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L earning Dynamicsin the Cobweb
Model with Heter ogeneous Producers

Carl Chiarella and Xue-Zhong He
School of Finance and Economics, University of Tedbgy,
Sydney, PO Box 123 Broadway, NSW 2007, Australia

Absgtract: In this study we investigate the nonlinear dynanaitthe traditional cobweb model with two
types of heterogeneous producers who are riskeeers seek to learn the distribution of asset grice
terms of the sample mean and variance of histopgdaks, using the Arithmetic Learning Processes
(ALP) over different window lengths. We show thattdrogeneity has a double edged effect on the
dynamics in the sense that heterogeneous learaimgtabilize an otherwise unstable dynamics in some
cases and destablize an otherwise stable dynamathér cases as well. When the steady state become
unstable, the model displays complicated dynarhicaigh a variety of types of bifurcations.
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INTRODUCTION generating chaotic price series and market fai(the

. _source of risk is the risk itself). Consequently,
. Consider the ~ well-known cobweb — model: Boussard’s studycasts a new light on expectations.

P =aq + b for the supply and:p= aq+B for the demand,  Not only are expectations pertaining to mean values

where gand p are quantities and prices, respectively, atimportant for market outcomes. Those pertaining to

period t, p; is the price expected at time t based on thesariability can bejust as crucial”.

information at t-1 and af(>0) anda<0 are constants. It Among various learning schemes, the properties of
is well known that, under the naive expectationesuts 'ecursive learning —processes under homogeneous
0 = p,..,, the price either converges to the optimal markefXPectations have been studied extensively (evgnd

o and Ramey”, Balasko and RoyBl Evans and
equiliorium (when d/al<1) or explodes (_vvhemt/¢|>1). Honkapohjﬁ). Under the assumyption of bounded
:/r\llgtezotmiﬁégﬂzg:r?na,[ﬁehslzgg?;gfogg‘r’n';:gscsewm Shorationality, producers are somewhat uncertain abwait

) " A ics of th i tem in which th t
lead the cobweb model to exhibit both stable péariadd ynamics of the economic system in which they are

. . . play out their roles, so they need to engage inesom
chaotic behavior (see for example, ArtS&idensen and | -
_ ; earning scheme. Apart from Bousséch great deal of
Urbaf®,  Chiarelld’, Holmes and Mannitd, ng P USSR g

A the literature on learning has been devoted torseke
Homme$§¥, Pulf” and Da®). These authors consider a g

) g ; , for the mean, but very little to schemes for thearece.
variety of backward looking mechanisms for the fation Chiarella and Hé ¥ extend Boussard’s framework in a

of the expectationg; ranging across the traditional naive way that takes account of the risk aversion of poeds
expectationp; = p,_,, learning expectations (e.g., learning and allows them to learn about the distributionthef

by arithmetic mearp; = (p_, +--+ p_, )/ L) and adaptive unknown price over the next period. By assuming tha

| . o . ith 0wl producers’ subjective estimates of mean and vagianc
earnlnghexpictatloml —91_1; WP, — ?1.1) W':j —WI— : follow the Arithmetic Learning Process (ALP):
With risk averse producers, the traditional linear_ _ <t iyt [P .
cobweb model becomes nonlinear (e.g., Boussard andt LZi:lp“" Vi LZi:l[p"‘ pJ* with some integer
Gerar®, Burtor® and Boussaf¥). By assuming that the L=1, Chiarella and He® show that the resulting cobweb

actual price pis uncertain so thap® has meanp, and dynamics form a complicated nonlinear expectations
t t

. _ . feedback structure whose dimensionality depend$ upo
variance v,, Boussarf! shows that, under the simplest , :
i A o o the length of the window of past prices (the laggté)
learning scheme, =p and v, =(p,, ~p)* with constant e to estimate the moments of the price distdbsi It

p, the nonlinear model may result in the marketis found that an increase of the window length Inh ca
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enlarge the parameter region (in termsu)|of the local would of course be preferable (and more in keepiitigy
stability of the steady state. In addition, throagtietailed models of asset price dynamics in continuous time
normal form and bifurcation analysis for windowdgémof  finance) to treat, as log-normally distributed.

2, it is revealed that, at the crossover from Istability to
instability, the dynamics exhibit resonance behawioich
is indicative of quite complicated dynamical bebaand
even chaos (for the model with constant elastmityply

and demand functions). The market clearing price and the heterogeneous

Given that it is more realistic to assume that the .| of P, andv,, be, respectively, subjective mean
producers are heterogeneous, instead of homogeneous : '

in forming their expectations, this study extentls t and variance of price, of producer i formed at time t
study in Boussafl and Chiarella and He ¥ and  based on the information set at t-1 ande quantity at
considers a simplest case of heterogeneous pradoger time t. With constant absolute risk aversion, e
assuming that there are two types of heterogeneousarginal revenue certainty equivalent of produces i
producers undertaking bounded rationality learnfige  With constant absolute risk aversion We assume the
aim of this study is twofold. To incorporate riskeasion  certainty equivalent of the receipt r = pds

of the two types of heterogeneous producers ing th R(q,)=P, & - Avi.d Then maximisation of this function

traditional linear cobweb model and to analyzeatfiect with respect to geads to the marginal revenue certaint
of the heterogeneous arithmetic learning procesth (w P q 9 y

different window length) on the dynamics of the mlod  equivalent ptza—R:ﬁt—zAivi,‘q‘ We recall that this
The study is organized as follows. A general cdbwe 9, '

model with heterogeneous producers is established iobjective function is consistent with producers ihgv

