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Abstract: This study deals with the quadratic stability dinéar state-feedback and output-feedback
stabilization of switched delayed linear dynamisteyns with, in general, a finite number of non
commensurate constant internal point delays. Thelteare obtained based on Lyapunov’s stability
analysis via appropriate Krasovsky-Lyapunov's fimtdls and the related stability study is performed
to obtain both delay independent and delay depéndeults. It is proved that the stabilizing switah
rule is arbitrary if all the switched subsystems guadratically stable and that it exists a (inegah
non-unique) stabilizing switching law when the systis polytopic, stable at some interior pointted t
polytope but with non-necessarily stable paramedéinns at the vertices defining the subsystems.

Key words. Asymptotic stability, Quadratic stability, Unifornstability, Convexity problems,
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INTRODUCTION inputs or outputs) and internals (i.e., in the ejtat
according to the signals they influence. Point yela
Switching systems are hybrid dynamical systemsnay be commensurate if each delay is an integer
composed of subsystems with their ownmultiple of a base delay or, more generally,
parameterizations subject to a rule orchestratimg t incommensurate if they are arbitrary real numbets.
switching law between the various subsystems. & thThe presence of internal delays leads to a large
last years, there has been increasing interegtbili complexity in the resulting system’s dynamics sitie
and stabilization for switched dynamic systéf whole dynamical system becomes infinite-dimensional
where appropriate switching laws decide througretim This fact increases, in addition, the difficulty the
which subsystem parameterizes the system so thatudy of basic properties, like for instance
stabilitg9 is guaranteed. In particular, switchingess are  controllability, observability, stability and stéization
applied®™® among several estimation schemes of aand robustness, compared to the delay-free case sin
given linear plant which are then used to obtainthe transfer functions consist of transcendent matoe
different time-updated parameterizations of theptida ~ and denominator quasi-polynomials®. By those
controller. The switching law orchestrating theivas  reasons, the design of exact or approximate pole-
estimators to obtain the active one which pararizeter placement controllers towards the achievement of a
the adaptive controller is interpreted as a highefinite or infinite closed-loop spectrum becomes of
hierarchical decision level of the whole adaptiystsm increased difficulty related to the delay-free €58k
while the basic adaptation scheme is the lowessi®c  Neutral delay systems, which are those where the
level. The switching law is designed so that thedelayed time-derivative influences the system’s
identification error is minimized in real time whithe  dynamic§*?®??! present even a higher analysis and
closed-loop system is guaranteed to be stable. YA kedesign difficulty. A great effort has been devotedhe
motivation for studying switched systems is thaiyna investigation of the behavior of time-delay systeims
practical systems are inherently multi-model in thesliding mode and in the use of such a property for
sense that several dynamic subsystems describe theiynthesizing appropriate controll&s23¢8 including
whole behavior depending on multiple environmentalapplications to vibrations in heat exchanger tuhed
factord’. On the other hand, time-delay systems offeraircraft dynamic®>®®. An important point is that
an increasing interest since many real — life exasp different types of delays appear in a natural wégnv
are subject to delays, like, for instance, popofati modeling discrete systems and some classes ofchybri
growth models, signal transmission, tele-operatiorsystem§°“. The objective of this study is to
problems, wear/peace models and actuator monitoreilvestigate the stability and stabilization projssrtof
processes with noisy sensors €fé.,Delays may be linear switched time-delay dynamic systems subject
classified as point delays or distributed delaysin general, multiple incommensurate known internal
according to their nature and as external (i.ethim  point delays.
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Notation: where, x®)OR" , u(t)OR™ , y(t)ORP are the n-
state, m- input and p-output, respective ,

*  The setsR (2), R* (Z") and Ry" (Z,") denote, _ P p-outp P % G(t).

respectively, the sets of real (integer) numbers, A, :i0 r ={1,2,..., 1}, are real square n- matrices

positive real (integer) members and non negativgjescribing, respectively, the delay-free dynamiog a

real (integer) numbers. o . the various delayed dynamics ar@l,,, O R™" and
* |t is said that a complex matrix is strictly

Hurwitzian, or a stability matrix, if all its C,) O R™P are real control and output matrices. The
eigenvalues have negative real parts.

