are plotted using (w,α) as well.  
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Dynamics of the homogeneous ALP: In this section, we 
consider the case when both types of producer use the 
same window length, that is L1 = L2 = L, then a relatively 
complete result on the local stability region of the steady 
state, the types of bifurcation and stability boundary is 
obtained in Proposition 1 for general lag length L.  
 
Proposition 1. For the nonlinear system (8), assume 
producers follow ALP and L1 = L2 = L. Then: 
 
• the characteristic equation of the unique steady 

state p* is given by Eq. 12: 
 

L L 11 2( ) [ 1] 0
L

−β + βΓ λ ≡ λ + λ + + λ + = .⋯  (12) 

 
• p* is locally asymptotically stable (LAS) if Eq. 13: 
 

1 2
1 2

1 w 1 w
0 ( ) L i e 0 L

2 a a

α + −≤ − + < , . ., ≤ β + β < .  (13) 

 
• the stability boundary β1+β2 = L defines a 1: (L+1) 

resonance bifurcation. When L = 2 and 3, for fixed 
a1 = 0.8<a2 = 1, the stability regions and resonance 
bifurcation boundaries are plotted in terms of 
parameters (α,w) in Fig 2. In order to see the 
bifurcation features, numerical simulations are 
conducted to analyse the dynamics of the nonlinear 
system (8) for the cases L = 2,3,4 and 10 

 
Proof. See Appendix A.3: The local stability region and 
the resonance bifurcation boundary are plotted in Fig. 1 in 
the (β1, β2) parameter space for general lag length L. In 
particular, there are two special cases of interest. When a1 
= a2, the local stability condition and the bifurcation 
boundary are independent of w, as expected. When a1 ≠ a2, 
the local stability region for α becomes (i) α∈(-La1, 0] for 
w = 1; and (ii) α∈(-La2, 0] for w = -1. In other word, the 
local stability depends more on the ratio a1/a2 and less on 
the population distribution w. 
 Assume a1 ≠ a2for L = 2the bifurcation boundary 
β1+β2 = 2 becomes (1+w)/a1+(1-w)/a2 = -4/α, which 
defines the 1:3 resonance bifurcation boundary w as a 
function of α, namely Eq. 14: 
 

1 2 1 2

1 2 1 2

4a a a a
w W( )

(a a ) a a

+= + ≡ α .
α − −

 (14) 

 
 Note that α<0 and, for a1/a2<(>)1,W(α) is an 
increasing (decreasing) function of α and hence, as w 
increases, the local stability region for α becomes 
smaller (larger). For general lag length L, the analysis 
in Appendix A.3 leads to the following Corollary.  

 Corollary 2. For the nonlinear system (8), assume 
producers follow ALP and L1 = L2 = L. Then, in terms 
of the parameters α and w, an increase in L stabilizes 
the otherwise unstable steady state.  
 The above theoretical analysis of the local stability 
and bifurcation is verified by numerical analysis on the 
nonlinear system (8). Consider a special case when a1 = a2 
= 1. In this case, the steady state is LAS for α∈(-2, 0] for 
any w∈[-1,1] and α = -2 leads to a 1:3 resonance 
bifurcation. Bifurcation diagrams for the nonlinear system 
(8) are plotted in Fig. 3 in terms of the parameter α<0 with 
different initial values. It is found that, when the initial 
values are close to the steady state (within 1% interval of 
the steady state), the bifurcation value αo is close to the 
theoretical bifurcation value αo = -2, as indicated in the 
upper panel in Fig. 3. When the initial values are not close 
to the steady state (within 400% interval of the steady 
state), the bifurcation value αo ≈-1.9 moves away from the 
theoretical bifurcation value αo = -2, as indicated in the 
lower panel in Fig. 3. In both cases, the nonlinear system 
(8) displays a simple type of bifurcation, which is a 3-
cycle as indicated by the phase plot in Fig. 4 and the time 
series plot in Fig. 5, over a wide range of the parameter α.  
 In order to understand the nature of the resonance 
bifurcation, let L = 2, in which case the instability of the 
steady state leads to a 1:3 resonance bifurcation. Consider 
the case as indicated in the lower panel in Fig. 3 and let β 
= 11, a1 = a2 = 1,A = 0.005, w = 0,b1 = b2 = 0. For α = -1.9 
near the bifurcation value αo, a phase plot (in the space of 
(xt-1,xt) for different initial values is plotted in Fig. 4. In 
this case, a strong 1:3 periodic resonance bifurcation leads 
to two sets of period three cycles P(p1,p2,p3) and S(s1,s2,s3), 
having the following behavior. When the initial values are 
close to the steady state, the solutions converge to the 
steady state p* and both P and S are unstable. When the 
initial values are not close to the steady state p*, it 
becomes unstable and solutions converge to one of the two 
sets of the period three cycles, either P or S, depending on 
the initial values. The dynamics of the nonlinear system 
(8) are very similar to those found in Chiarella and He[9, 10].  
 For L1 = L2 = 3,4, instability of the steady state 
leads to 1:4 and 1:5 periodic resonance bifurcations, 
respectively and similar dynamics along the bifurcation 
boundary are also found. To illustrate the periodicity of 
different resonance bifurcation, time series for L = 2,5 
and 10 are plotted in Fig. 5. Similar outcomes (not 
reported here) are also found when a1 ≠ a2.  
 