Section 2. The heterogeneous arithmetic learninghe utility of receipts functioru,(r) = -e™" Eq. 3:

processes is introduced and the existence of daalyst

state is then discussed in Section 2. In Sectieml3}, the

However this would then move us out of the mean-
variance framework so we leave an analysis of this
approach to future research.

dynamical behavior of the heterogeneous model,diirog P =R m2AVE, )
stability and bifurcation analysis, is analyzed. &n ) ) )

companion paper Chiarellat. al.™ consider the Assume a linear marginal cost, as in (1), so tat
alternative heterogeneous geometric decay learningUPPly equation, under marginal revenue certainty
scheme, which is also widely studied in the litenat equivalent becomes Eq. 4:

The cobweb mode with heterogeneous producers: p.=aq, +h. 4)

This section establishes a cobweb model when
producers are heterogeneous in their risk and |t follows from (3) and (4) that:
expectation formulation of both the mean and vagan
In the case of linear supply and demand functitimes,

aq, +h=p,, - 2Av;
model may be written as Eq. 1 and 2: A+ b=, Hie§

{Supply: d=ag+h (12 1) and hence the supply for producer i is given byFq
- i)i.l_bi 5

{Demand p=a g+B ¢< 0) @ % Taizau. ®)

where q corresponds to the aggregate supply.agd Denote by nthe proportion of type i producers in

pf, are, respectively, the quantity and price expeoted general, the proportion is a function of time t that is;n
producer i at time t based on the information séflaand ~ Which could be measured by a certain fitness fanaind

p is the price and;ab, B(>0) anda<0 are constants. Our discrete choice probability, as in Brock and Honfrhes
approach to the formation of expectations will beBecause of the complexity of the dynamics, we censi
somewhat different in that we assume that the bptice ~ Only the case with fixed propitiation and leave the
p is uncertain so that the heterogeneous produceas t changing proportions problem to future work. then i
p;, as arandom variable drawn from a normal disigbut follows from (1), (5) andgq, :Zniqvt that the market

whose mean and variance they are seeking to l#arn. clearing price is determined by Eq. 6:
46



Am. J. Appl. i, 2 (13): 45-56, 2005

_ P b The following sections study the dynamics of the
P.= B“’Z Nt 2T, (6)  two-type-producer model (8) when producers folliw t
' arithmetic learning process by using different vewvd

The homogeneous cobweb model: As a special case of €Ndths k. Assume LsL, and denote L = max {l. Lo} =
the heterogeneous model (6), assume that prodacers L,. Because of the dependence of the subjective rpean
homogeneous, that is, a a, b=b, p, =5, A = A, and variancey, on price lagged L periods, equation (8)
Vi =V, , then the corresponding homogeneous model hdS & difference equation of order L (see systeni)f
the form Eq, 7: Appendix A.1_). The Ioc_aI stability of t_he uniqueatly
t state p = p* is determined by the eigenvalues of the
5 b corresponding characteristic equation (equatio@) M
p,=B+a P , @) Appendix A.1), which is difficult to analyze in geral.
a+ 2Av, We therefore focus first on the case whensLL, = L

. _ _ . in Section 3 and then some special cases whenlLk,
which has been considered in Chiarella anff'He such as, L L, = 1,2,3,4 in Section 4.

A cobweb modd with two types of heterogeneous Set:
producers following ALP: In the following discussion,

the simplest heterogeneous model when there are two v, = -2+ w) 1 Ly, =-2a- W)L,
types of producers is considered. Letr{l+w)/2 and p= 2 ak, 2 2L
(1-w)/2 with -Ews<1. Then (6) has the form Eq. 8: and Eq. 11:

— a P b a P, = b,

O ] PRV e L A Y . (8 -_a L
PR W A 2 Y oA ® B= 2 W B= oW (11)

The model (8) is incomplete unless producers’
expectations are specified. In this study, thehnietic Theny, = BJ/L>0 andy, = BJL,>0. From the
Learning Processes (ALP) is assumed. More pregiselyollowing discussions, we can see that the locdditity of
assume that producers form their subjective estimat the steady state depends on the parameters, mglindise
of the mean and variance from the sample mean ardom supply and demand functions, a&, a, the
variance, by considering past market clearing price proportional difference of the two types of prodsces
over a window of length;l.that is Eq. 9: and the window lengths ;Land L, used by the
heterogeneous producers. Our discussion here focuse
two different aspects. On the one hand, for a fixedlow

_ 1
== + ot o .
Pis Ll[p“l Pe-z Pey ) length combination of (. L,), we consider how the

o1& , ©) demand parameter and the proportional difference w of
Via =f;[pm ~Pl% producers affect the local stability of the steathte and
' bifurcation. On the other hand, for a set of fixed
where, i = 1,2 and {. L, are integers. parameters, we examine how these results on tla loc

stability and bifurcation are affected by different
Existence and uniqueness of the steady state: Denote  combination of the window lengths. Regarding thet fi
by p* the state steady. Then, under the ALP, ibimd  aspect, it is found that both the local stabiliéggion and
from (6) and the relatiom”=B+a)’ n ('~ h) a that  bifurcation boundary are easy to construct geooalyi

p* is given by: by using the parametegs and,, instead of w and. The
one-one relation (11) between @vand (31,3, makes it

