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On the Stability of a Certain Classof Linear Time-Varying Systems
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Abstract: This study firstly considers the exponential dtgbof unforced linear systems of slowly
time-varying dynamics. Possible switchings of thstem structure to unstable dynamics during certain
finite time intervals are admitted. The maintenaatglobal exponential stability does not neces$gari
require at most a finite number of switchings ie ttynamics while infinitely many switches can also
lead to stability. The mechanism to achieve stighiinder infinitely many switches in the dynamiss i
to maintain the system in the stable region dutinge intervals of sufficient large length without
switches provided that the system dynamics evoatea sufficiently small rate with time. Special
attention is paid to the robust tolerance for a<laf state disturbances and to the case of timgrega
matrix of dynamics that possess either piecewisstenmt or constant eigenvalues. The obtained sesult
can be relevant for their use in stability issussthie cases of multimodel non- adaptive and adapti
control with improved transient performances.
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INTRODUCTION time for the final time of each last preceding
stabilization interval. A time-scheduling rule issigned
It is well known that unforced piecewise - constan for switching from a controller to another possibiee,
linear systems, whose associated matrix of themdigsa  within a prefixed finite set of stabilizing contleis,
takes values in a set of strictly Hurwitzian masiare ~ While maintaining the global exponential stability.is
not guaranteed to be exponentially stdfleinstability ~ @S0 proved that the system exhibits robust exptaien
can occur when the infinity of switches betweenStab'“_ty agams} state disturbances that vary faster
elements of that set is performed. However, expialen than linearly with the state at small rates. F”.’“'Be'
stability is preserved when the number of switcles thF." system has proven to _be robustly stable 'r.‘s‘@f“
finite or when infinitely many switches occur whigd glnmatg boun_dedness against a class of non- listae .
the set of Hurwitzian matrices admits similar upper ependent _dlsturbances yvhen _the unforced _dynam|cs
lower triangular forms under the same transfornmatio ha\{e assoc!ated sta blg plecewise constant (_algm;valu
during certain stabilization time- intervals of ficiently

matrix. o _ ] large lengths.
The above last situation has been mvestléﬁ&ted In the performed stability analysis, it is takeoi

and pointed out to be very restrictive in the sethse (?ccount the fact that, in general, well- posed
r

only systems being direct extensions of decouple ansformations of coordinates on linear time- i
scalar and/or second- order systems can be coedider vegy

A known surprising result is that time- varying &yas systems dg not necessarjly preserve possiple .isllabil
with constant strictly stable eigenvalues may pepropertie$®. The mechanism used for establishing the
unstable if the parameters of the dynamics mawirat ~ obtained stability results is to describe the spste
vary at a sufficiently small slofé The problem of dynamics in a normalized time-varying canonicahfor
switching operations between configurations ofwhose upper off-diagonal entries are of sufficientl
piecewise continuous stable dynamics is of growingsmall absolute values compared to some prescribed
interest in multimodel design with improved traméie positive threshold. A Bohl transformation relates the
performances. The related problem of time- varyingyiven state- space description to the canonical one
dynamics of piecewise constant eigenvalues are Qinose Jordan matrix is piecewise constant in theesa
relevr_;mt interest in adaptive control. In this cabt_a use way as the eigenvalues of the original dynamicsisTh
of switches between several reference models sefulu - o .

the original description is ensured to be stabl¢hé

tool to improve the adaptation transient perfornesnc - o .

In this study, the stabilization problem is foctise system exhibits stability in the transformed cooadés
on by keeping a slow time- varying system withabl since Bohl transformations preserve the stability
dynamics during (non-necessarily consecutive) eda propertie§).

stabilization time intervals. These intervals congse

for possible large deviations of the equilibriunorag ~ Notation: | ||, denotes thé; - matrix or vector norms.
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Card (.) is the finite or (denumerable) infinityrdenal Theorem 1. Consider the system (1) under the
of the (.)- set. following assumptions.