Dynamics of the Heterogeneous ALP: We now consider 
the case where each producer uses a different window 
length and let L1<L2 = L. Unlike the case when L1<L2 = L, 
the local stability regions of the steady state and 
bifurcation boundaries for different combination of lag 
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lengths have less clear-cut features and become very 
complicated and difficult to analyse in general. To be able 
to see how the window lengths of the heterogeneous 
producers affect the stability of the steady state and 
bifurcation, a combination of analytical analysis and 
numerical simulation is used in the following discussion. 
Analytical results for L = max {L1,L2}≤4 are summarized 
in Proposition 3, followed by a comparison of the local 
stability regions for various lag lengths. Some numerical 
simulations of various types of bifurcation are employed to 
demonstrate the complex of the heterogeneous ALP.  
 
Local stability and bifurcation analysis: For 
L1<L2,L1,L2 = 1,2,3,4, the local stability of the state steady 
and types of bifurcation note that a saddle-node 
bifurcation occurs when there is at least one of the 
eigenvalue 

oi
1λ =  among all the eigenvalues satisfying 

|λi|≤1; a flip bifurcation occurs when there is at least 
one of the eigenvalue

oi
1λ = −  among all the eigenvalues 

satisfying |λi|≤1; a Neimark-Hopf bifurcation occurs 
when there exists a pair of eigenvalues λ = e2πθi among 
all the eigenvalues satisfying |λi|≤1 are analysed in 
Appendix A.4 and the results are summarised in the 
following Proposition 3. 
 
Proposition 3: For the nonlinear system (8), assume 
the two types of the heterogeneous producers, with 
constant proportion difference w follow ALP with 
L1<L2,L1,L2 = 1,2,3,4: 
 
• For (L1, L2)= (1,2), the steady state x* is LAS for: 
 

1 2 12 1 2 1 2( ) D {( ) 0 1 0 2}β ,β ∈ ≡ β ,β ; ≤ β < , ≤ β < .  
 

In addition, a flip bifurcation occurs along the 
boundary β1 = 1 and a Neimark-Hopf bifurcation 
occurs along the boundary β2 = 2 with two 
eigenvalues λ1,2 =e±(2πθ)I, ρ ≡ 2 cos(2πθ)∈[-2, -1] 

• For (L1, L2) = (1,3), the steady state x* is LAS for”: 
 

1 2 13 1 2 1 2 1 2( ) D {( ) 0 3 1}β ,β ∈ ≡ β ,β ; ≤ β ,β ,β + β / < .  
 

In addition, a flip bifurcation occurs along the 
boundary β1+β2/3 = 1 

• For (L1, L2) = (1,4), the steady state x* is LAS for: 
 

1 2 14 1 2 1 2 1

2
2 1 2 1 2

( ) D {( ) 0 1

[1 4] ( 4)[ 4 1) 0}

β ,β ∈ ≡ β ,β ; ≤ β ,β ,β < ,

∆ ≡ − β / − β β / β + β / − > .
 

 
In addition, a flip bifurcation occurs along the 
boundary β1 = 1 and a Neimark-Hopf bifurcation 
occur along the boundary ∆ = 0 

• For (L1, L2) = (2,3), the steady state x* is LAS for: 
 

1 2 23 1 2 1 2( ) D {( ) 0 2 0 3}β ,β ∈ ≡ β ,β ; ≤ β < , ≤ β < .  
 

In addition, along β1 = 2, a Neimark-Hopf and flip 
bifurcation occurs with λ1 = -1 and λ2,3 = e±2π/3i along 
β2 = 3 a Neimark-Hopf bifurcation occurs with λ1∈[-
1,1] and λ2,3 = e±2πθ with ρ ≡ 2 cos (2πθ)∈[-1,0] 

• For (L1, L2) = (2,4), the steady state x* is LAS for: 
 

1 2 14 1 2 1 2

2 2
2 2 1 2 2 1 2

( ) D {( ) (2 4 )

1 ( 1) (1 )(1 )}

β ,β ∈ ≡ β ,β = γ , γ ;

γ < , γ γ + γ − < − γ − γ − γ .
 