* An unforced linear system with r finite
incommensurate internal point delays di state

initial condition of (1) is any absolutely continue
function ¢:[-h,0] -~ R" plus, eventually, a function of
' zero measure of isolated bounded discontinuities
equation X(t) = Ax(t) + > Ax(t-h,) has two defined orf-h,0], withx(0)=4(0)=x,, where

i=1

associate systems without delays, namely: h=Max(h,), with h;20, iLJT being the delays. The

I<isr

time functiong:[0,~) -~ N={1,2,...N} is a switching

Zl(t) :(A+ Z Ai\le(t) Which describes the above function among the various sybsysteﬁs defined at
i=1 time t by (1)-(2) foro (t)= iION being parameterized

so-calledcurrent delay-free system time-delay system jth the corresponding matrices,, A, ; , B, and
when h, =0; i=1,r; and z,(t)=Az,(t) =

which is called thenominal delay-free system which ~ Ci + JOT+ 10N Thus = 0{ =z, 7,2, } for
describes the above time-delay system widn =0, all t=0.The following set is introduced by
orwhenh, — o; i= 1,r. convenience:

Both systems have to be stable in order that thesis(h):{ Mo=(ALA, ,...,A,i)} such  that the

delay system is a stable independent of the deltys.  switched unforced systerll ; is g.u.a.s. with stability
system is said to be g.a.s. if it is globally astatipally

Lyapunov stable and g.u.a.s. If it is globally onily
asymptotically stable: satisfying ~ Max(Re(A)))=-¢"<-,  where

abscissa ;(-£*); ie. with all its eigenvalues

*  The l-norm of a matrix (or vector ) M is denoted h={ h..h, ,...,h,}, any iON . Note , in particular, that

— 1/2 T H ~
as [ M|, =442 ( MM ) In Euclidean vectors, Sig(o) is the set of parameterizations of the unforced

such a norm coincides with the Euclidean norm. A : .
" - S ) : 1.a) such that the delay- free systemis g.u.a.s ; i.e.,
positive definite (semidefinite) matrix M is dendte (1.8) su y ystemis g.u !

as M > 0 ( M20). A negative definite itis all the set of matriced\ ;, A, ;; j0 r, iON

(semidefinite) matrix M is denoted as M < 0 '

(M<0). such thal( A+ A +£|j is strictly Hurwitzian. Note
j=1

*  The notation for the subset {1, 2, ... , k} & " is

_ _ also thaSiE(fJ)D S . (6), Oe'0[0,e]. The
abbreviated ak . _ : "g . . .

following result is concerned with arbitrary swiict
laws while generalizing previous results*sh to

STABILITY AND STABILIZATION WITH multiple point delays.

ARBITRARY SWITCHING LAW

. S Th 1: The following it hold:
Asymptotic stability independent of and dependent eorem € foflowing ttems ho

on the delays: Consider the time- varying switched
linear dynamic system: i.  The switched unforced system, ,, is g.u.a.s. with

quadratic stability independent of the delays foy a
5 (1) arbitrary  switching law ¢:[0,0) -~ N and
>'<(t)=Aa(t)X(t)+2Aja(t)x(t‘hj)+Ba(t)U(t) (1) _Mi_(A“A: """ A e Sif(h) ’ DIDN, DhD[TOYOO}
=1 if there existe o R * and real matrice®=P" > 0,
S$,=S|>0, 0j0Or, such that the following set
y(t) =C 5(1)X(t) ) of matrix constraints holds:
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Q. =A/P+PA, +Zr:(sj +PA | STATP)<-¢l;
=1
OiON (3)

If (3) holds withg > 0 then the switched unforced
system 2 o(t) is g.a.s. With quadratic stability

independent of the delays for amy[O, 00) - N.

i. The switched unforced syster® () is g.u.a.s.
with quadratic stability for any arbitrary switckin
law o() ON, t=0 and any delays
h iD[O,h?], Oi0r, if there existe OR *and
real matrices P=P'> 0, S;,=S; >0 ,
S,;=Sy > 0, 0Oj,k OF, such that the following
set of matrix constraints holds:

:[Aj+§A{i] P+ P(Ai +zr: Aji]

i=1

Q.