R andR T denote the sets of real and positive real
numbers, respectivelyR ¢:=R* U {0}. A similar
notation stands for the sets of integers by reptpRi to
Z. Finally, C is the set of complex numbers.
sp (.) is the spectrum of the (.)- matrix ( i. the set of
its, in general, complex eigenvalues) ssg (.) is the

tol A2 [“TA )| 2dusk 2 ‘ ith
essential supremum of the real (.)- function on I, L HA(T)HZdTSK dA (t’t+T )T+KA(t’t+T)WIt

namely, essup(.)=sup(.) for any | , 01 such thatthe in general, time-interval dependent constants

A.l: A (t) is bounded and of piecewise continuous
entries which are also time-differentiable for a0

where such time-derivatives exist (i.&,5 excluding
all possible isolated discontinuity points).

ot Kaa(t,t+T)<o; 0<sK, (t,t+T)<oo for all t
set| - IO is of zero measure. >0 and all finite T 0.
"> "and '= "' stand for definite and semidefinite
positive matrices, respectively. A.3: There exists a non empty and (in general) non

Mmax (.) andA. min (.) denote, respectively, the connected stabilization time interval of infiniteeasure

maximum and minimum eigenvalues of the (.)- matrix. Sa ‘= U[t,t,), where s0Zz" is the stabilization
Superscripts T and * stand, respectively, for the s

transpose and complex conjugate transpose of arvectindicator set (i e., the indicator set of the Bizdtion
or matrix. interval) which consist of the ( in general disjin

The notation exp (f) denotes the exponential offcountable union of connected time inter\[aJstHl), i
and is used, instead of e f, when f is a complex o 1, such that:
cumbersome expression.

Sp:= U ['[i -ti+l) is the stabilization time 1. The__eigenvalues of A (t) are strictly inside the

i0s stability boundary for atl (1S 4.

interval, namely the, in general, the disjoint umiof 2 Assumption A.2 holds for all bounded time interval
time connected subintervals tt,; . 4) ( i.e, the [ti ,ti+1)DSA (i0s) with sufficiently small
connected components 8f ), i US(SUZ * being
the stabilization indicator set) of durations ondéhs (
or, more rigorously speaking, measures) given gy th
switching time- scheduling rule where the matrix of ~ Card (S) = s <« so that t; ¢ is finite) then

dynamics A (t) has eigenvalues of strictly negatieal
parts.

D, D andD (t 4 tp are the sets of discontinuity
times of the matrix of dynamics A (f) on the
stabilization intervalS p its complementaryS, and

Kaalti ti+1), al to[t,,t,,]. If there is an
interval [ti , oo) Os, of infinite measure ( i. e.

Assumption A.2 holds for any finite or infinite tam
interval [t t+T]0[t; @) with i US.

There is at most a finite sBt; of discontinuities of

A(t) within each stabilization subinterval jtt; , 1)

the connected time intervalj[tt ), respectiverD(ti, 0SA(i OS) of finite or infinite measure (with

ti+1 ) is simply denoted bl ; for consecutive times;jt  eyentual switches being subject to Assumption A.2.1
being members of a sequence of time instant§pe discontinuities satisfy t = t '+ T * for any
{ti i 2 1} as, for instance, whe[ti , ti+1)D Sa prefixed finite T *> 0 and for all t ', tfID ; with t "> t

for i IS, "andi OS.
There is at most a finite s@ of discontinuities of
STABILITY RESULTSFOR SLOWLY TIME- A®in S,=R;-S, witheo > (t"-t) =T >0 for any
VARYING LINEAR SYSTEMS two consecutive discontinuities t ', ©D.

Thus, the system (1) is globally exponentially
Consider the homogeneous linear time-varyingstable provided that either:

dynamic system:
a. Card § =s <w; i e, [t ,»)0S,for some
arbitrary finite tj , or

Sa= U/t 1) with Card §) = timesnsists of

igs

x(t) =A (t)x(t);x(0)=x (OR " 1)

where, A: [0,00) —»R™". The subsequent stability b

result holds: infinitely many stabilization time subintervals of
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finite lengths T =t;.,-t; 2Max(T;,T") for within the stabilization time subintervals. A (@rc
: . have critically stable and/or unstable eigenvalues
t . :
Some appropnate sequel{rcle>o,| DS} outside Sp- Furthermore,
The perturbed system esssup, s, (|| A, ) can be large out of the

X()=A(t)x(t)+F(t,x(t)) is robustly globally

exponentially stable i| F(t, x(t))]|. < f.Ix(t)|l, for

stabilization time subintervals.

a sufficiently small positive real constant f. The mechanism that allows the achievement of the

stabilization is the maintenance of the system hdyo

Comments 1: Theorem 1 is much more powerful than some appropriate minimum time after eachdS, ;

7

related previous results used because of the je. to build a set of stabilization time subinas of
following features: sufficiently large lengths T. Such a strategy makes

a.