B-aX.n possible to transform the results between therdiffesets
IOD:T?> 0 sincea < 0 of parameters and in addition, to preserve the ga@m
I—aZng relation of the local stability regionsNote that the

determinant of the Jacobian of the transformatibh) (
does not change the sign, implying the preservatiadhe
transformation. In the following discussion, be@aakthe
. ) geometric advantage just discussed, the results are
_B sl wn +A-w)] (10)  formulated in terms of ,B,), although some of the
1=51A+w)g + (@-w)] stability regions are plotted using @yvas well.
47

In particular, for the two-type-producer model,(8)
the steady-state p* is given by Eq. 10:
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Dynamics of the homogeneous AL P: In this section, we Corollary 2. For the nonlinear system (8), assume
consider the case when both types of producer hese tproducers follow ALP and 1= L, = L. Then, in terms
same window length, that is E L, = L, then a relatively of the parametera and w, an increase in L stabilizes
complete result on the local stability region of steady the otherwise unstable steady state.
state, the types of bifurcation and stability baamydis The above theoretical analysis of the local stgbil
obtained in Proposition 1 for general lag length L. and bifurcation is verified by numerical analysis the
nonlinear system (8). Consider a special case ahers,
Proposition 1. For the nonlinear system (8), assume= 1. In this case, the steady state is LAS«fd(-2, 0] for
producers follow ALP and{= L, = L. Then: any wWi-1,1] and @ = -2 leads to a 1:3 resonance
bifurcation. Bifurcation diagrams for the nonlinegstem
» the characteristic equation of the unique steady8) are plotted in Fig. 3 in terms of the paramet# with
state p* is given by Eq. 12: different initial values. It is found that, whenetlinitial
values are close to the steady state (within 1&\iat of
(12) the steady state), the bifurcation valygis close to the
theoretical bifurcation value, = -2, as indicated in the
upper panel in Fig. 3. When the initial valuesrareclose
« p*is locally asymptotically stable (LAS) if Eq. 13 to the steady state (within 400% interval of theady
state), the bifurcation valug ~-1.9 moves away from the
theoretical bifurcation value, = -2, as indicated in the
lower panel in Fig. 3. In both cases, the nonlirsgatem
(8) displays a simple type of bifurcation, whichais3-
«  the stability boundarp,+B, = L defines a 1: (L+1) cycje as indicqted by the phgse plot in Fig. 4 thedime
resonance bifurcation. When L = 2 and 3, for fixedS€'i€S plotin Fig. 5, over a wide range of thapeter.
a, = 0.8<a = 1, the stability regions and resonance In order to understand the nature of the resonance

bifurcation boundaries are plotted in terms of bifurcation, let L = 2, in which case the.instatp;ilbf }he
parameters o{w) in Fig 2. In order to see the steady state leads to a 1:3 resonance bifurc&iomsider
bifurcation features, numerical simulations areth€ case as indicated in the lower panel in Fandlet3

conducted to analyse the dynamics of the nonlinear 11, @ =&=1,A=0.005, w = 0= b, = 0. Fora =-1.9
system (8) for the cases L = 2,3,4 and 10 near the bifurcation valug, a phase plot (in the space of
(%.1,%;) for different initial values is plotted in Fig. 4n

Proof. See Appendix A.3: The local stability region and this case, a strong 1:3 periodic resonance biforci¢ads
the resonance bifurcation boundary are plottedgnFin  to two sets of period three cycles Répp;) and S(§s,,Ss),
the By, B,) parameter space for general lag length L. Inhaving the following behavior. When the initial v are
particular, there are two special cases of inteWben a  close to the steady state, the solutions convergenet
= a, the local stability conditon and the bifurcation Steady state p* and both P and S are unstable. \ttfeen
boundary are independent of w, as expected. Whema Initial values are not close to the steady state ip*
the local stability region foa becomes (ix0(-Lay, 0] for ~ P€comes unstable and solutions converge to othe ofid
w = 1: and (ii)oJ(-Lay, 0] for w = -1. In other word, the sets of the period three cycles, either P or Sgrultipg on

local stability depends more on the ratitaaand less on  the initial values. The dynamics of the nonlinew;'t%’n
the population distribution w. (8) are very similar to those found in Chiarellal &te* ™.

Assume a# afor L = 2the bifurcation boundary | dFotr Lllz LZ; 13; ins_tadpility of the stet?;jy state
BB, = 2 becomes (1+w)a(1-w)/a = -4k, which eads to 1:4 and 1:5 periodic resonance bifurcation

defines the 1:3 resonance bifurcation boundary & as lr)espedcnvely an(Ij S|:cnllardd>_/rna_rlr|1|c? alont% the *?.'f“?“f“
function ofa, namely Eq. 14: oundary are also found. To illustrate the periibglic

different resonance bifurcation, time series for 2,5
o daa L a+ 3w (14) and 10 are plotted in Fig. 5. Similar outcomes (not
a(a,-a,) a- a reported here) are also found wher @,.