+3 > hYS,, +Zlh?PAjiMi RI*M A} P< ¢l
£

i=0 k=1

OiON (4)
Where:

M. =(A A ..A,) ; OION (5)
R, = Block Diag ( S, Syy-iS i )

ORIy OF (6)

If (4) holds withe >0 then the switched unforced
systenm> o(t) is g.a.s. with quadratic stability
independent of the delays for
0:[0,0)~ Nand any delaysh ofo.n? ],
gigr.

Remark 1: Note that if (3)-(4) hold for some sets of

matrices S, S(li} , k,jOT then they also hold for
: 2 2

some real scalarsa; , B; with o] =B7>0,

jON. Thus, Theorem 1 (i) holds if:

ATP+PA, +Zr:(af | +8?PA, S]'A] P)

=1

<-¢gl; OiON

(Aiui A}] P+P[Ai +Zr: Aji]

i=1

(7.a)

any

+i:§}7ﬁhﬁl+

i=0 k=1

-Oi0ON

Zlh?,/}fPA“lvli RI'MTA]P< ¢l
=

(7.b)

Note that if Theorem 1 (i) holds then Theorem 1
(i) holds withh®=0 (iOF). Then, the stability
depends on the delays may be checked from (7.b) to
establish a range of maximum allowable delays.

2.2. Asymptotic stabilization independent of and
dependent on the delays. The results of Section 2.1
may be applied to forced stabilizable systems if a
stabilizing regulation control law is applied. The
discussion is limited to state and output lineadfgack.
The first definitions are first given.

Definitions 1: The switched unforced systeln ;) is

said to be globally uniformly asymptotically stabéble
(g.u.a.st.) [respectively, globally uniformly
asymptotically output stabilizable (g.u.a.o.st.)jithw
quadratic stability via a linear delay-free contiaok for

any arbitrary switching law : [ 0, 00) ~ N ifthereis

a linear regulation feedback control law
uch):KcM)X(t) with Kch)D{Kllev“vKN}
[respectively, an output regulation feedback cdrnaw
Ug)=K 2(0 Cc(t)x(t)] for some real matrices

K ,OR ™"[respectively, K °OR™®] ; OiON
such that the closed-loop system:

Zg(di

X0 = (A +B K oy C o) X0 + 2 Aoy x(t=h;)
=

[respectively:

X0 = ( Ay *B o K 2y C o) X0+ 2 Aot x(t-h;)1(8)

4

is g.u.a.s. With quadratic stability. The followingsult
whose proof is omitted holds.

Theorem 2: The following items hold:

i. Assume that the switched unforced systErg(t)
is not g.u.as. for all delays 0| 0,h’ | some
h°> 0, JiOT, for an arbitrary switching law
0,:[0,00)—> N (i. e. There is a nonempty set
N O Nsuch thatA ; is not strictly Hurwitzian
iON". Then,
condition for the forcedZ ;(;) to be g.u.ast

for a necessary and sufficient
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(g.u.a.o.st.) for all delayshiD[O,hiO] some (0 (t)DN, jOr) for real matrices K,OR ™",
hP> 0, OiOT, is that the pair(A,,B,) be KGOR™", KPOR™? and K{OR™?; jOF,

stabilizable (respectively, the tripléAi,Bi , Ci) iON specifying the controller gains. Define n x n real

be stabilizable and detectable) for &N . Those ~ MarCes:

conditions guarantee that the switched forcedA =A, +B K, ;
system s is g.u.a.st. (respectively, g.u.a.o.st.) . ' o
v _ A° —A.+BiKi°Ci ;i0ON (11)
independent of the delays provided tlﬂa& i || ;
jOT , iON is sufficiently small. ‘The following technical result, concerned with the
choice of the controller gains corresponding to the
delayed dynamics if the control laws (9) or (1@ tilsat

is g..as. for arbitrary switching law the closed-loop delayed dynamics is annihilated or
0.:[0,00) —~ N for all delaysh O [O,h ,Oj nearly annihilated.

