American Journal of Applied Sciences 2 (8): 11947,12005
ISSN 1546-9239
© 2005 Science Publications

Conservation of “Partial Vorticity” with Applicatio n on Hydraulic Jumps

Harald Naeser
Agder University College, Grooseveien 36, N-487&Gtad, Norway

Abstract: In two preceding works, the idea of partial comaion theorems was introduced and
conservation equations for partial energy and glaaigular momentum were established. A similar
conservation theorem for partial vorticity of incprassible fluids is established here. The vorticity
vector is divided into two elements (both denotpdrtial vorticity”) and their conservation equatson
established separately. They show that, in additioterms similar to the terms of the conservation
equation for total vorticity, the conservation etipia for partial vorticity has a term that descshkibe
transfer of vorticity between the partial vortiesi i.e. Without affecting the vorticity vector.sfmple
example of an application is included. It shows tih& vortex in the vicinity of a hydraulic jump is
located above the surface level of the incoming/flo
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INTRODUCTION Basic conservation equations:In order to split a
vorticity vector into two elements and to establish
In two preceding works? conservation theorems the transfer terms that determine the transfer of
of partial energy and partial angular momentum were/orticity between the elements, the partial votics
published. In these works, the energy and the angul defined as:
momentum were split into several parts and separate
conservation equations were established for eadch pa Y; -0y (1)
This separation was achieved by realizing that e.g. 0
Energy-even if it is a scalar-is often based orntorse
such as velocity and gravity vectors. In order taken Here i and j can have the values 1, 2 and 3, but n
the direction information of these vectors avaiabl the same value. Furtherig the velocity component in
partial energy was established by a similar proceds the direction of the"l axis of a Cartesian coordinate
total energy, but based on one component of th&ystem andpthe corresponding coordinates.
equation of motion at a time instead of the coneplet ~ Partial vorticity is established from the i-th
equation. A similar procedure was adopted to eistabl component of the equation of motion of an
partial angular momentum. The latter provides anaea incompressible, viscous fluid:
to separate angular momentum of the waves (denoted
“‘wave spins®¥), from the angular momentum of 94, 04 . 04 | ‘Lﬂ':_}ﬂ)wgzu -8,9 (2
horizontal currenf&®. By the conservation laws it was ot 0x; ' 0x, ox.  pOx ’
possible to study the interaction between waves and
currents and even consequences of wave break_img. Tlovhere, t is the time,p the density of the fluidy its
latter was possibly because conservation equatians
be based on the situation before and after wav
breaking, without having tq treat the rather chaoti to be in the negative direction of the axis. The
processes of wave breaking in the mear_{ﬁme ~ summation rule is not adopted.
In order to complete the set of partial conseorati In order to obtain the conservation equation for

equations  applicable to fluid dynamics, thepartial vorticity, differentiation with respect tg; is
conservation equation of partial vorticity is edigtied  performed:

here. (See eld for vorticity). As in the two previous
cases, they include terms similar to the consewati 52, 5,

kinematic viscosity, p the pressure ahthe Kronecker
Gelta. Further, the acceleration of gravity (gassumed

equation of total vorticity, but also transfer teriiat L U, "y +240y

X T otox;  0x; 0x ox0x 0% 0%
describe to what extent vorticity is transferredwaen , 5 , , 3)
the partial vorticities. As an example of applioatithe -y 04 _ﬂai_uj 9 4 _1o°p  ,pp0u
flow in a hydraulic jump is briefly studied. X 0%; 0% 0, ox;  pox0x 0x
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By reorganizing and adding and subtractingimplies that®;; works as a transfer term for vorticity

0u, /9%, n the parenthesis: between the two partial vorticitiey}; andY;. So by
establishing the equation for partial vorticity, new
0%, , 0u. aq+6uj+aq_aqj+u Py ,oydp_ term is established that gives additional infororati
foxdx,  0x 0% (4) regarding the flow that is not obtained from the
ordinary vorticity equation.

d%u, o’u 1 d°p

Conservation equations for a two-dimensional
volume: Consider a two-dimensional flow in the x-y
lane that is not a function of the third coordalf
iscosity is ignored and Eg. (7) is integrated owmer
area A in the x-y plane surrounded by a closede@y

then:

The sum of the first three terms in the parenthesi
equals div v, which vanishes for an incompressibl
fluid. So, for an incompressible fluid, after sHinf§ the
terms:

2 2 2 2
aui+u 0°y, ‘U 0°y +u6u:

