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Periodic Review Probabilistic Multi-Item Inventory System with
Zero Lead Timeunder Constraintsand Varying Order Cost
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Abstract: This study treats the probabilistic safety stockems inventory system having varying
order cost and zero lead-time subject to two lireastraints. The expected total cost is compo$ed o
three components: the average purchase cost; flectex order cost and the expected holding cost.
The policy variables in this model are the numbfeperiods N' and the optimal maximum inventory
level Q, and the minimum expected total cost. We can ohtfaénoptimal values of these policy
variables by using the geometric programming apgroA special case is deduced and an illustrative

numerical example is added.
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INTRODUCTION Cor(Ny)
In many situations demand is probabilistic sirtce i C;,
is a random variable having a known probability |
distribution. All researchers have studied uncaiséad '
probabilistic inventory models assuming the ordgrin
cost to be constant and independent of the number &
periods. Hadley,et al® and Tah®, has examined
unconstrained probabilistic inventory problems. F(x)
Fabric and Bank¥ studied the probabilistic single-
item, the single source inventory system with deeal- E (%)
time, using the classical optimization. Also Haand
Abou-El-Atd” deduced the deterministic multi-item
production lot size inventory model with a varying
order cost under a restriction: a geometric prognarg
approach. Recently Abou-El-Atat al™ studied the
probabilistic multi-item inventory model with vang ¢ (D)
order cost under two restrictions: a geometricQ "
programming approach. N
The aim of this study is to investigate the prdeab
safety stock multi-item, single source inventorydalo
with zero lead-time and varying order cost undeo tw
constraints, one of them of the expected holdingt co
and the other on the expected cost of safety siblok.

mr

optimal amount of periodgf, the optimal maximum K,

inventory Ievelsanr and min E (TC) are obtained. Kz

Also special case is deduced and an illustrativ
numerical example is added.

E (T0)

=The varying order cost of thd"item per
cycle
= The holding cost of thd"iitem per period

= The expected level of inventory held p8r r
cycle

= A random variable represent the demand of
the " item during the cycle

= The probability density function of the
demand x

= The expected value of the demand x

ju x,f(x,)dx,, wherex, andx
=X are the
maximum value and minimum value of x
=The annual demand rate of tH& item per
period
= The expected annual demand D
= The maximum inventory level of th8 item
= The number of periods, cycleof tH& r
item (a decision variable) and a review of the
stock level of the "t item is made every N
period

= The positive value representing a part of
time for safety stock

= The limitation on the expected holding cost
=The limitation on the expected safety stock
cost

= The expected total cost function.

The model analysis: Consider an inventory process in

Model development: The following notations are
adopted for developing our model:

which a review of the stock level is made every N
period, r=1, 2, ..., n. An amount is ordered so that

stock level has returned to its initial positiorsidmated

Cor = The purchase cost of th&item,

by' Q’nh

r=1,2,...,n. To avoid shortage during N
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Quy be:

[N, +v
\x. g(N,)-[ o ]
X,

Hence, the following form gives the expected
holding cost per period:

L J

Safety stock .
- e e -
: ) .
NN, N, N, E(HC)= " C..E(D, )Z[Nr 2]
r=1

Fig. 1: Inventory system with safety stock o . )
The order cost per unit is a varying function foé t

xpected number of periods,,,Nwhich takes the

Periods we must maintain a safety stock absorbin .
ollowing form:

demand fluctuation. Also, this is done maintainthg
quantity Q,=x,r for any cycle N Hence the resulting
safety stock, B, meets the exceed demands cycle N Cor
The periodic inventory system is exhibited graplyca

as shown in Fig. 1. where, G, > 0 and 0.5< B <2 are constants real

The expected annual total cost is composed of;mhers selected to provide us the best estimation
three components: the expected purchase cost thRa cost function.

expect('ed order cost and the expected holding @ssts Our objective is to minimize the relevant expected
follows: annual total cost function, according to the prasio
assumptions of the model:

(Nr) = COF NE’