A (1) is allowed to possess critically stable aven pOSSib.le to compensate fqr poor transient behaviors
occurring from pervious time intervals out of the

unstable, eigenvalues on finite time intervals. Thestabilization interval. In ceneral. the lenaths the
casest ([t ti.1)OS, With A (t) = A (strictly - ng ’ 9

stabilization subintervals should increase as timaber

Hurwitzian) and sp (A (t) )=?\§ LUC:j=1,2,., of previous discontinuies and the value
o } with Card () = » are included in Theorem 1 essup (HA(t)HZ) increase but they are not
where S is the indicator set ofS A (i t0S 5

: o . dependent on the initial conditions of the systeh (
e:,| Di? [t' ’t'*l)D Sa- In the forr.nulat|on Note also that A (t) can be stable, critically $abr
givert"" only the case CardS[ < e with tj .  even unstable out of the stabilization intervak.i, for

<o of Theorem 1 was considered, i. e., a finitet US A . No specific stabilization strategy is taken on
set of switches between different dynamics. In thisS, even if eventually ( the eigenvalues of A(t) ame i

context, the proposed formalism is useful for itsihe stable region at certain subintervals. Howetre,
potential application in multimodel or adaptive global exponential stability is ensured by the pwad

multimodel design with possible infinitely many girateqy of selecting the lengths of the stabilizatime
switches. Note that the multimodel design is ag,pintervals.

powerful tool to improve the transient behaviors.

Note also that it is required for the stabilization yample: First, note that, in general, the stability of a
interval S 5 to be of infinite measure. Thus, either jinear time-varying system (1) cannot be judgedetas

[t o ) 0S,,somet <o and Card §) =s  ©n the eigenvalues of A (t). For instance, if:
s! ! S

< .oo, or SA consists of the |nf|n|.te countable A(t):{ —1+15 cos? (1) 1—1.55in(t)cos(tJ
union of disjoint connected time subintervals, [t 1-15 sin(t)cos () —1+1.5sin?(t)

+ 1) of appropriate finite lengths; = t -t ;

which depend on the system parameterization anthe ( the eigenvalues of A(t) are constant andrglwe-

previous interval lengths 0% 5 and are obtained 0.25% 0.25\/_7]. However, the system (1) is unstable,

in Appendix A (eqgns. A.28). even in the absence of switchings in its dynansitx;e
A (t) is allowed to possess a finite set ofits state transition matrix is

discontinuities, whereA(t) is impulsive, within (t 0)_ e®'cos(t) € 'cos(t)
each stabilization subintervfdi .ti+1)D S, and a PALE)= -e%'sin(t) e 'cos(t)
finite set within S, (i. e., out of the stabilization system (1) with the above A (t) is exponentiallgtse

time interval). As a result, the total number of (Assumptions A.1-A.2 of Theorem 1) if:
discontinuities of A () orS 5 can be infinite since

J M Also, the

a. There are no switchings and the eigenvalues
(constant or not) of A (t) are strictly stable df a
However, when|t; ,«)0S,, some {; <o) time
b. The ratio of the integral of the square- norm time-
. derivative of A (t) on any time interval related to
U Card(D i )<00 ) the length of such an interval is sufficiently smal
i=1

SA consists of the infinite union of finite intervals.

the total number of discontinuities o8 A is

Assume now that the non constant part of A (t) has
a very small leading coefficient so that the abolu
linear ratently small linear rate with time only values of the time- derivatives of its entries angall
1242
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enough to accomplish with Assumption 2 of Theorem 1
In particular, the above matrix A (t) is replacedhw

-1+0.1co¢ (1) T 0.05sin(t)cos(
] ] whose constant
-1-0.05 sin(2t) - # 0.1siA ()

stable eigenvalues are —0:95% 0.03j for all time.