 
In addition, a flip bifurcation occurs along the 
boundary β2 = 4 

• For (L1, L2) = (3,4), the steady state x* is LAS for: 
 

1 2 34 1 2 1 2( ) D {( ) 0 3 0 4}β ,β ∈ ≡ β ,β ; ≤ β < , ≤ β < .  
 

In addition, along β2 = 4, a Neimark-Hopf and flip 
bifurcation occurs  

 

 
 
Fig. 1: Local stability region of the steady state of the 

nonlinear system (8) with L1 = L2 = L in (β1,β2) space 
 

 
 
Fig. 2: Local stability regions and bifurcation boundaries for 

the nonlinear system (8) when L = 2 (a) and L = 3 (b) 
with parameters a1 = 0.8<a2 = 1 –n (α, w) space 
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Fig. 3: Bifurcation diagrams of the nonlinear system (8) 

for parameter α when the initial values are either 
close (upper panel), or not close (the lower panel) 
to the steady state with parameters β = 11, a1= a2 = 
1, A = 0.005, w = 0, b1 = b2 = 0 and L1 = L2 = L = 2 

 

 
 
Fig. 4: Phase plot of (xi,xt-1) of the nonlinear system (8) 

for α = -1.9 with different initial values and 
parameters β = 11 a1 = a2 = 1, A = 0.005, w = 0, 
b1 = b2 = 0 and L1 = L2 = L = 2 

 

 
 
Fig. 5: Time series plots of the nonlinear system (8) for 

(a) L = 2, α = -2; (b) L = 5, α = -4.5; and (c) L = 
10, α = -9 with parameters β = 11, a1 a2 = 1, A = 
0.005, w = 0, b1 = b2 0 and L1 = L2 = L = 2 

  
 (a) (b) 

 

  
 (c) (d) 

 

  
 (e) (f) 
 
Fig. 6: Local stability regions and boundaries of 

different types of bifurcation for (L1,L2) = (1,2), 
(1,3), (1,4), (2,3), (2,4) and (3, 4) 

 

  
 
Fig. 7: The local stability of the steady state and 

bifurcation regions (L1, L2) with L1≤L2 = 1,2,3 
 
Proof: See Appendix A.4: The local stability regions 
and bifurcation boundaries implied by Proposition 3 are 
plotted in Fig. 6. In all these cases, there is no saddle-
node bifurcation and the nature of the Neimark-Hopf 
bifurcation is characterized by the value of θ and 
therefore of ρ, as indicated by subsequent discussion.  
 
Comparison of the local stability regions: To see the 
effect of the various learning processes, the local 
stability regions for different (L1, L2) are combined 
together in Fig. 7.  



Am. J. Appl. Sci., 2 (13): 45-56, 2005 
 

51 

 
 
Fig. 8: Local stability regions of the steady state of the 

nonlinear system (8) for (a) L1 = 2,L2 = 1,2,…,3; 
and (b) L1 = 7,L2 = 1,2,3,…,10 in the (α, w) 
parameter plane with parameters β = 11, a1 = 0.8, 
a2 = 1, A = 0.005, b1 = b2 = 0, where the 
boundaries for different lag L2 move from right to 
left as L2 increases, indicated by α= -L2 when w=-1 

 

 
 
Fig. 9: The local stability regions of the steady state of 

the nonlinear system (8) for (a) (L1, L2) = (1,2) 
and (b) (L1, L2) = (1,3) in the (α,w) plane with β 
= 11, a1 = 0.8, a2 = 1, A = 0.005, b1 = b2 = 0 

 
 Comparing the stability regions of the steady state 
for different combination of (L1, L2) leads to the 
following observations. 
 Let DL = DLL = {(β1, β2): 0<β1, β2, β1+β1<L} then 
DL⊂DL’ for L<L’. Implying that an increase of the lag 
length enlarges the parameter region of the local 
stability of the steady state.  
 For L = 1,2,3, DLL⊂DL,L+1. In addition, the local 
stability region DL,L+1 is significantly enlarged 
compared with DLL.  
 In general: 
 

11 12 13 22 23

13 14 24 34 44

D D D D D

D D D D D

⊂ , , ⊂
⊂ ⊂ ⊂ , ,

 

 

 
 