some finiteh ?> 0, i OT. Then there is a (non- Lemma 1:
unique) linear regulation state-feedback contral la

ii. Assume that the switched unforced systany,)

U o(1) =K 4 x(t) with @ If (A ji B i) is a completely controllable pair
K o(1) D{K LK, K r} for some real then it always exists & ;OR ™" such that all the
zeros of the polynomial

matrices K ,0OR ™" [respectively, a (non-

unique) linear regulated output-feedback control
— 0 .

law Us()=K o Cc(t)x(t) with

pi(s)= De1( sk A; - B K ) (or,
equivalently, n of its n+1 coefficients) are loahte
in arbitrary prefixed positions.

K iODRmX"]; Oi ON such that the resulting ii- If (A i B ,Ci) is a completely controllable
and observable triple then it always exists a
. K J-OiDR ™*P such that all the zeros of the
quadratic stability for all delay$ ; [ [ 0,h? } polynomial

p5(s)=De( s-A -B K/ G) (or,

closed-loop systeng(t) is g.u.a.s. with

some finite h ? > h? , i0F, being dependent

o . . equivalently, n of its n+1 coefficients) are loahte
on the parameterization 'f(A i B ) IS arbitrarily close to a given set of prefixed pasits.
completely controllable (respectively, the triple jjj, |f rank( B, ) = m< n then for any given real matrix
(Ai,Bi , Ci) is completely controllable and ~

Ay it exists a unique

observable andMax (m,p)=n)forall iON. ~, _
K, =(BrB,)"B/(A; -A;) dgives the
Definitions 1 may be generalized in a natural way
for linear state and output- stabilizability viendiar
regulation delay- dependent control I&%&3>*% For
that purpose, consider the following control laws:

minimum value toﬂA i -A i (K i ) ”22 :
iv. |If rank( B, ) = n< m then for any prescribed real

matrix A, DR™", it exists a uniqueK ;i OR™"

u(t):KU(t)x(t)+;Kjgmx(t—hj) ©) suchthatAji:AL.
v. |If rank( B, ) = mand rank( C ) = pwith
u(t)=K 5, Cu(t)x(t)J';K?u(t)cu(t) x(t=h ;) (20) Max(m p)=n then for any given real matrix

~

} A ji 1 it exists a unlque matrix:

N

K joge) B{K 1 K o K K =(BIB,) B[ (A -A,)ci(ccl)® (12
0
N

} and such that gives the minimum value of

K %00 UK Sa K Sag) oo K Qo | |AL-AL (kD)2
1484
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vi. |If rank( Bi) :rank( C, ) = nwith unforced systemg ; , i ON, then it always exists
Max(m,p)=n then for any given real matrix a (non-unique) stabilizing switching  law
“, _ . . _ 0_:[0,oo) -~ Nwhich is piece-wise constant on
Ajio It exists a  unique  marix [a,), some reala=0, such that the switched
0 H o* H o* nxn
K i —Blocleag[ Ky ’0] with K7 DR forced systemZ ¢(,) is g.u.a.s. with quadratic
defined by: stability independent of the delays provided that
o : L A n : any of the conditions below hold:
Kji:(Blil‘Blih) (Aji_Aji)(Cli CJj) (13)

The pair(Ai rBi) is stabilizable for ali N and
a control law u(t)=K ,)x(t) is generated,
with K G(I)D{K LKL, K r}, for controller
gainsk , OR ™" is applied.