Then, the resulting system (1) is exponentiallyblsta
and satisfies Assumption A.2 of Theorem 1. If now

—-1+¢cos () £ sin(t)cos(t L~

A(t)= 2 =A +A(t)
—1—% sin2t) - L+e sif (t)

with A*{‘l lJ being constant and Hurwitz and
_1 -

. Cosz(t) —M . .

A(t) =¢ sin(21) with  [Jbeing a
—T Sinz(t)

positive real constant, it follows by taking norinsthe
solution of the corresponding system (1) that:

Ix1l, = sup (| xt)],)sy2e' | x0]

6e S
voe S (1 <6l

So that the time-varying system is guaranteecketo b
globally exponentially stable for provided that no

switches in the dynamics take place. Exponentia]f

stability is also ensured if the constant parametes
replaced by a piecewise constant a@=¢; < € for

all tI:I[ti ,tiﬂ) and any finite or infinite sequence of
time instants {t;, i =1} such thatt,, -t,>2T" >0 for
any arbitrary and finite T *. Now, assume that A*ot

i-1

the exponential stability of this system is presérv
T, z (tk+1_tk)

( J for
k=i=i o(i)

all integer i belong to the indicator set of the
stabilization interval (i.e.,; is the initial time of some
connected component of the stabilization time irgBr
and any arbitrary elapsing time T * > 0.

from Theorem 1 ift. , = Max

i+1 =

STABILITY OF A CLASSOF FORCED SYSTEMS
WITH PIECEWISE CONSTANT EIGENVALUES

Through this section, the stability of the forced
linear time-varying dynamical system:
x(t) = A(t) x(t) + F(t,x(t)) + G(t,x(t ;

x(0)=x,0R" (2)

is investigated. It is assumed that the unforcestiesy is
exponentially stable according to Theorem 1 witha th
eigenvalues of A (t) being piecewise constant and
[Pt x(t)], < M| x®)]5 ;
|Gt ()], < v(®)

(3)

some real constant® >M >0 and 0O<a<1, some (in
general state- dependent and nonlinear ) real vecto
functionsF:R;xR" - R" ,

G:R;xR" - R" of disturbances and some scalar

unction y:R? - R{ fulfilling that !im(J'lm y(r)dr):o

for any finite wOR*. It is shown in the following that

Lyapunov's stability still holds if the lengths tifie
stabilization subintervals are chosen sufficiehélsger
than those required by Theorem 1. The lengths ef th
stabilization subintervals in Theorem 1 ensure that

already constant but it switches between the valuesomogeneous version of (2), namely, the unforced

-1
-1

(exponentially stable) and

SR

A= 11 (unstable) and furthermore,
-1 1
cos? (1) _sin(2t)

A(t) =¢(t)

, with & () =¢; <€ for
_sin(2t)
2

sin?(t)

all tO[ t,,t,). The switchings betweea | (i =1, 2)

system (1), is globally exponentially stable. Hoeev
larger interval lengths can be needed for ensuittieg
stability of (2) due to the presence of perturbaior he
LyapunoVv' s-type stability results obtained in seguel

are based on the achievement of ultimate boundsdnes
for all possible trajectories of (2). The subsequenult
holds.

Theorem 2: Consider the forced system (2) - (3) whose
homogeneous part satisfies all the assumptions of
Theorem 1. Assume thaf s is the number of distinct

are assumed to occur in the same sequence of timgaple configurations of A(t) ofR § but the number of

instants {t; i =1} fulfilling that t;.;, —t; >T " >0.

Assume that[t t

i—ig(i) * M4 (i) -ﬂ.) and |:t| 'ti+1) are tWO
consecutive time intervals whefe” =A ; so that they

can be potentially used as stabilization subinierim
the sense of Theorem 1. Assume that at least oibehsw

switches among them can be either finite or infinit
Thus, the following two propositions hold:

i. Assume also that all the switchings in its dyieam
occur between sets of strictly stable constant
eigenvalues; i.e., sp (A (1)) is piecewise constamd

consists of strictly stable eigenvalues for all

of the dynamics in- between both times subintervalstm[ti ytiﬂ)DSA =R; (i0s={1,2,..,9) with S,

occurs withA "=A ", ande(t)<E for all time. Thus,

being empty.
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Thus, the forced system (2)-(3) is LyapunoV' shy Theorem 1 for the unforced case. The increaskeof
stable with ultimate boundedness if all the memludrs lengths of the stabilization time subintervals edso be
the sequencéTi ) DS} are sufficiently large required when some time intervals, whose eigensalue
compared to their lower thresholds provided Dbyare stable, are not stabilization time intervals tfie