Fig. 10: The time series (the left panel) and phase plots 

(the right panel) of periodic resonances of the 
nonlinear system (8) with (p,q) = (1,3) (top 
panel) and (2, 5) (middle panel) and quasi-
periodic resonance (bottom panel) with 2θ =  
for L1= 1, L2 = 2 and β = 11, a1 = 0.8, a2 = 1, A = 
0.005, b1 = b2 = 0 

 
Table 1: Parameter values for various resonance and quasi-periodic 

bifurcation for ALP with (L1, L2) = (1,2) and β = 11, a1 = 0.8, 
a2 = 1, A = 0.005, b1 = b2 = 0 

(p,q) ρ (β1,β2) (w,α) 
(1,2) -2 (1,2) (-0.43, -2.8) 
(1,3) -1 (0,2) (-1,-2) 
(2,5), (3,5) -1.618 (0.618, 2) (-0.60357, -2.49) 

2θ =  -1.7164 (0.7164, 2) (-0.554517, -2.57) 
 
However: 
 

12 13 23 24D D D D,� �  
 
And: 
 

12 22 23 33 34 44D D D D D D, , .� � �  
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Fig. 11: Bifurcation diagrams for fixed α = -2.494 and 

(a) (L1, L2) = (1,3), (b), (L1, L2) = (1,2), where 
β = 11, a1 = 0.08, a2 = 1, A = 0.005, b1 = b2 = 0 

 
 Numerical analysis on the local stability region of 
the steady state of the nonlinear system (8) for (i) fixed 
L1 = 2 and L2 = 1,2,…7; and (ii) fixed L1 = 7, L2 = 
1,2,…,10 in the parameter space (α, w) are given in Fig. 
8(a) and (b), respectively.  
 Based on these observations, regarding to the local 
stability region, one may draw the following conclusions: 
  
• When L2≠L1+1, an increase of window length 

(either L1 or L2) enlarges the parameter region of 
the local stability of the steady state in general 
(e.g., D11⊂D13⊂D14⊂24, D22⊂24) 

• When L1 = L2+1, an increase of L1 to L2 does not 
necessarily stabilise an otherwise unstable steady 
state for certain regions of the parameters (e.g., D12 
D22, D23 D33, D34 D44). In other words, 
homogeneity of the lag length (L1 and L2) may not 
have a stabilising effect 

• When the difference of the different lag lengths is 
small, in particular, when L2-L1 = 1 (e.g., (L1,L2) = 
(1,2),(2,3) and (3,4)), the stability regions are 
significantly enlarged, compared with the 
homogeneous case of L1 = L2 

• As indicated by Fig. 8, an increase in both the lag 
length and the population proportion for type 2 
producers enlarges the stability region of the 
parameter α in general. However, when L2 = L1 ± 1 
(e.g., L1 = 2, L1 = 1,3 in Fig. 8(a) and L1 = 7, L1 = 

6,8 in Fig. 8(b)), an increase of the population 
proportion of the type 2 producers does not 
necessarily enlarge the stability region for α. In 
those cases, there is an optimal value of w leading 
to the largest stability region in α 

 
Complex dynamics under the heterogeneous ALP: 
Proposition 3 indicates that heterogeneous ALP can 
lead to various types of bifurcation. The variety of types 
of bifurcation and complicity of the dynamics are 
demonstrated through the case (L1,L2) = (1,2) in the 
following discussion.  
 For (L1,L2) = (1,2) the characteristic equation of the 
steady state is given by Γ(λ) ≡ λ2+(γ1+γ2)λ+ γ2 = 0 where 
γ1 = β1 and γ2 = β2/2. Based on the analysis in Appendix 
A.4 (i), along the boundary β1 = 1, β2∈[0,2], there is an 
eigenvalue λ = -1, implying that a flip bifurcation occurs 
along this boundary. Along the other boundary β2 = 2, 
β∈[0,1], there occur two eigenvalues λ1,2 = e±2πθI, 
satisfying ρ ≡ λ1+λ2 = 2cos(2πθ) = -(β1+β2/2), λ1λ2 = β2/2 
= 1 and hence, the Neimark-Hopf bifurcation boundary is 
defined by β1 = -1-ρ and β2 = 2. It follows from β1∈[0,1] 
that ρ∈[-2,-1]. The types of Neimark-Hopf bifurcation are 
determined by the value of θ and hence of ρ. If θ = p/q is a 
rational fraction, then so-called p:q-periodic resonance 
occurs. If θ is an irrational number, then one obtains quasi-
periodic orbits. Therefore, the types of Neimark-Hopf 
bifurcation along the boundary are determined by the 
values of ρ∈[-2,-1]. The corresponding values of ρ required 
for p:q resonances to occur can be found from the table in 
Sonis[22]. The local stability region D12 is transformed from 
the parameter space (β1, β2) in Fig. 6 (a) to the parameter 
space (α,w) in Fig. 9(a) with the corresponding flip and 
Neimark-Hopf boundaries indicated.  
 Along the Neimark-Hopf bifurcation boundary, the 
types of periodic resonance (when θ = p/q) and quasi-
periodic resonance (when θ is irrational) are determined by 
ρ = 2cos(2πθ)∈[-1,-2]. Note that, by solving (11), (α,w) is 

related to (β1,β2) by α = -[a1β1+a2β2] and 1 1 2 2

1 1 2 2

a a
w

a a

β − β=
β + β

. 