C.=|c],cl| are used withB,,, C,; being b. The tripldA ,B,,C,) is stabilizable /
square real n-matrices affiN . detectable for allidN and an output-feedback

- Lemma 1 might be used combined with Theorem 2 congro| law u(t)=K (1) Cc(l)x(t) is generated,
in the sense that a control law involving delaysves

to reduce the norm of\ ;i associated with the delayed
dynamics after feedback (defined by one of the two
equations in (11) depending on the use of stataitput

feedback) related to that &% ;; under the various given Furthermore, iError! Bookmark not defined. for
the set of unforced systenis; , iON, but there exists

gives exact matchingA i =A “ (prefixed arbitrarily)

where matrix partitions B, :lBli ,B,| and

0
)
with Kg(t)D{K ngKO} for controller

r
gainsk °gRrR ™.

conditions of controllability/ observability. Thesllows _
to accomplish with the conditions of closed-loop @ set of matriceK; DR™", iON and a set of real
asymptotic stability independent of the delays or t o N
increase the size of the maximum allowable delayscalars A;0(0,1) fulflling 2. Ai=1 such that
guaranteeing closed-loop asymptotic stability via =

_ N
state/output feedback. Q°=> 1,Q:<0, with Qg being redefined
k=1

ASYMPTOTIC STABILITY AND _
STABILIZATION WITH A SWITCHING LAW from Q,, by replacing A; - A;+B; K,

AMONG THE VERS-I\;ISCTIE?\AOF APOLYTOPIC (i DN), then the switched closed-loop systérrf,(t)

for the control law u(t)=K,, x(t) and some
The main result of this section follows below. . . _ )
stabilizing switching laws :[ 0, ) ~ N is g.u.a.s. with
Theorem 3: The following two items hold: gquadratic stability independent of the delays (eifen
(A..B,) and then( A, A B,) , is not stabilizable
i. Assume that there exist square real n—matrice%r all ioN)
P=P">0, S;=S[>0 (jOf), eOR " and

N ii. Assume that there exists square symmetric pesit
a N real scalai\ ; 0(0,1) fulfilling Z A =1, definite matrices PS,,, S,, (k,iOT) and some
k=1 N
_ N real scalars\, 0(0,1) fulfilling > A =1, such that
such thatQ=>" 1, Q,, < 0 with Q ,; defined in =1
i=1

P N , . , . .
(3), iON . Thus, for any initial condition, there is Q _; Q<0 with Q7 defined in (4)-(5),

a (non-unique) switching law:[ 0, ) — Nwhich iON. Thus, for any initial conditions, there is a
is piecewise constant ofia,«) for some real (non-unique)  switching law 0:[0,) - N,
constant a=0, such that the switched unforced which is piece-wise constant dnx, ) some real
systemZo(t) is g.u.a.s. with quadratic stability a=0, such that the switched unforced system
independent of the delays. @= 0 for the set of 2 s(t) is g.u.a.s. with quadratic stability dependent
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of the delays,l]hiD[O,hio], some h °>0, all is g.u.a.s. for zero control input guaranteed bg th

N
iON. If Q =0 for the set of unforced systems condition >’ A,Q, <0; i.e., it is g.u.a.s. independent

= . . . i=1
2, iON, then it always exists a (non-unique) of the delays at some interior point of the polgop
stabilizing switching |aVVO'_:[O,oo) ~ Nwhich is being the set defined by some combination of vestic

piece-wise constant o, ) some reala >0, defined by the matricesQ ., (iON) then there is a

such that the switched closed-loop systinﬁ,(t) switching law 0:[0,) - Nsuch that  the

is g.u.a.s. with quadratic stability dependenthaf t
0 0 iMTN same idea might be extended by switching closegd-loo

delays, oh, 0] 0 r_]i Ik sorr-u.a hi>0, all | D_N ' system for the state or output linear feedback uttu

provided that similar conditions as (a)-(b) in Item corresponding modifications given conditions aslasl

(i) hold. Furthermore, for any prefixed sét? for stability dependent of the delays . That means,

roughly speaking, that stability at a point insitle

o polytope implies stability at any interior point tie

A (j ar,i0ON ) and a positive real constapt polytope (for some switching law) even if the systis

not stable at any vertex. Note  that

Q>0 ~Q,<0- = Q>0 -~ Q,, <0 someilN

but only x7(t)Q,x(t)<0 =xT(t)Q, x(t)<0 for

> g(t) obtained under linear state feedback via ay| nonzero x (t) and alt=0 (***¥ for a delay-free

controller of gain Ko(t) D{ K,K,.. K r} is  system). It is now interesting to investigate qadidr
stability of a switched system composed of two

g.u.a.s. with quadratic stability dependent of thesubsystems with an (uncertain) polytopic-type

delays, Oh, O] 0,h{ ] for some switching law parameterization which are not necessarily stable.
. N1 Assume that the switched wunforced system
0:[0,0)- N.