rQ)=At +LEBZ[AL-1 o+ A +1] =0,

a l+w 1-w
- +—

— )<L, ie, 0<B,+B,<L. (13)
2 a

0<

Note thata<O and, for @a<(>)1,W() is an Dynamicsof the Heterogeneous AL P: We now consider
increasing (decreasing) function efand hence, as w the case where each producer uses a different windo
increases, the local stability region far becomes length and let k<L, = L. Unlike the case whenL, =L,
smaller (larger). For general lag length L, thelgsia the local stability regions of the steady state and
in Appendix A.3 leads to the following Corollary. bifurcation boundaries for different combination lafy
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lengths have less clear-cut features and become ves  For (L, Ly) = (2,3), the steady state x* is LAS for:
complicated and difficult to analyse in general.tbEoable

to see how the window lengths of the heterogeneous (B.B,) 0D, ={(B,B):0<P,<2,0=B,<3}.
producers affect the stability of the steady statel
bifurcation, a combination of analytical analysiada
numerical simulation is used in the following dission.
Analytical results for L = max {L,L,}<4 are summarized
in Proposition 3, followed by a comparison of toeadl
stability regions for various lag lengths. Some arioal
simulations of various types of bifurcation are éyed to
demonstrate the complex of the heterogeneous ALP.

In addition, alongB3; = 2, a Neimark-Hopf and flip
bifurcation occurs with; = -1 and\, 3 = €™ along
B, = 3 a Neimark-Hopf bifurcation occurs with(l[-
1,1] andh, 5 = €2 with p = 2 cos (20)[-1,0]

For (L4, Ly) = (2,4), the steady state x* is LAS for:

(Bu.Bo) 0D, ={(B,B) =(2Y44Y )

Local dability and bifurcation analyss For Yo <LYo (Vi Y, — 1 < (- v,) Ay, - V5))
Li<L,LyL, =1,2,3,4, the local stability of the state steady - o ]
and types of bifurcationnote that a saddle-node In addition, a flip bifurcation occurs along the

bifurcation occurs when there is at least one & th boundaryB, =4
eigenvaluer, =1 among all the eigenvalues satisfying «  For (Ly, Lo) = (3,4), the steady state x* is LAS for:

[Ail<1; a flip bifurcation occurs when there is at least _ _
one of the eigenvalue =-1 among all the eigenvalues (BuB) UD4 ={(B,P) 0 <P,<3,0<P < 4}

satisfying Ail<1; a Neimark-Hopf bifurcation occurs
when there exists a pair of eigenvaldes €™ among
all the eigenvalues satisfying\|k1 are analysed in
Appendix A.4 and the results are summarised in the B>
following Proposition 3.

In addition, alond3, = 4, a Neimark-Hopf and flip
bifurcation occurs

Proposition 3: For the nonlinear system (8), assume L
the two types of the heterogeneous producers, with

constant proportion difference w follow ALP with

L1<L2,L1,L2 = 1,2,3,4:

e For (Ly, Ly)= (1,2), the steady state x* is LAS for:

(B,.B,) 0D, ={(B,B) 0 <B,<1,0<PB < 2. | T P
In addition, a flip bifurcation occurs along the Fig. 1: Locgl stability region. of the Steady staié the
boundaryB; = 1 and a Neimark-Hopf bifurcation nonlinear system (8) with,l= L, = L in (B,,3,) space
occurs along the boundarf, = 2 with two 10

eigenvalued, ,=€"®®' p = 2 cos(2V)[-2, -1]
e For (L, Ly = (1,3), the steady state x* is LAS for”;

(B.B,) U ={(B4R)0 <B,B,B,*+P /3 <1

<] OO—-
In addition, a flip bifurcation occurs along the

boundaryp3;+3,/3 =1

s For (L, Ly) = (1,4), the steady state x* is LAS for: 0.5
(B,B.) D, ={(B,B)0 <B,B B <L -
A=[1-B,/ 47 ~B,@B,/ A)B,+B,/ 4-1)> 0} .
In addition, a flip bifurcaftion occurs ?'0”9 -the Fig. 2: Local stability regions and bifurcation bdaries for
boundaryB; = 1 and a Neimark-Hopf bifurcation the nonlinear system (8) when L =2 (a) and L %)3 (
occur along the boundaty= 0 with parameters,a 0.8<a =1 —n @, w) space
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-20

Fig. 3: Bifurcation diagrams of the nonlinear systs)
for parameter. when the initial values are either

close (upper panel), or not close (the lower panel)

to the steady state with paramefgrs 11, a= & =
1,A=0.005w=0,{b,=0and ly=L,=L=2

—
s T prd
7 h ’ \/’v
) ; » —
0 I X T
[ RS
4l
8 . N
8 4 0 4 8 12

Fig. 4: Phase plot of (x,,) of the nonlinear system (8)
for a = -1.9 with different initial values and

parameter§ =11la=a =1, A=0.005 w=0,
b1:b2=Oand I&:LZZLZZ

N

4992

-100 [

1500
4980

4984 4988 4996 5000

Fig. 5: Time series plots of the nonlinear syst&nfdr
@L=2,0=-2;(b)L=5,a=-4.5;and (c) L =
10,a = -9 with paramete =11, aa =1, A=
0.005,w=0,b=hbO0and L=L,=L=2
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Fig. 6: Local

stability
different types of bifurcation for ¢lL,) = (1,2),
(1,3), (1,4), (2,3), (2,4) and (3, 4)

regions and boundaries of

Bz 3
3 __’,,-’_%i___j 45
\\,."'. D2;1 \ N D:“
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\\\\ l.ll : D.y . .\\ ,Dm
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Fig. 7: The local stability of the steady state and

bifurcation regions (L, L,) with Ly<L,=1,2,3

Proof: See Appendix A.4: The local stability regions
and bifurcation boundaries implied by Propositioar8
plotted in Fig. 6. In all these cases, there issaddle-

node bifurcation and the nature of the Neimark-Hopf

bifurcation is characterized by the value @&fand
therefore ob, as indicated by subsequent discussion.

