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Abstract: This study treats the probabilistic safety stock n-items inventory system having varying 
order cost and zero lead-time subject to two linear constraints. The expected total cost is composed of 
three components: the average purchase cost; the expected order cost and the expected holding cost. 
The policy variables in this model are the number of periods Nr

* and the optimal maximum inventory 
level Qmr

* and the minimum expected total cost. We can obtain the optimal values of these policy 
variables by using the geometric programming approach. A special case is deduced and an illustrative 
numerical example is added. 
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INTRODUCTION 

 
 In many situations demand is probabilistic since it 
is a random variable having a known probability 
distribution. All researchers have studied unconstrained 
probabilistic inventory models assuming the ordering 
cost to be constant and independent of the number of 
periods. Hadley, et al[4] and Taha[6], has examined 
unconstrained probabilistic inventory problems. 
 Fabric and Banks[3] studied the probabilistic single-
item, the single source inventory system with zero lead-
time, using the classical optimization. Also Hariri and 
Abou-El-Ata[5]  deduced  the  deterministic  multi-item 
production lot size inventory model with a varying 
order cost under a restriction: a geometric programming 
approach. Recently Abou-El-Ata, et al[1] studied the 
probabilistic multi-item inventory model with varying 
order cost under two restrictions: a geometric 
programming approach.  
 The aim of this study is to investigate the probable 
safety stock multi-item, single source inventory model 
with zero lead-time and varying order cost under two 
constraints, one of them of the expected holding cost 
and the other on the expected cost of safety stock. The 

optimal amount of periods
*
rN , the optimal maximum 

inventory levels 
*
mrQ and min E (TC) are obtained. 

Also  special case is deduced and an illustrative 
numerical example is added. 

 
Model development: The following notations are 
adopted for developing our model: 

 
Cpr  = The purchase cost of the rth item, 

Cor (Nr) =The  varying  order  cost  of  the  rth item per 
cycle 

Chr = The holding cost of the rth item per period 

rI  = The expected level of inventory held per rth 
cycle 

xr = A random variable represent the demand of 
the rth item during the cycle 

F(xr) = The probability density function of the 
demand xr 

E (xr) = The expected value of the demand xr 

=

ru

rl

x

r r r ur lr
x

x f (x )dx , where x and x∫
are the 

maximum  value  and  minimum value of xr  
Dr =The annual demand rate of the rth item per 

period 
E (Dr) = The expected annual demand Dr 
Qmr  = The maximum inventory level of the rth item 
Nr = The  number  of  periods, cycle,of the rth 

item (a decision variable) and a review of the 
stock level of the rth item is made every Nr 
period 

υ = The positive value representing a part of 
time for safety stock 

K1  = The limitation on the expected holding cost 
K2  =The limitation on the expected safety stock 

cost 
E (TC) = The expected total cost function. 
 
The model analysis: Consider an inventory process in 
which a review of the stock level is made every Nr 
period, r=1, 2, …, n. An amount is ordered so that the 
stock level has returned to its initial position designated 
by:   Qmr,   r=1, 2, …, n.   To   avoid  shortage during Nr. 
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Fig. 1: Inventory system with safety stock 
 
Periods we must maintain a safety stock absorbing 
demand fluctuation. Also, this is done maintaining the 
quantity Qmr=xur for any cycle Nr. Hence the resulting 
safety stock, Drv, meets the exceed demands cycle Nr. 
The periodic inventory system is exhibited graphically 
as shown in Fig. 1. 
 The expected annual total cost is composed of 
three components: the expected purchase cost the 
expected order cost and the expected holding costs as 
follows:  
 

n n
or r

pr r
r 1 r 1 r

E(TC) E(PC) E(OC) E(HC),

C (N )
E(PC) C E(D ), E(OC) ,

N= =

= + +

= =∑ ∑
 

 
And: 
 

 

n
hr r

r 1 r

C I
E(HC)

N=
= ∑

 
 
Where: 
 

 

r
r r mr

E(x )
I N Q

2
 = − 
    

 
And: 
  

 r r rE(x ) E(D ) N=  
 
Then:  
 

 

[ ]n
hr mr r r

r 1

C 2Q E(D ) N
E(HC)

2=

−
= ∑

 
 