Table 1 sets up the corresponding parameter values of 
(w,α) which give different types of resonances (with 
(p,q) = (1,2),(1,3),(2,5),(3,5),(1,5),(4,5) and one quasi-
periodic orbit (with 2θ = ).  
 The above local bifurcation analysis and the variety of 
types of bifurcation along the Neimark-Hopf boundary are 
confirmed by our numerical simulations of the nonlinear 
system (8) when the parameter values are selected as 
indicated by Table 1. Points D,B and C in Fig. 9(a) 
correspond to a 1:3 and 2:5 resonances and quasi-periodic 
closed orbit, respectively. For the initial values near the 
steady state, the corresponding time series for the 
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parameter values indicated by D,B and C in Fig. 9(a) 
converge to those three time series plotted in the left panel 
in Fig. 10. Corresponding to point D and B, (p,q) = (1,3) 
and (2,5) or (3,5), respectively, the periodicity of the 
cycles of the time series are clearly identified by the time 
series (on the left panel) and phase plot (on the right panel) 
in Fig. 10. In fact, corresponding to point B, the phase plot 
indicates clearly two sets of period 5 cycles. 
Corresponding to point C, 2,θ =  solutions with initial 
values near the steady state converge to the quasi-
periodic time series, the bottom one on the left panel. 
The quasi-periodicity of the time series is identified by 
the closed orbit of the phase plot, the bottom one on the 
right panel in Fig. 10.  
 As a further support to our bifurcation analysis for 
other combinations of the lag lengths, the case (L1,L2) = 
(2,3) is analysed in Appendix A.5 and similar results on 
various types of bifurcation are also found.  
 For fixed α = -2.494 and (L1,L2) = (1,2) and (1,3), 
bifurcation diagrams in the parameter w are given in 
Fig. 11. For (L1,L2) = (1,3) the local stability region of 
the steady state of the nonlinear system (8) is given in 
Fig. 9(b). One can see that, for (L1,L2) = (1,3) and the 
fixed α, as w increases, instability of the steady state 
leads to a flip type of bifurcation for a wider range of 
parameter of w, indicated in the upper panel of Fig. 11. 
However, for (L1,L2) = (1,2)for the fixed α, as w 
decreases (from w = -0.5), instability of the steady state 
leads to more complicated and richer dynamics, 
indicated by the bifurcation diagram over the range of 
w∈(-1,-0.6) in the lower panel of Fig. 11. 
 

CONCLUSION 
 
 The dynamics of heterogeneous learning has been 
studied recently in Chiarella and He[10] when the 
expectations (of the first moment) of the heterogeneous 
agents follow various weighted average learning 
processes, the so-called aL process. It is found that the 
dynamics of the system, including stability, instability and 
bifurcation, are affected differently by different recursive 
learning processes and the heterogeneity has double edged 
effect on the dynamics-heterogenous learning can stabilize 
an otherwise unstable dynamics in some cases and 
destabilize an otherwise stable dynamics in other cases as 
well. The findings in this study provide further evidence 
along this line. In addition, when heterogeneous agents 
learn both the first moment and second moment as well, 
the general feature outlined in Chiarella and He [10] has 
been extended further so that a relatively complete picture 
can be drawn for the learning dynamics of the 
heterogeneous ALP. The interplay between the relative 
slopes of the supply and demand curves, the risk aversion 
coefficients and proportions of the heterogeneous 
producers as well as the lag lengths used, can lead to quite 
complex price behavior.  