Comparison of the local stability regions: To see the

effect of the various learning processes, the local

stability regions for different (I, L,) are combined
together in Fig. 7.
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Fig. 8: Local stability regions of the steady stafethe

nonlinear system (8) for (ayl= 2,L, = 1,2,...,3; - L - _
and (b) L = 7,l, = 1,2,3,...,10 in theo{ w) '

parameter plane with paramet@rs 11, a = 0.8, o - -
& =1, A = 0005 b= b = 0, where the ol

boundaries for different lag,Lmove from right to Cosof

left as L, increases, indicated loy -L, when w=-1 B . . .

(b)

31F D(t-1)

30k
2sf x
= —0.554517

8
2.8 29 3.a 31
P(1-1)

Fig. 10: The time series (the left panel) and phasts
(the right panel) of periodic resonances of the
nonlinear system (8) with (p,q) = (1,3) (top
panel) and (2, 5) (middle panel) and quasi-

-1.0
4 -3 -2 -1 0 -3 -
o

L B (L e e m e e o |

Fig. 9: The local stability regions of the steatite of

the nonlinear system (8) for (a)(LL,) = (1,2) periodic resonance (bottom panel) wigh:+/2
and (b) (L, L) = (1,3) in the ¢,w) plane withB forL=1,,=2and3=11,2=08,2=1, A=
=11,3=0.8,a=1,A=0.005 b=b,=0 0.005,h=h, =0

Table 1:Parameter values for various resonanceqaiagi-periodic

Comparing the stability regions of the steadyestat bifurcation for ALP with (ls, L) = (1,2) andB = 11, a = 0.8,

for different combination of (L, L) leads to the a%=1,A=0.005 b=b=0
following observations. (p.q) o (B.82) (W,)
Let D = Du = {(B1, B2): 0By, B2, B+Ba<L} then  (1,2) -2 (1,2) (-0.43,-2.8)
D, OD. for L<L’. Implying that an increase of the lag (1.3 -1 0.2) (1-2)
length enlarges the parameter region of the local?2: 85  -1.618 (0.618, 2) (:0.60357, -2.49)
stability of the steady state. 8=+2 -1.7164 (0.7164, 2) (-0.554517, -2.57)

For L = 1,23, B.OD. . In addition, the local _
stability region D.., is significantly enlarged TOWEVer:

compared with .. D, D, D,,CD,,
In general:

And:
Dll D D12'D13D ZZD D 23

D13DD14DD24DD 34D 44 D12 g D22’ D23§ D 33 D 34g D 44
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6,8 in Fig. 8(b)), an increase of the population
15E proportion of the type 2 producers does not
necessarily enlarge the stability region farIn
those cases, there is an optimal value of w leading
Sk to the largest stability region in

Complex dynamics under the heterogeneous ALP:
Proposition 3 indicates that heterogeneous ALP can
lead to various types of bifurcation. The varietyypes
. . . . of bifurcation and complicity of the dynamics are
/ ~ e=-2494 Li=1 Lo=2 demonstrated through the case,lk) = (1,2) in the
following discussion.

For (Ly,L,) = (1,2) the characteristic equation of the
steady state is given ByA) = A +(y1+y)A+ > = 0 where
vi = B1 andy, = B,/2. Based on the analysis in Appendix
A.4 (i), along the boundar; = 1, 3,0[0,2], there is an
eigenvaluex = -1, implying that a flip bifurcation occurs
along this boundary. Along the other boundfsy= 2,
BO[0,1], there occur two eigenvalues,, = €2,
satisfyingp = A +A; = 2c0s(210) = -(B1+B2/2), AAo = B2
=1 and hence, the Neimark-Hopf bifurcation boupdsr

0=-2.494 L;=1 L;=3

Fig. 11: Bifurcation diagrams for fixed = -2.494 and  §efined byB, = -1p andp, = 2. It follows fromB,J[0,1]

the steady state of the nonlinear system (8) jdiixgd
Ly =2and L =1,2,...7; and (ii) fixed L=7, L, =
1,2,...,10 in the parameter space\W) are given in Fig.
8(a) and (b), respectively.

stability region, one may draw the following corsitins:

(@) (Li, L) = (1,3), (b), (L L2) = (1,2), where a1 50[-2.-1]. The types of Neimark-Hopf bifurcation are
F=11,2=0.08,2=1,A=0.005b=0=0  determined by the value 6fand hence qf. If 6 = p/q is a
) ] - ] rational fraction, then so-called p:g-periodic resme