 The Optimization of the decision variables Nr and 
Qmr can be performed if we assume that the maximum 
demand during the cycle, xur, is related to the expected 
demand during the cycle as: 
 

ur r r r r rx E(x )g(N ) E(D ) N g(N )= =   
 
where, g (N) is a relational function which consider to 

be: 

 

r
r

r

N
g(N )

N

 + υ
=  
    

 
 Hence, the following form gives the expected 
holding cost per period: 
 

n
hr r r

r 1

C E(D )[N 2 ]
E(HC)

2=

+ υ
= ∑

  
 
 The order cost per unit is a varying function of the 
expected number of periods, Nr, which takes the 
following form: 
 

Or r or rC (N ) C Nβ= ,  
 
where, Cor > 0 and 0.5 ≤ β <2 are constants real 
numbers selected to provide us the best estimation of 
the cost function.  
 Our objective is to minimize the relevant expected 
annual total cost function, according to the previous 
assumptions of the model: 
 

1
pr r or rn

hr r rr 1
hr r

C E(D ) C N
E(TC) C E(D )N

C E(D )
2

β−

=

 + +
 = ∑  + υ    (1) 

i.e. 
 
 Under the following constraints: 
 

n
hr r r

1
r 1

n

hr r 2
r 1

C E(D )N
K

2

C E(D ) K

=

=

≤∑ 

υ ≤∑
   (2) 

 
The cost of safety stock insurance is given by the 

last term in the equation (1), in the safety process an 
amount is held in excess of the expected requirement as 
insurance against the risk of a stakeout. The terms 

1
( )

n

pr r
r

C E D
=
∑ and 

1
( )

n

hr r
r

C E D υ
=
∑ can be posted without 

any effect. Then the minimum expected total cost can 
be written as: 
 

n
1 hr r r

or r
r 1

C E(D )N
min E(TC) C N

2
β−

=

 = +∑  
   (3) 

 
Subject to: 
 

n
hr r r

r 1 1

C E(D )N
1

2K=
≤∑

 and 

n
hr r

r 1 r 2

C E(x )
1

N K=

υ
≤∑

  (4) 
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jr jrW W , 0 W 1 , j 1,2,3,4 , r 1,2, ,n= < < = = …

 Applying the geometric programming techniques 
to the equation (3) and (4), the enlarged predual 
function could be written in the following form: 
 

2 r 3r1r 4 r

2r 3r1r

4 r

W WW W1n
or r hr r r hr r r hr r

r 1 1r 2r 1 3r r 2 4r

W WW
n

or hr r hr r

r 1 1r 2r 1 3r

W

( 1)Whr r
r

2 4r

C N C E(D )N C E(D )N C E(x )
G(W)

W 2W 2K W N K W

C C E(D ) C E(D )

W 2W 2K W

C E(x )
N

K W

β−

=

=

β−

      υ= ∏       
      

    
= ∏     

     

 υ × 
 

1r 2r 3r 4 rW W W+ + −

 (5) 
 
where,                                                                      
are the weights and can be chosen to yield the normal 
and the orthogonality conditions as follows: 
 

1r 2r

1r 2r 3r 4r

W W 1

( 1)W W W W 0 ,r 1,2, , n.

+ =
β − + + − = = …

 

 
 Solving the above equations, we get: 
 

3r 4r 3r 4r
1r 2r

1 W W 1 W W
W and W ,r 1,2, ,n.

2 2

+ − −β − +
= = =

−β −β
…

(6) 
 
 Substituting from (6) into (5), the dual function is 
given in the form:  
 
  1 W W 1 W W3r 4r 3r 4r

n (2 )C (2 )C E(D )2 2or hr rg(W ,W )3r 4r 1 W W 2(1 W W )3r 4r 3r 4rr 1
W W3r 4rC E(D ) C E(x )hr r hr r

2K W K W1 3r 2 4r

+ − −β− +
   − β − β−β −β= ∏    + − − β − +   =

   υ
×   

  

   

                                                                          (7) 
 
 Taking the logarithm of both sides of (7):  
 

[ ] ( ){ }

[ ] [ ]

n

3r 4r 3r 4r or 3r 4r
r 1

hr r
3r 4r 3r 4r

hr r hr r
3r 3r 4r 4r

1 2

1
ln g(W ,W ) 1 W W ln (2 )C ln 1 W W

2

C E(D )(2 )1
1 W W ln ln 1 W W

2 2

C E(D ) C E(x )
W ln ln W W ln ln W

2K K

=


= + − − β − + −∑  − β

− β + − β − + − − β − + − β  

   υ
+ − + −    

     
     