Appendix 
A.1. Characteristic Equation of the Heterogeneous 
Beliefs Model 
 Let x1,t = pt, x2,t = pt-1, x3,t = pt-2,…,xL,t = pt-(L-1), 
where L = max{L1,L2}. Then, (8) is equivalent to the 
following L-dimensional difference system Eq. A1: 
 

1 t 1 t

2 t 1 1 t

L t 1 L 1 t

x f (x )

x x

x x

, +

, + ,

, + − ,

=
 =


 =

⋮

  (A.1) 

 
Where: 
 

i

i

1 t 2 t1 2
t

1 21 1 2 2

t 1 t 2 t L t

L

i t j t
j 1i

L
2

i t j ti t
j 1i

b bx xf ( x ) (1 w ) (1 w )
2 a 2 A 2 a 2 Av v

x ( x x x )

1
xx

L

1
[ x ]x

Lv

, ,

, , ,

, ,
=

, ,,
=

− −α α = β + + + − + +

 = , , ,

 =



= − .


∑

∑

⋯  

 
 At the steady state p*, , 1 2 px x

∗= =  and 1 2 0v v= = . 
Without loss generality, it is assumed that L1≤L2, then 
L = L2. Evaluating the function f(xt) at the steady state, 
we then have: 
 
 1 2

j 1 1 2 2 1 2

f 1 1
[(1 w ) (1 w ) ] [ ]

x 2 a L a L L L

∂ α β β= + + − = − + ,
∂

 

 

for j = 1, …, L1 and 2

2j

f
Lx
β∂ = −∂  for j = L1+1,…,L. 

Therefore the corresponding characteristic equation is 
given by Eq. A2:  
 

1

1

L L
L L j L j1 2 2

j 1 j L 11 2 2

( ) ( ) 0
L L L

− −

= = +

β β βΓ λ ≡ λ + + λ + λ = .∑ ∑  (A.2) 

 
A.2. Proof of Proposition 3 
For L1 = L2 =L,let γ = γ1+γ2 = 

1 2

1 w 1 w 1
( )

2 a a L

α + −− + .  Then: 

 
L L 1( ) [ 1] 0−Γ λ = λ + γ λ + + λ + = .⋯  

 
 The result then follows from the Lemma in 
Chiarella and He[10].  
A.3. Stability Region for ALP with the Same Lag Length 
 For L1 = L2 = L, the steady state is stable for 
0≤β1+β2<L and the bifurcation boundary is given by 
β1+β2 = L, which can be written, in terms of α and w 
(and a1,a2 as well), as follows: 
 

1 2

2L
F(w )

(1 w ) a (1 w) a
α = ≡ − .

+ / + − /
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Fig. A.1: Local stability regions of the steady state of 

the nonlinear system (8) for L1 = 2, L2 = 3 on 
(α, w) plane with parameters β = 11, a1 = 0.8, 
a2 = 1, A = 0.005, b1 = b2 =0 

 
Table A.1: Parameter values for various resonance bifurcations for 

MAP with (L1,L2) = (2,3) and a1 = 0.8, a2 = 1 

(p,q) ρ (β1,β2) (w,α) 
(1,3) -1 (2,3) (-0.3.43, -4.6) 
(1,4) 0 (0,3) (-1,-3) 
(2,7), (5,7) -0.4450 (0.89, 3) (-0.395093, -4.300788) 

11θ =  -0.81299 (1.62598, 3) (-0.395093, -4.300788) 

 
 The relation α = F(w) defines a nonlinear function 
of w. Note that: 
 

2
1 2 1 2

2
3

1 2 1 2

2 L 1 1
F ( w ) ( )

[ (1 w ) a (1 w ) a ] a a

4 L 1 1
F ( w ) ( ) 0

[ (1 w ) a (1 w ) a ] a a

′ = − ,
+ / + − /

−′′ = − < .
+ / + − /

 

 
 Hence the bifurcation boundary boundary is defined 
by α = -L for w∈[-1,1] if a1 = a2. The boundary is an 
increasing (decreasing) concave function of w for 
a1<(>)a1. In addition, α = -a2L for w = -1 and α = -a1L for 
w = 1. Hence, for fixed a1,a2, the α parameter region for 
the local stability of the state steady is enlarged as the lag 
length L increases. In other words, increase of window 
length can stabilise an otherwise unstable steady state.  
A.4. Proof of Proposition 3 
 The characteristic equation for the ALP is given by 
Eq. (A.2) for general lag lengths L1 and L2.  
 For (L1, L2) = (1,2), 