Numerical analysis on the local stability regidh 0 oceyrs, 19 is an irrational number, then one obtains quasi-
periodic orbits. Therefore, the types of NeimarkpHo
bifurcation along the boundary are determined by th
values op[][-2,-1]. The corresponding valuesmfequired
. . for p:q resonances to occur can be found fromahie tin
Based on these observations, regarding to thé 10C&,i&22 The |ocal stability region Ris transformed from
the parameter spacp;(3,) in Fig. 6 (a) to the parameter
space ¢,w) in Fig. 9(a) with the corresponding flip and
Neimark-Hopf boundaries indicated.
) _ Along the Neimark-Hopf bifurcation boundary, the
the local stability of the steady state in general,[ypeS of periodic resonance (wher= p/q) and quasi-
(€.9., D1lID150D 1404 Dz2lla) periodic resonance (whéis irrational) are determined by

When L = Ly+1, an increase of,lto L, does not - a ; ;
necessarily stabilise an otherwise unstable steadgl 2cos(ZB)([-1,-2]. Note that, by solving (11)fu) is

state for certain regions of the parameters (B.g., related to 81,3, by o = -[aB:+aB;] and w = &P, —ap,

When Ly#L,+1, an increase of window length
(either Ly or L) enlarges the parameter region of

D22, D23 D33, D34 D44). In other Words, . alBl + aZBZ .
homogeneity of the lag length (land L) may not Table 1 sets up the corresponding parameter vaities
have a stabilising effect (w,a) which give different types of resonances (with

When the difference of the different lag lengths is(P.@) = (1,2),(1,3),(2,5).(3,5),(1,5),(4,5) and omeasi-
small, in particular, whenkl; =1 (e.g., (L, = periodic orbit (withe =+/2).
(1,2),(2,3) and (3,4)), the stability regions are The above local bifurcation analysis and the taoé
significantly enlarged, compared with the types of bifurcation along the Neimark-Hopf bourydare
homogeneous case of £ L, confirmed by our numerical simulations of the nosdir
As indicated by Fig. 8, an increase in both the lagsystem (8) when the parameter values are selested a
length and the population proportion for type 2indicated by Table 1. Points D,B and C in Fig. 9(a)
producers enlarges the stability region of thecorrespond to a 1:3 and 2:5 resonances and quéasiipe
parameten. in general. However, whenE L, +1  closed orbit, respectively. For the initial valugsar the
(e.g,L=2,L=13inFig. 8(a) andl=7,, = steady state, the corresponding time series for the
52
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parameter values indicated by D,B and C in Fig) 9(aAppendix
converge to those three time series plotted itefh@anel A.1. Characteristic Equation of the Heterogeneous
in Fig. 10. Corresponding to point D and B, (p,qj1;3) Beliefs Model
and (2,5) or (3,5), respectively, the periodicitly the Let Xt = P X2t = Pens X3t = PezreooXit = Py
cycles of the time series are clearly identifiedthy time  where L = max{l;,L,}. Then, (8) is equivalent to the
series (on the left panel) and phase plot (onitfire panel)  following L-dimensional difference system Eq. Al:
in Fig. 10. In fact, corresponding to point B, fifease plot
indicates clearly two sets of period 5 cycles. (x,.,=f(x,)
Corresponding to point M =+/2, solutions with initial Xpin = X1y (A1)
values near the steady state converge to the quas):
periodic time series, the bottom one on the lefigha Xy = X1
The quasi-periodicity of the time series is idgatfby
the closed orbit of the phase plot, the bottoma@mé¢he  \where:
right panel in Fig. 10.
As a further support to our bifurcation analysis f

a 1~ b 20— by
other combinations of the lag lengths, the casg ) = fc) =g+ 5@ W)ﬁ o "V)aX%izsz2
(2,3) is analysed in Appendix A.5 and similar résain X = (XX g0 X0 )
various types of bifurcation are also found. 1L

For fixeda = -2.494 and (LL,) = (1,2) and (1,3), Y
bifurcation diagrams in the parameter w are given i iil T
Fig. 11. For (4,L,) = (1,3) the local stability region of L 5= mee

the steady state of the nonlinear system (8) isrgin
Flg 9(b). One can see that forlqj_z) = (1,3) and the At the steady state p*,x,=x,=p" and v,=v,=0.

leads to a flip type of bifurcation for a wider ganof
parameter of w, indicated in the upper panel of Ei
However, for (ls,L,) = (1,2)for the fixeda, as w
decreases (from w = -0.5), instability of the sieathte
leads to more complicated and richer dynamics, of S+ w)
indicated by the bifurcation diagram over the raonfe 0%,
wl(-1,-0.6) in the lower panel of Fig. 11.