 

 To calculate 
*
3rW and 

*
4rW which maximize 

3r 4rg(W ,W ) , equate the first partial derivatives of 

3r 4rln g(W , W )  with respect to 
*
3rW and 

*
4rW respectively to zero as follows:  

 

( ){ }

[ ]

3r 4r
or 3r 4r

3r

hr r
3r 4r

hr r
3r

1

ln g(W ,W ) 1 1
ln(2 )C ln 1 W W

W 2 2

C E(D )(2 )1
ln ln 1 W W

2 2

C E(D )1
ln ln W 1 0

2 2K

∂
= −β − + − −

∂ −β − β
− β − − − β − + −β  

 
+ + − − = −β    (8)  

Similarly: 
 

( ){ }

( )

3r 4r
or 3r 4r

4r

hr r
3r 4r

hr r
4r

2

ln g(W ,W ) 1 1
ln(2 )C ln 1 W W

W 2 2

C E(D )(2 )1
ln ln 1 W W

2 2

C E(x )1
ln ln W 1 0

2 K

∂ −= − β − + − +
∂ − β − β

− β + − − β − + − β  

 υ
− + − − = − β    (9) 

 
 Simplifying the equation (8) and (9) and 
multiplying them, we get: 
 

2
hr r r

3r 4r 2
1 2

C E(D )E(x )
W W

2K K e

 υ
=  
   (10) 

 
 Then, we obtain: 
 

4 3 2
j jr jr j jr r jr

2
r jr j jr r r

f (W ) W a W A W

b W d W A b 0

−β −β −β= + −

+ − − =
 (11) 

 
Where:  
 

2
hr r r

r 2
1 2

2

or hr r
r

hr r 1

2

hr r hr r
r

2 or

C E(D )E(x )
A ,

2K K e

2C C E(D )
B ,

C E(D ) 2K e

C E(D ) C E(D )
C

K e 2C

−β

−β

υ
=

  
=   
  

  υ=   
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1 , j 3
a ,j 1 , j 4

B , j 3rb andj C , j 4r

B (1 ) , j 3rdj C , j 4r

=
=  − β =

=
=  =

− β =
=  =

 

 
 It could be easily proved that  fj(0) < 0 and 

fj(1)>0 , j 3,4∀ =  and this is means that there exists a 
root Wjr ε (0,1),j = 3,4. Any method such as the trial 
and error, could be used to calculate these roots.  

 Now to verify that any root 
*
3rW and 

*
4rW calculated 

from equations (11) maximize 
* *
3r 4rg(W ,W ) respectively. Applying the following 

conditions: 
 

2
3r 4r
2

3r 4r 3r 4r 3r3r

2
3r 4r
2

3r 4r 3r 4r 4r4r

ln g(W , W ) 1 1 1 1
0

2 1 W W 1 W W WW

ln g(W , W ) 1 1 1 1
0

2 1 W W 1 W W WW

 ∂  = − + − <  − β + − − β − +∂    

 ∂  
= − + − <  − β + − − β − +∂      

 
And: 
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2
3r 4r

3r 4r 3r 4r 3r 4r

ln g(W ,W ) 1 1 1
0

W W 2 1 W W 1 W W

 ∂  = + >  ∂ ∂ − β + − − β − +     
 
Hence: 
 

 

22 2 2
3r 4r 3r 4r 3r 4r

2 2
3r 4r 3r 4r

3r 4r 3r 4r 3r 4r 3r 4r

ln g(W , W ) ln g(W ,W ) ln g(W ,W )

W W W W

1 1 1 1 1 1
0

2 1 W W 1 W W W W W W

    ∂ ∂ ∂
∆ = −    ∂ ∂ ∂ ∂    

    = − + + − <    − β + − − β − +       
 

 Thus, the roots 
*
3rW and 

*
4rW calculated from 

equations (11) maximize the dual function g (W3r, W4r).  

 Hence the optimal solution is 
*
jrW , j 1,2,3,4,=

 

where 
*
3rW , are the solution of (11) and 

*
1rW , are 

calculated by substituting the values of 
*
3rW , in 

expression (6). 