2
1 1 21 2

(1 w) (1 w) .2a 4a 2
βα αγ = − + = β , γ = − − = The 

characteristic equation is then given by Γ(λ) = 
λ2+(γ1+γ2)λ+γ2 = 0. A saddle-node bifurcation occurs if 
there is an eigenvalue 

oi
1λ =  among all the eigenvalues 

satisfying |λi|≤1. For λ = 1, Γ(1) = 1+(γ1+γ2)+γ2 = 
1+γ1+2γ2>0 and hence one can conclude that there is no 
saddle-node bifurcation. A flip bifurcation occurs if there 

is an eigenvalue 
oi

1λ = −  among all the eigenvalues 

satisfying |λi|≤1. When λ = -1, Γ(-1) ≡ 1-(γ1+γ2)+γ2 = 1-γ1 
= 0 is equivalent to β1 = 1. Hence, along the boundary β1 = 
1, flip bifurcations occur. A Neimark-Hopf bifurcation 
occurs if there exists a pair of eigenvalues λ = e2πθi among 
all the eigenvalues satisfying |λi|≤1. Let λ1,2 = cos(2πθ)±i 
sin(2πθ). Hence γ2 = 1, which is equivalent to β2 = 2. Let ρ 
= 2cos(2πθ). Then ρ = -(γ1+γ2) = -(γ1+1) = 2 cos(2πθ) and 
hence γ1 = -1-2 cos(2πθ) = -1-ρ. Since γ1>0 and γ1 = 1 
corresponds to a flip bifurcation boundary, γ1∈[0,1] and 
hence it follows from ρ = -(1+γ1) that ρ∈[-2,-1]. Therefore, 
along the Neimark-Hopf boundary, λ1,2 = e±(2πθ)I, ρ = 2 
cos(2πθ)∈[-2,-1].  

 For (L1, L2) = (1,3), 1 1
1

(1 w)
2a

αγ = − + = β ,  

2
2

2

(1 w)
6a 3

α βγ = − − = . The characteristic equation has 

the form Γ(λ) = λ3+(γ1+γ2)λ2+γ2λ+γ2 = 0. Since Γ(1) = 
1+(γ1+γ2)+γ2+2γ2>0, there is no saddle-node bifurcation. 
For λ= -1, (-1)3Γ(-1) = 1-(γ1+γ2)+γ2-γ2 = 1-(γ1+γ2) = 0 

corresponds to γ1+γ2 = 1, or equivalently, 2
1 1

3

ββ + = , 

which leads to a flip bifurcation boundary. The 
Neimark-Hopf boundary occurs if λ1,2 = e±2πθi and λ3 = 
ro∈(-1,1). This implies that: 
 

2 1 2 3 0 0

1 2 0

2 0

( ) 2 cos(2 ) r r

1 r

r

γ = − λ + λ + λ = − πθ − = −ρ −
γ + γ = + ρ
 γ = −

 

 
leading to ρ= 0. Hence there is no Neimark-Hopf 
bifurcation.  

 For (L1,L2) = (1,4), 2
1 1 2 4

βγ = β , γ =  and the 

corresponding characteristic equation is given by Γ(λ) 
= λ4+(γ1+γ2)λ3+γ2(λ2+λ+1) = 0. By use of Jury’s test, 
|λi|<1 if Γ(1) = 1+β1+β2>0; (-1)4 Γ(-1) = 1-γ1>0; 

3B 0+| |> , 3B 0−| |>  and 1±γ2 = 1±β2/4>0, where: 

 

2

3 1 2 2 2

2 1 2 2 2 2

1 0 0 0 0

B 1 0 0

1

 
 
 ±  
 
 
 
 

γ 
 = γ + γ ± γ γ . 
 γ γ + γ γ γ γ 

 

 
 For (L1,L2) = (2,3), 

1 2
1 2

1 2

(1 w ) (1 w )
4a 2 6a 3

α β α βγ = − + = , γ = − − =  and: 

 
3 2

1 2 1 2 2 ( ) ( ) ( ) 0Γ λ = λ + γ + γ λ + γ + γ λ + γ =  
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Fig. A.2: (a) Time series of periodic resonances of the 

nonlinear system (8) with (p,q) = (1,3) and (2, 
7) and quasi-periodic resonance with 

1 3ρ = − ;(b) Phase plot of the quasi-periodic 

resonance for 2θ =  for L1 = 2, L2 = 3 and β 
= 11, a1 = 0.8, a2 = 1, A = 0.005, b1 = b2 = 0 

 
 Since Γ(1) = 1+2(γ1+γ2)+γ2>0, there is no saddle-node 
bifurcation. It follows from (-1)3Γ(-1) ≡ 1-(γ1+γ2)+(γ1+γ2)-
γ2 = 0 that γ2 = 1. Hence γ2 = 1 defines a flip bifurcation 
boundary. Along the Neimark-Hopf boundary: 

1 2 1 2 3 0 0

1 2 1 2 1 3 2 3 0

2 1 2 3 0

( ) 2cos(2 ) r r

1 r

r

γ + γ = − λ + λ + λ = − πθ − = −ρ − ,
 γ + γ = λ λ + λ λ + λ λ = + ρ,
 γ = −λ λ λ = − ,