Theﬁcrem 1. _ | ‘A o] SENSE of Theorem 1) since their lengths do nailftie
- one or more eigenvaiues o (t). are C”F"Va minimum requested stabilization thresholds.
stable and /or unstable over some finite subinterva . .
= Generally speaking, the increase of the lengths of

—_p t_ ) .
S'I/? I'__ Ro ,SA thet;\l the'fr:)rcle'd systc;m (2; ((13) 'S the stabilization subintervals increase as thetfengf
still Lyapunov' s stable with ultimate boundedness ossible intervals outside the stabilization setéase.
for some appropriate sequence of length . ) L
{T- i DS} of the set of disioint subintervals n particular, such lengths have to satisfy theimim

e ) thresholds established by Theorem 1 in order to

Withi_n Sa _WhiCh are possibly larger than those guarantee the exponential stability of the homogase
obtained in Theorem 1 for the homogeneoussystem_

system.

Comments 3: First note that the results in both CONCLUSION

Theorems 1-2 are of sufficient- type since thewqls
are based on the application on Gronwall' s Lemnah a
Lyapunov' s theory. In that way, stabilization is
potentially possible under weaker conditions. Hoavev
it is obvious by using contradiction arguments ttat
there exist infinitely many time subintervals, eash
finite length, where the dynamics is unstable, thea
necessary to choose the lengths of the stabilizaitioe
subintervals sufficiently large to compensate fhe t
local instability generated by the unstable oricaity
stable dynamics during preceding time subintervals.
The interval lengths of the stabilization subixtds
of Theorem 2 are proving to be at least as largbese
requested in Theorem 1 in order to keep the exg@ien
stability of the unforced system (1) during the qass
of stabilization of (2). Such an exponential st#pibf
(1) ensures that the transformation of coordinatieish

This study has dealt with the robust exponential
stability of slowly time-varying linear systems vg®
eigenvalues of the dynamics are not necessaritgdai
for all time. All the eigenvalues are assumed to be
strictly stable during certain, in general, possibl
disjoint and connected stabilization time subindésv
which have a duration exceeding some positive
minimum threshold. The choice of lengths of suacheti
subintervals from an appropriate time- schedulinig r
has been used as the stabilization key tool obtlezall
time-varying system.

In that way, the unforced system becomes globally
exponentially stable. It may also become robustly
globally exponentially stable with the same set of
stabilization time subintervals as in the unforaade
under state-dependent disturbances. The robust
is used in the proof of Theorem 2 is a Bohl €Xponential stability is achieved if the disturbesi@re

transformation and thus, preserves the stabilagnfthe ~ Sufficiently small and furthermore, their norm gmwt
original coordinates. Note at this point that, carity to ~ Most linearly, with sufficiently small slope, witthe
the time- invariant case, not always well- poseO|state norm. In the presence of a class of nonligede-
transformations of coordinates of linear time- vagy —dependent perturbation and / or vanishing disturesn
systems preserve stabilfly In that way, firstly the the system has proven to be locally exponentiadiple
stability is proved in terms of ultimate boundedne$ around the equilibrium.

the system in the new coordinates obtained from tha  For bounded larger deviations of the initial
transformation. The system expressed in the ofiiginaconditions from the equilibrium, the system is Istil
coordinates is also stable as a result of thetfattthe globally Lyapunov' s stable with ultimate boundesie
transformation of coordinates used is proved toabe provided that the possible switches in the system
Bohl one. Thus, if all the switchings in the dynasii dynamics either end infinite time or, after sommité
take place between distinct stable configuratidrent time, all switches (if any) occur towards configimas
the choice of interval lengths provided by Theorgm involving higher stability degrees than each curren
for the homogeneous system is proved to guarantegynamics.

Lyapunov' s stability with ultimate boundedness(f)
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