 To find the optimal number of periods 
*
rN , use the 

following relations due to Duffin and Peterson’s 
theorem[2] as follows: 
 

1 * * *
or r 1r 3r 4rC N W g(W , W )β− =  

 
And: 
  

* * *hr r r
2r 3r 4r

C E(D )N
W g(W , W )

2
=

 
 
 Solving these equations, the optimal expected 
number of periods per cycle is given by: 
 

{ }
{ }

1
* * 2

hr r 3r 4r*
r * *

or 3r 4r

C E(D ) 1 W W
N

2C 1 W W

β− + −
 =
 −β − +   (12) 

 
Then: 
 

( ) { }
{ }

1
1 * * 2

hr r 3r 4r*
mr r* *

or 3r 4r

C E(D ) 1 W W
Q E(D )

2C 1 W W

β− β− + −
 = + υ
 − β − +
   (13) 

 

 Substituting the value of
*
rN in equation (3) after 

adding the constant terms, we get: 
 

{ }
{ }

{ }
{ }

1
* * 2

n hr or r 3r 4r

pr r or * *
r 1

3r 4r

1
* * 2

hr r 3r 4rhr r
hr r* *

or 3r 4r

C C E(D ) 1 W W
min E(TC) C E(D ) C

2 1 W W

C E(D ) 1 W WC E(D )
C E(D )

2 2C 1 W W

β−
β−

=

β−


 + −
 = +∑   − β − +  




 + −   + + υ  − β − +   

    

Table 1: The parameters of three items 
Items Item 1 Item 2 Item 3 
Parameters 

E (Dr)  32 25 18 
Chr 0.20 0.22 0.24 
Cor 150 170 190 
Cpr 100 120 140 
Also assuming that υ = 5, K1 = 10000, K2 = 2000 and 0.5 ≤ β < 2 
Solution:  

 
Table 2: The results using the Mathematica program 

β 
*
1N
 

*
2N

 
*
3N

 min E(TC) 
0.5 6.24579 8.03712 10.609 9948.41 
0.6 6.07309 7.95435 10.7069 9997.24 
0.7 5.59853 7.48192 10.2982 10057.45 
0.8 4.62653 6.32425 8.9277 10129.85 
0.9 2.88917 4.03324 5.83927 10181.71 
1.0 0.540794 0.621639 0.683955 10245.53 
1.1 0.086965 0.0796744 0.0655885 10101.93 
1.2 0.0439282 0.0400897 0.0329991 9950.02 
1.3 0.0293183 0.0267516 0.0220258 9837.02 
1.4 0.0219954 0.0200696 0.016526 9760.91 
1.5 0.017598 0.0160574 0.0132227 9711.94 
1.6 0.0146656 0.0160574 0.0110196 9680.6 
1.7 0.0125721 0.0114709 0.00944583 9663.24 
1.8 0.0110049 0.0100395 0.0082663 9651.54 
1.9 0.00979254 0.00893033 0.00735091 9646.06 

 

  
 

Fig. 2: The Relation between 
*
rN and β  

 
Special case: Let β=0, r=1 and K1, K2 → ∞⇒ COr(Nr) 

=Co=constant,
* *
3r 4rW ,W

→ 0 and
* *
1r 2rW W 1/ 2= = . This 

is a probabilistic single-item inventory model without 
any restriction and constant costs, which agree with the 
model of maintaining stock to absorb demand 
fluctuations[3], the equations (12), (13) and (14) 
become: 

 

* *o o
m r

h h

2C 2C E(D)
N ,Q E(D )

C E(D ) C
= = + υ

 (14)   

 
And: 

  

υ)()(2)()(min rhrohp DECDECCDECTCE ++=
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Fig. 3: The Relation between mine (TC) and β  

 
An illustrative example: Let us find the optimal 
expected number of periods and the minimum expected 
total cost min E (TC) for the previous model of periodic 
review probabilistic multi-item inventory system with 
zero lead time under constraints and varying order cost, 
on the data of Table 1.  
 Also, by using the freelance program we can draw 

the relation between
*Nr , min E (TC) against β as 

shown in Fig. 2 and 3 respectively. 
 

*
rN  

Min E (TC) 
 

CONCLUSION 
 
 We have evaluated the optimal expected number of 

periods 
*
rN , r = 1,2,…, n, then we deduced the 

minimum expected total cost min E (TC) of the 
considered safety stock probabilistic multi-item 
inventory model. We draw the curves and min E (TC) 

against β, which indicate the values of 
*
rN and β that 

give the minimum value of the expected total cost of 
our numerical example.  
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