2 G(I)D{ 21,22} is defined for allt=0by one of

Furthermore, ifQ = 0 for the set of unforced the two subsequent subsystems:

corresponding unforced switch@lcm is g.u.a.s. The

( iON ) . it always exist matrices

dependent om ? (i DN) such that for sufficiently
small ||A i ||3y (jDT, iDN), the switched

systemsZ ;, iON, but there exists a set of matrices
K,OR™P, iON and a set of real scalars Tox(t)=Ax(t)+ XA x(t-h ) i=1,2 (15)

j=1
N

A;0(0,1)  fufiling YA, =1 such that
i=1 Assume thatZ; (i=1,2) are uncertain polytopic

N : tems defined by:
G °=Y A,Q %<0, with Q a being redefined systems defined by
k=1

N N, N
from Q ax by replacing A, -~ A, +B, K °C, A=y AN A=Y AW (OT) - (16)
k=1

k=1

(iON), then the switched closed-loop syst&rf,(t)

for the control lawu(t)=K 9(,)C) x(t) and some

with quadratic stability dependent of the delayge(eif

with scalars p;, 0(0,1) ; i, k=1,2 subject to

— 2 Sia o ALK
stabilizing switching lawo : [ 0,0) - N is guas. 2 H,=1:i1=12;and real square n-matricég;’ and
k=1

(Ai’Bi Ci)and then()\iAil)\i B, ,)\ici) Cisnot AW i, k=1,2;jOr defining the delay-free and

stabilizable and detectable for &l N ).

conditions of Theorem 3 (i) imply that if a polyiop
system:

A 0(0,1) ,zN:)\i=1 (14)

delayed dynamics at the vertices. For simplicity of
. . _ exposition and mathematical proofs, it is assumetié
An interpretation of Theorem 3 is as follows. The sequel without loss of generality that the numbér o

extreme pointsN; =2; i= 1, 2. In order to make the

subsequent discussion nontrivial, the following
assumption is made.

xt)=3" {)\iAix(t)+Zr:A”x(t -h,)+B, u(t)};
i=1 j=1

' Assumption 1: Both ¥, i= 1, 2 are not quadratically

stable Oh,0[ 0,h? |, some h?>0, all i= 1, 2 ; ie.

i=1
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there does not exist real square symmetric n-negtric

2
P.>0 (i=1,2) such that: k=1, 2; kzzl)\ikzl; i=1,2 and real square n-

matrices P=P"> 0, Sy :SIj >0,

[Afk) +y AET)]TPﬁP(A;k) +y A(ﬁ)] <0; S«o=S4o>0 (k, jOF) such that :
i=1 j=1
i, k=1,2 (17)

S P RO IS P

k=1 k=1

i= i (k) . (k) ) ! ’ ) . )
i=1,2, there it at least one matr(mi +Y A Jfor +P|:A ’ (Ai')+z A(kl:{J+(1_A ij)(A(zoJrz AS)ZH
k=1

=)
J k=1

The matrix inequality (17) holds when for each{

k=1 or 2 which is not strictly Hurwitzian so thdtet o
polytopic systems, is not quadratically stable for Z Z h°s

o . + kkj+
i=1,2 at the corresponding vertex for zero deld3s. 0 k=1
continuity of the characteristic roots, there ismso
neighborhood of values of delays around zero sbaht ,
the corresponding polytopic system is not quadaéic =

stable ; i.e. there exish{ such thatZ ; (i=1,2) is not

quadratically stable for alh, 0 0,h?] . Note that if

NS PALM R M DAL )