E(TC)= E(PCy+ E(OCy E(HC),

E(PC)= ¥ G, E(Q ), E(OCF 3 Ca(N) C,E(D,)+C, N+
r=1 r=1 Nr E(Tc)zi C E(D )N
r=1 M{-Chr E(Dr W
And: 2 1)
ie.
_< Chrl_r
E(HC)= rZ=1N_ Under the following constraints:
Where: § CuE@IN,
r=1 2
T E(x,) > C,E(D,)u <K
| :N - r Z hr ( r)U = M2
r r|:er 2 i| r=1 (2)
And: The cost of safety stock insurance is given by the
last term in the equation (1), in the safety precas
E(x,)=E(D,)N, amount is held in excess of the expected requirea®n
insurance against the risk of a stakeout. The terms
Then: Zn;Cp,E(D,)and $.C, E(D,)ucan be posted without
r=1 r=1
e [ZQ - E(D )N] any effect. Then the minimum expected total cost ca
E(HC)=y —i—=m > o be written as:
r=1
The Optimization of the decision variables#hd  in(TC)=3 | ¢ N7 + Ci E(D)N,
Qmr can be performed if we assume that the maximum =1 2 3)
demand during the cycleyxis related to the expected
demand during the cycle as: .
Subject to:
X =E(X)9(N)= E(D, )N, g(N) C E(DN cE
i hr ( r) r <1 i hr (Xr)Usl
where, g (N) is a relational function which consite "  2K: and™ N K (4)
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Applying the geometric programming
to the equation (3) and (4)

techniquesSimilarly:

, the enlarged predual
function could be written in the following form:

alng(W,,,W,,) _ 1
T = B{|n(2 B)C, —In(1+ W, - W, )} + 5
& e o 1 J, C.ED)2-B)
cw)= n[c N ] [Ch EO)N, ] [C"’ZEfVD&:N] [E“KE(V‘V w] +2—_B{Inf—ln(1—l3—war+w4r)}
n ChrE(D) C,ED,) Vor 21 +{I %(Xr)u—ln WA,}—lzo
!_'1 2K,W,, B 2 9)
E(X )U (B )W+ W, + W, ~W,, . e . .
Simplifying the equation (8) and (9) and
(5) multiplying them, we get:
where, W=W, ,0<W, <1,j=1234,= 12, ,i v = CuEDIEX
are the Welghts and can be chosen to yleld the alorm ~ 3" 4 2K K €2
and the orthogonality conditions as follows: (10)
W +W. =1 Then, we obtain:
1r 2r
(B—:I_)V\/1r + W2Ir + W3r— W4r =0,r=12,..,n f(W ) =W.47B +a W3*B _A WZ*B
i i (11)
Solving the above equations, we get: +b W, - -Ah =0
w, =1 W gy BBVt W s Where:
2-B 2-B (6)
A = ChE(D)E(X
Substituting from (6) into (5), the dual functian ' 2K K €
given in the form: 5 - C. C.ED) 2-p
I+ War—War 1B War+ Wy ChrE(D ) 2Kie ’
N (-B)Cor | 2P (2-B)ChrE(Dr) 2
oo o= 1 (525 | () C - ChrE(D w) " c,ED)
[chr E(Dr ] [ch rE(xe pj 2C,
2K1W3y KW gr
M) g =t =3
471 j= 4’
Taking the logarithm of both sides of (7): B =3
bj = ro and
n 1 CI’ )= 4
Ing(W,,, W, )= % {ﬁ[n W, - W, ] {In2-B)C, - In( 2+ W, - W, )}
el fopew, e w ]{mC"'E(D')(Z_B)—In[l—B—W w ]} dj = Br1-B) ., !—3
2_[3 3r ar 2 3r ar Cr ,J= 4
+W3,{Inm—lnWarJL+W4,{InM—InW4,H
2K1 KZ . .
It could be easily proved that fj(0) < 0 and
fi(1)>0 Hj=34 and this is means that there exists a
W W o root W ¢ (0,1),j = 3,4. Any method such as the trial
oW To c;;\lculate *rand "4rwhich  maximize  and error, could be used to calculate these roots.