L = L,. Evaluating the function f(xat the steady state,
we then have:

C = e

asz

CONCLUSION L,

The dynamics of heterogeneous learning has be 'Flherefore the corresponding characteristic equaon
studied recently in Chiarella and & when the 9Iven by Eq. A2:
expectations (of the first moment) of the heteregers B Bl B, < AD
agents follow various weighted average learning™ (A)=A"+( >+ I%)Z1 AT PR ;ﬂh” =0. (A-2)
processes, the so-called process. It is found that the o L
dynamics of the system, including stability, inditgband A 2. Proof of Proposition 3
bifurcation, are affected differently by differemtcursive — .= o= o ltw 1-w .
learning processes and the heterogeneityltatse edged ForLy = Lo =Llety =yity, = 2 ¢ a, a, =T Then:
effect on the dynamics-heterogenous learning can stabiliz
an otherwise unstable dynamics in some cases and
destabilize an otherwise stable dynamics in othses as
well. The findings in this study provide furthericience The result then follows from the Lemma in
along this line. In addition, when heterogeneousn®) chiarella and H&".

learn both the first moment and second moment dls We A 3 Sability Reqion for ALP with the Same Lag Lenath
the general feature outlined in Chiarella and H¥ fias " For Lly: eli = L, the steady state isg stabgle for

been extended further so that a relatively complieteire : . L
can be drawn for the learning dynamics of theOP1+B2<L and the bifurcation boundary is given by

heterogeneous ALP. The interplay between the velati Pi*B2 = L, which can be written, in terms afand w
slopes of the supply and demand curves, the ristsian  (@nd a,2 as well), as follows:

coefficients and proportions of the heterogeneous
producers as well as the lag lengths used, cartdeguite o = F(w)=-
complex price behavior.

forj =1, ..., L and g—;:—& for j = Li+1,...,L.
i

FA)=A " +y[A" 7+ + A +1] =

2L
@+w)/a+(@1-w)a

53



Am. J. Appl. i, 2 (13): 45-56, 2005

S 1 S IS A A
-5 -4 -3 ) -1

Fig. A.1: Local stability regions of the steadytstaf
the nonlinear system (8) fornl= 2, L, = 3 on
(o, W) plane with parametefz= 11, a = 0.8,
& =1, A=0.005, b=h, =0

Table A.1: Parameter values for various resonance bifarsatior
MAP with (L;,L,) =(2,3)and 2= 0.8, a=1

(p.9) P (B1,B2) (w,0)

(1,3) -1 (2,3) (-0.3.43, -4.6)

(1,4) 0 (0,3) (-1,-3)

(2,7), (5,7) -0.4450 (0.89, 3) (-0.395093, -4.300788)
8=+11 -0.81299 (1.62598,3)  (-0.395093, -4.300788)

The relationa. = F(w) defines a nonlinear function
of w. Note that:

oy 2L 11
PO v a-wira e &
-4L 1 1,

—)? < 0.

P Wy e a-wiiaf

Hence the bifurcation boundary boundary is deﬁneqeading to p=

by o = -L for wi[-1,1] if & = &. The boundary is an

increasing (decreasing) concave function of w for

a<(>)a. In addition,a. = -gL for w = -1 anda = -gL for
w = 1. Hence, for fixed @, the a parameter region for
the local stability of the state steady is enlargedhe lag
length L increases. In other words, increase ofdamn
length can stabilise an otherwise unstable steatly. s
A.4. Proof of Proposition 3

The characteristic equation for the ALP is givgn b
Eq. (A.2) for general lag lengths Bnd L.

For (Ll, L2)

Vo =g @rw) =By, = -5 (- w)=

characteristic equation is then given Ly(A)
N+(yity)A+y, = 0. A saddle-node bifurcation occurs if
there is an eigenvalug, =1 among all the eigenvalues

satisfying Aikl. For A = 1, T(1) = 1+{a+ty)+, =

(1.2),

% .The

is an eigenvaluer, =-1 among all the eigenvalues

satisfying Aic1. WhenA = -1,T(-1) = 1-(y1tyo)+y> = 1y;

=0is equivalent tf§; = 1. Hence, along the bounddy=

1, flip bifurcations occur. A Neimark-Hopf bifurdai

occurs if there exists a pair of eigenvalies €™ among
all the eigenvalues satisfying 1. LetA;, = cos(20)=i

sin(2rB). Hencey, = 1, which is equivalent 8, = 2. Letp

= 2cos(21). Thenp = -(y1+Y,) = -(y1+1) = 2 cos(20) and
hencey, = -1-2 cos(28) = -1p. Sincey;>0 andy; = 1
corresponds to a flip bifurcation boundaw/1[0,1] and
hence it follows fronp = -(1+y;) thatp[-2,-1]. Therefore,
along the Neimark-Hopf boundar; » g@il p =2
cos(20)[-2,-1].

For (L L) = (L3), vi=-—(+w)=B,
28,
yzz—é(l—w):%.The characteristic equation has

the formF(A) = A3+(y+y)A2+yA+y, = 0. Sincel (1) =
1+(y1+Hy2)+y.+2y>>0, there is no saddle-node bifurcation.
For A= -1, (-1JT(-1) = 1-faty)+yzye = 1-atys) = 0
corresponds toy;+y, = 1, or equivalentlﬁl+%: ,

which leads to a flip bifurcation boundary. The
Neimark-Hopf boundary occurs & , = €2 and\; =
ro(-1,1). This implies that:

Yo ==(A;+A,+A;)=-2cos(2W )~ g=-p- §
Vi +ty, =1+r1p
Y, ="l

0. Hence there is no Neimark-Hopf

bifurcation.
= &

(Lu,L2) 4

corresponding characteristic equation is given By)
= M+ (Yity)A+y:(A2+A+1) = 0. By use of Jury’s test,
Ail<1 if T(1) = 1484850, (-1f T(-1) = 1y>0;
|B: >0, |B; >0 and &y, = 1+3,/4>0, where:

For = (14, v, =gy, and the

1 0 0 [0 0y,
B:=|V,*V, 1 0|+[0 vV, V,|
Y, Y,+ty, 1 Yo Y2 Y2
For (Ll!I—Z) = (213)1
a B a B .
=2 qa+w)=L vy =2 1-w)=P2 and:
Y1 4a1( w) 2 Y2 6a (1-w) 3

1++2y,>0 and hence one can conclude that there is no

saddle-node bifurcation. A flip bifurcation occuishere
54
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“F ot ViV, =—(\,+A,+A) =-2c0s(d® - =—p- |
VitYo =AM, +AA+A A =14Tp,
Y. =AM =T,

implying yz = -fo, Y1 = 1+i(1+p) = 15(1+p).