+(1-2 J)(;‘i hePAOM ORI MPTALT Pj <-¢l

Assumption 1 holds then Theorem 1 cannot be appliedi, =1, 2 (19)
because of the instability or critical stability #ie

vertices. The following result, whose proof is dwenif, ASYMPTOTIC STABILITY OF A CLASSOF

is related to the stabilization of (15) via switofi UNFORCED NEUTRAL SYSTEMS

Theorem 4: The following two items hold under A standard class of unforced neutral systems
Assumption 1: involving a single point delay is now focused”off!

The extensions in the cases of multiple point dekyd

i. The switched systenZ ;,)is quadratically stable regulating inputs are direct by using direct exiems
] ] . with the tools of this class of systems. They arstted
independent of the delays, via some non-uniquey the sake of simplicity. Consider the neutrateys
switching law 0:[0,0) ~ 2={1,2} , if there

exist constant real scalaes>0, A,, 0(0,1);i, = s X() = A, x(1)+ AL

(20.a)
2 _ x(t=h)+D,, x(t-h)
k=1, 2;> A,=1;i=1,2 and real square n-
k=1
matrices P=P'> 0, S;=S[>0 (jOT) such =A_, x(t)+A_ . x(t-h)+D,
that: (20.b)

. t .

x(t—h)—Wg(t)_[t_h x(r)dr

[/1 LAY +(1-2 iJ.)A;“}T

F’+F’[ﬂ. AD +(1_/]| )A(z”] where, the fupction of iqitial conditions is any
! ! absolutely continuous functiop:[-h,0] - R" plus,

A4 [Zr: S, +PAD STAOT p] eventually, a function of zero measure of isolated

k=1 bounded discontinuities defined ofi-h, 0], with

+ <-¢l
+(1_)| ij)[i S, +PAUSITANT P} x(0)=¢(0)=x, and W, is chosen so that
= Ay =A ,y* W s strictly Hurwitzian for all
=12 (18) _ ~ .
o(t)ONand A1) T A1)~ W) with

ii. The switched systerrio(t)is quadratically stable - [0,©) ~ N being the switching law. All the

for all delaysh;, I][ 0,h’ ] someh |° >0 (i0T) matrices of parameters in (20) are square reatdgrm
_ with:
via some switching lavw : [0, 00) - 2, if there

exist constant real scalags>0, A, D( 0,1); i, A
1487
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Aoty D{A whA e A 1N}
DO(I)D{DI,DZ,...,DN} :
W O{W W, Wi}

i.
(21)
for all t=0. SinceAG(‘) is strictly Hurwitzian for all

t=0, (A, +W,) is strictly Hurwitzian for alliON .
The following result is related to the stability(@0) via
switching:

Theorem 5: The neutral systena ;(t) is g.u.a.s. for all

delays hD[O,h O] and someh®> 0 for any arbitrary
switching law 0:[0,0) - N, if |D/<1 and

(A +W,) is strictly Hurwitzian(iON ), provided that

there exist square real positive definite symmetric ii.

matrices P, S, R and T such that:

M, =Block Matrix( my; i,j=1,3)< 0
Ny =(A+W,)TP+P(A +W, )+
R+AT(S+h°T)A +h°PW, T 'W]P

(22)

My =M 5= P(Al_Wi)+AiT(S+hOT)Ali :
My =N5=[P+A](S+h°T)D, | alliON (23)

The proof of the subsequent result follows

of the last block matrix of

Theorem 6: The following items hold:

The neural systent '0(1) is g.u.a.s. for all delays

hD[O,hO] and someh®> 0 for some (non-

unique) switching law 0:[0,0) - N, if

|D.| <1and (A,+Wi) is strictly Hurwitzian
(iDN), provided that there exist square real
symmetric n-matrices P, S, R and T and some set of

N
real scalarsN O\ , >0 satisfying >° A, =1, such that

i=1

|'|=ZN:Air|i<0, with the matrices; (iON)

bein;defined in (22)-(23).