o War) equate the first partial derivatjves of Now to verify that any roow3' and Wer calculated
INg(Wer . War)  with  respect to  Werand from equations (11) maximize
W, respectively to zero as follows: 9(Ws., 4r)respectively. Applying the following

conditions:
alng(W, ,W,)_ 1 1
T&-T_B{'H(Z—B)C - In(1+ W, - W, )} - 2-B 02|ng(w3,,w4,)=_(iM 1 1 }_71<0
oWz 2°B) [T W, - W, TR e W, | W,
C,E(D,)(2-
—ﬁ{ln%w—ln[l—[%—\/\éﬁwh]} Ing(W, WA,)__[LJ T, 1 S
EYA Tol2-B)| 1w, -W, 1-B-W kW, | W,
+i+{|n C“’E(D’)—Inwg,}—lzo
2-p 2K, (8) And:
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3’ Ing(W,,,W,,) 1 1 1 Table 1: The parameters of three items
= S| | + >0
AW, AW, [2 _ B] [1_'_ W, -W, 1-B- W, + WAJ Items Item 1 Item 2 Item 3
Parameters
Hence: E (D) 32 25 18
(o 0.20 0.22 0.24
a (MO W)Y (9% Ing(W, W,))( 2 Ing(W, W) Cor 150 170 190
| Towow, w2 w2 (o : 100 120 140
Also assuming that = 5, K; = 10000, K = 2000 and 0.5 <2
:—(LJ [ 1 + 1 }{ L, }— I o Solution:
2-B) |1+ Wy - W, 1B W, + W, e Wa, W,

W W Table 2: The results using the Mathematica program
Thus, the roots "3rand " 4 calculated from N; N, N,

equations (11) maximize the dual function ga(\W,,). 05 21579 503712 10.609 m'gggi)l

Hence the optmal soluion s 1TH2S40e  oors e ojes eeras
where Yo, are the soluion of (1) and, are S5 g teage  pmn o oiess
calculated by substituing the values offr, in L9 SSi07a  pezese  pemmes  10mess

expression (6). 1.2 0.0439282 0.0400897 0.0329991 9950.02

, , N 1.3 00293183 00267516  0.0220258  9837.02
To find the optimal number of perlodgf, usethe 7,

- ) _ 0.0219954 0.0200696 0.016526 9760.91
following relations due to Duffin and Peterson's 15  0.017598 0.0160574 0.0132227 9711.94
theorent! as follows: 16  0.0146656 0.0160574 0.0110196 9680.6

17 00125721  0.0114709  0.00944583  9663.24
b1 1.8 00110049  0.0100395  0.0082663  9651.54
C, NOH =W, g(W,,, W,,) 19 000979254  0.00893033  0.00735091  9646.06

And:

ChrE(Dr)Nr W, )
2 3r? 4r

Solving these equations, the optimal expected
number of periods per cycle is given by:

N*_ Chr E(Dr){ 1+ V\ér_vvzlr} Bflz
e {rp-w e w)

(12)  Fig. 2: The Relation betweelkl: and S

Then: Special case: Let =0, r=1 and Ig Kz — 0= Co(N,)
- S =Co= constantW3f’Wf—> 0 andMr =War =172 g

C, (E(D))) {1+ W, - Wm} H+E b is a probabilistic single-item mventory model vath

mr 200,{ 1-B- W, + W, } ®)v any restriction and constant costs, which agreh thie

(13) model of maintaining stock to absorb demand
fluctuation$”, the equations (12), (13) and (14)

* become:
Substituting the value (h‘r in equation (3) after

adding the constant terms, we get:
/ 2G, E(D)+ E(D W
B C E(D ' (14)
hr orE(D ){ 1+ V\é } -
}

2 1-B- W, +W,

minE(TC)=3| G, E(D »+ Q,[

And:

+(ChrE(Dr)] C"’E(D’){ * V\Q,—WM} - +C,E(D,)v
2 2C,{ 1-B- W, + W, }

min E(TC) = C,E(D ) +,/2C,C.E(D ) +C,, E(D,)v
121¢
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Fig. 3: The Relation betweenine (TQ and [

An illustrative example: Let us find the optimal

expected number of periods and the minimum expected

total cost min E (TC) for the previous model ofipdic
review probabilistic multi-item inventory system tiwi
zero lead time under constraints and varying ocdst,
on the data of Table 1.

Also, by using the freelance program we can draw

*
the relation betweeNf, min E (TC) against} as
shown in Fig. 2 and 3 respectively.

N

r

Min E (TC)

CONCLUSION

We have evaluated the optimal expected number of

periods Nf, r = 1,2,.., n, then we deduced the
minimum expected total cost min E (TC) of the
considered safety stock probabilistic multi-item
inventory model. We draw the curves and min E (TC)

againstp, which indicate the values ol?lfand B that

give the minimum value of the expected total cdst o

our numerical example.
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