— Henceyi+y, = p-o = pHys, Yo = 14,(1+4p), leading to
ep ©=-0616351 v1 = -p and (1p)(y>-1) = 0. Hence, fop = -1,y; = 1 and
for p # -1,y, = 1. Therefore, there are two Neimark-Hopf
boundaries. Along (ff: y1 = 1, p = -1, there exists a 1:3
resonance bifurcation. Along{Ey, = 1,y; = -p, pJ[-1,0],
implying that\, , = €™ with p = 2 cos(28)[-1,0].

2k - - For (L) = (24), v, =B—21,y2 :%2 and F(\) =

 =-0.395093

N+t (WA +y(A+1) = 0. Using Jury’s testy|<1 if
M(1) = 1+34+4y,>0, (-1fT(-1)=1>0, y,>0(= y,<1) and
|B; >0, where:

- L - L L 1 0 0 0 0 Y,
29950 29960 29970 . 29980 29990 30000 B; - y1+y2 1 ol+lo yz y2
20 t Y1 + yz y1+y2 1 yZ y2 y1+y2
10f .
= of Note that|B; |>0 implies |B; [>0 and|B; [>0 if:
10f
-20 ;‘ o . Yo (V1 +Y, _1)2 <(1-ya-vy,- yzz)-
;2; 20 13 ) 5 0 5 10 15 ) o ]
saf ey The above analysis also indicates that there is no
2sf t- ) saddle-node and flip bifurcation and Neimark-Hopf
] T bifurcation is the only type of bifurcation in thiase.
20F
LOE oo nstsast *e .. ) For (Ll, L2) - (3,4),V1:%,V2:% and:
e s e 20 27 Y 32
22 P(t-1)
= FA) =N+ (v, + V)N + A2 +A) +y, =0.
L2.0»— 10-50510 15
Lsp Using Jury’s test||<1 if (1) = 1+34+4y,>0, (-
P St e . . D'(-1) = 19%>0(=y<1), Hy,>0(=y<1) and
1.7 18 18 2.0 21 22 | B;—’ >0, where:
P(t-1)
Fig. A.2: (a) Time series of periodic resonanceshef 1 o o [o o Y,

nonlinear system (8) with (p,q) = (1,3) and (2,
7) and quasi-periodic resonance with
p=1-+/3;(b) Phase plot of the quasi-periodic
resonance fo=+/2 for L, = 2, L, = 3 andB
=11,3=0.8,2a=1,A=0.005b=b,=0

Bi=|vity, 1 0|0 vy, V+y,|
y1+y2 y1+y2 l y2 y1+y2 yl+y2

Note that |B;I=(1-v)@-V,)[2(v,+Y.)+ 1+Y,)]
and|B; |=(1-v,)A-v,y¥. Hence}i|<1 if yi<1, y,<1. The

Sincel (1) = 1+2§1+y,)+y>>0, there is no saddle-node above analysis also indicates that there is nolsadd
bifurcation. It follows from (-3 (-1) = 1-(y+y2) +(yatys)- node bifurcation andy, = 1 defines both flip and

v, = 0 thaty, = 1. Hencey, = 1 defines a flip bifurcation Neimark-Hopf bifurcations.
boundary. Along the Neimark-Hopf boundary: A.5. Bifurcation Analysis for the ALP with (Ly,L) = (2,3)
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For (Ly,L,) = (2,3), based on the analysis in Appendix9. Chiarella, C. and X. He, 2000. The Dynamicshef t

A.4 (iv), along the boundarfy, = 3,3:00[0,2], A, = -1 and
Aoz = €™ with p = 2 cos(@®)[[-1,0], implying that both
flip and Neimark-Hopf bifurcations occur along this
boundary. Along the boundaf = 2, 3,0[0,3], (p.q) =

(1,3) resonance bifurcation occurs. 0.

The stability region By is transformed from the
parameter spac{, B,) in Fig. 6 (d), to the parameter
space ¢, w) in Fig. A.1 with the corresponding flip and
Neimark-Hopf boundaries indicated.

Table A.1 sets up the corresponding parameter
values for different types of resonances and quasi-
periodic bifurcations along the boundddy = 3 where
B1 =-2p and hence[-1,0].

Time series are plotted for (p,q) = (1,3), (2,Ada
p=1-+/3 in Fig. A.2(a). For (p,q) = (1,3) and (2,7), the
periodicity of the cycles are clearly identifiedorF

p=1-+/3, an aperiodic time series is obtained and a 3.

closed orbit is obtained from the phase plot oftthree
series in Fig. A.2(b).
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