Assume that X ;,(t) Mz, .,z 2’} for any
switching law 0:[0, 00) -2 and all time
t=0where 2 | , being defined by (20) whew(t)
=i02 :{ 1 2}, are not quadratically stable with
A=A +W s
A ,=A,-W , and|D,|<1for i=1,2. Assume also

strictly Hurwitzian,

that Z'i (i=1,2) are uncertain polytopic systems
defined by:

immediately from Theorem 5 , via Schur’s complement 2 . 2 AT
Y P AFZ w, A® 'Au:ZuikAiF)(JDr) (25.2)
k=1 k=1

M, =Block Matrix( m
test for negative definite!.

11,j=1,3)<0, in the equivalent

Corollary 1: Theorem 5 holds if:

n = Block Matrix( n,; i,j:2,3)< 0
(A +W,)TP+P(A + W)+R+AT(S+ " T)A
-(Mlzi’ M 13i) (l_l l11i)_1(M 120 M 13i)T<O

all iON (24)

provided that the four

2 2 .
Wi:Z Mo W5 Dj=> My DX (JOT)(25.0)
k=1 k=1
via real scalarsy;, 0(0,1) ; i, k=1,2 subject to

zuikzl; i=1,2. Then, there is a non-unique
k
switching law 0_:[0,00) ~ 2such that X 'G(t) is

g.u.as. for all delayshO[ 0,h°] and someh®> 0

subsequent linear matrix

constraints hold for some square real symmetric n-
Now, the polytopic structures of Theorems 4-5 arenatrices P, S, R and T and some set of real scalars

extended for the given class of switching laws \rhic
conditionally stabilize the switched system under
convexity-type constraints. The extensions of Ak t
results in this section to the case of forced systare
directly obtained by using linear state/output fesk
laws
stabilizability/detectability =~ assumptions  of  the
appropriate parameterizations of the subsystemsieSo
stability results for the neutral system of thistgmn

based on the properties of its subsystems afe(Ai“),Wi“),Aii“,Df”)

summarized in the following result.

1488

N(i,j)=A,NP+(1-4,)nP<0;i,j=12,

_ 2
N O, >0satisfying " A, =1; i=1, 2:
k=1

(26)

where T1 i(j) is defined similarly asl1; in (21)-(22)
under either controllability/observability —or jth the following replacements related to Theo&m

(A.W,.A,;,D) -

1i=1, 2
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Note that if all the parameterizatiors,” are not 2.
stable thenx,0(0,1)for all iON in Theorem 1 (i)
since N =n ,<0is impossible ik, =1, A, =0 for some
k#iON . For Theorem 6(ii) the above constraint has to3-
hold as well by the same reasons that those pounied
related to Theorem 4. The extension of Theorem)6 (i

to general parameterizations defined by (25) with™
N, >3; i=1,2 is direct by using more constraint (26) by
involving the corresponding necessay' constraints

in the same way as Theorem 4 is extendable to this

situation. The extension is omitted for the sake of5.
simplicity.

CONCLUSION 5

This study has been devoted to investigate the
stability and stabilization properties of linearitived
time-delay dynamic systems being subject to, in
general, multiple incommensurate known internahpoi
delays. Firstly, the uniform asymptotic quadratic 8.
Lyapunov stability (both independent of and depande
on the delays) for unforced systems has been
investigated under arbitrary switching laws in non-9.
polytopic systems parameterized by a finite sestalble
subsystems. The results have been extended to prove
the existence of stabilizing switching laws in golyic
systems under testable convexity-type conditionstfe
vertices. Further stability results have been dgtifrom
forced systems for linear state/output feedbackrobn
laws under certain controllability and
observability/stabilizability and detectability atitions.
The stability results have been also extended ¢tass
of switched polytopic systems and two switched
systems consisting of a set of polytopic subsystems
subject to mutual switchings through time, whicHilfu
a convexity-type condition by each combination eftiss
of vertices, one corresponding to each polytope.
Numerical simulated examples have corroborated some
of the obtained results.
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