 

 
implying γ2 = -r0, γ1 = 1+r0(1+ρ) = 1-γ2(1+ρ). 
 Hence γ1+γ2 = -ρ-r0 = -ρ+γ2, γ1 = 1-γ2(1+ρ), leading to 
γ1 = -ρ and (1+ρ)(γ2-1) = 0. Hence, for ρ = -1, γ1 = 1 and 
for ρ ≠ -1, γ2 = 1. Therefore, there are two Neimark-Hopf 
boundaries. Along (F1): γ1 = 1, ρ = -1, there exists a 1:3 
resonance bifurcation. Along (F2): γ2 = 1, γ1 = -ρ, ρ∈[-1,0], 
implying that λ1,2 = e±2πθi with ρ = 2 cos(2πθ)∈[-1,0].  

 For (L1,L2) = (2,4), 1 2
1 22 4

β βγ = ,γ =  and Γ(λ) = 

λ4+(γ1+γ2)(λ3+λ2)+γ2(λ+1) = 0. Using Jury’s test, |λi|<1 if 
Γ(1) = 1+2γ1+4γ2>0, (-1)4Γ(-1)=1>0, 1±γ2>0(⇔γ2<1) and 

3B 0±| |> , where: 

 

2

3 1 2 2 2

1 2 1 2 2 2 1 2

1 0 0 0 0

B 1 0 0

1

 
 
 ±  
 
 
 
 

γ 
 = γ + γ ± γ γ 
 γ + γ γ + γ γ γ γ + γ 

 

 
 Note that 3B 0−| |>  implies 3B 0+| |>  and 3B 0−| |>  if: 

 
2 2

2 1 2 2 1 2( 1) (1 )(1 )γ γ + γ − < − γ − γ − γ .  

 
 The above analysis also indicates that there is no 
saddle-node and flip bifurcation and Neimark-Hopf 
bifurcation is the only type of bifurcation in this case.  

 For (L1, L2) = (3,4), 1 2
1 23 4

β βγ = ,γ =  and: 

 
4 3 2

1 2 2( ) ( )( ) 0Γ λ = λ + γ + γ λ + λ + λ + γ = .  

 
 Using Jury’s test, |λi|<1 if Γ(1) = 1+3γ1+4γ2>0, (-
1)4Γ(-1) = 1-γ2>0(⇔γ2<1), 1±γ2>0(⇔γ2<1) and 

3B 0±| |> , where: 

 

2

3 1 2 2 1 2

1 2 1 2 2 1 2 1 2

1 0 0 0 0

B 1 0 0

1

 
 
 ±  
 
 
 
 

γ 
 = γ + γ ± γ γ +γ . 
 γ + γ γ +γ γ γ +γ γ +γ 

 

 
 Note that 3 1 2 1 2 2B (1 )(1 )[2( ) (1 )]+| |= − γ − γ γ + γ + + γ  

and 2
3 1 2B (1 )(1 )−| |= − γ − γ . Hence |λi|<1 if γ1<1, γ2<1. The 

above analysis also indicates that there is no saddle-
node bifurcation and γ2 = 1 defines both flip and 
Neimark-Hopf bifurcations.  
A.5. Bifurcation Analysis for the ALP with (L1,L2) = (2,3)  
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 For (L1,L2) = (2,3), based on the analysis in Appendix 
A.4 (iv), along the boundary β2 = 3, β1∈[0,2], λ1 = -1 and 
λ2,3 = e2πθi with ρ = 2 cos(2πθ)∈[-1,0], implying that both 
flip and Neimark-Hopf bifurcations occur along this 
boundary. Along the boundary β1 = 2, β2∈[0,3], (p,q) = 
(1,3) resonance bifurcation occurs.  
 The stability region D23 is transformed from the 
parameter space (β1, β2) in Fig. 6 (d), to the parameter 
space (α, w) in Fig. A.1 with the corresponding flip and 
Neimark-Hopf boundaries indicated.  
 Table A.1 sets up the corresponding parameter 
values for different types of resonances and quasi-
periodic bifurcations along the boundary β2 = 3 where 
β1 = -2ρ and hence ρ∈[-1,0].  
 Time series are plotted for (p,q) = (1,3), (2,7) and 

1 3ρ = −  in Fig. A.2(a). For (p,q) = (1,3) and (2,7), the 
periodicity of the cycles are clearly identified. For 

1 3ρ = − , an aperiodic time series is obtained and a 
closed orbit is obtained from the phase plot of the time 
series in Fig. A.2(b).  
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