! ! . 1. 0%p
i k -
0tox 0x,0x; ox, 0x, ' ox’ 5) My p/{ axdy dxdy (11)

oudy 0ydy 109°p . ..0u

Ox; 0x, 0X; 0X pOx0X, 9, where, [,y is the integral of the partial vorticity based

L L on thex-component of the fluid velocity u, i.e.:
The left hand side is the total derivative of the
partial vorticity. Hence: au
My = ja—dxdy (12)
2 A0y
\ :%ai_aiwaiq_fl aip +VD2yij (6)

Yi
Ox; 0X, 0%, 0% POX O Green's theorem is given%s

Here the dots aboveyj denotes total time 0Q oP
differentiation. /{[ax_ay

The two first terms at the right hand side are
functions ofu, y and y. These terms vanish for a two-
dimensional flow, so that:

]dxdy=<ﬁ (Pdx+ Qdy) (23)

where the line integral is taken in the countecckivise
direction. By choosing P = 0 arigrror! Bookmark
not defined, eqn. (13) gives:

Vi :VDZVij -6 (7)
o’p op
. dxdy=4¢—d 14
Where: J\axay xdy iay y (14)
2
! =1(3an (8) Similarly, by choosingP=-dp/d x and Q = 0 in
P OX0X, Greens theorem:
In Eq. (7), i and j may exchanged. Then, since %p ap
dxdy=—-¢—d 15
6;=6; [oxay =15 (15)
Vi =vO%; -§ (9) Hence we may write Eq. (11) either as
The K" component of the vorticity vector (/can . —Lﬁ@dx (16)
be written as a difference between the two partial ¥ plox
vorticities:
or as:
Vi =Y Yy (10)
1.0
. o=~ f50dy (17)
Hence by subtracting Eq. (9) from Eq. (7), the pcay

conventional vorticity equation in two dimensiors i

obtained. If the twdj terms are non-zero, vorticity is Under special circumstances these integrals are
transferred between the two partial vorticities. i.e Particularly simple: In Eq. (16), since dx = 0 ajothe

Without affecting the total vorticity of the systert ~ Parts ofC that are parallel to thg axis, the integral
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vanishes along these lines. Similarly if partsGre .
parallel to the x axis they do not contribute in ELy). ¥
Further, if C is following a line where p = constge.g. x
a free surface) both integrals above vanish. =*
The equation is even simpler if the arfais — -
rectangular and the sides of the rectangle ardlglat@ 4 1
the coordinate axes. In this case, let the lowér le
corner be ak;, y; and the upper right corner a, ¥..  Fig. 1: Definition sketch of a hydraulic jump
Then integration of either Eq. (11), (16) or (17) a
imply: Clearly the viscous forces cannot be disregardest ov
long distances. Hence this conclusion is only vabkdr
(18) the jump.
Another alternative is to treat all fluids belotet
surface between point 3 and point 5, i.e. The area
So, in the non-viscous, two-dimensional casedescribed by straight lines from 5 to 4 and furttzed
whatever happens inside the volume, the transfer ¢ihd 3 and back along the free surface to 5. Fercise
vorticity between a pair of partial vorticities deyl on  EQ. (17) is adopted. Since p is constant at théaser
the pressure of the four corners of the rectanglg o and dy=0 at the bottom, their contribution to the
integral vanish. Hence only the two vertical lines
App”cation of partia| Vorticity on a hydrau"c jum p: contribute. Since the pressure is static at botts asf
The hydraulic jump is theoretically treated in manythe volume under consideration:
textbooks, e.§”. The conventional theory gives little
information on the velocity distribution inside thenp, rxy =-gAH (20)
however, as only mean velocities over the depth are

considered. By the partial vorticity it is possikie ) .
obtain more detailed information. Hence the hydeaul where AH is the increase of the surface level through
jump is studied in the following. the hydraulic jump. Further, Eq. (10) Implies  that

Figure 1 shows a cross section of a hydraulic jumpl = 'y, where:
where the flow is coming from the left as indicated
an arrow. The five points shown on the figure fdmo
vertical lines. They are located where the flow &e&n
considered horizontal and the pressure hydrostatit,
near enough the jump to disregard the consequerices . _ . . : :
viscosity in the flow below the mutual level of pbi2 in which v is the velocity component in the y difeo.

. 1
rxy :B(pn + Py = P~ Pay)

ov
r, =[-—dxd 21
= oy 2

Therefore Eq. (20) implies that also:

and point 5.

First, the rectangle 1 — 2 — 5 — 4 is treated.thisr
rectangle, Eq. (18) can be written as: M =—gAH (22)
Fy==(P* P - Ps— ) (19) As a consequence, both partial vorticities are

generated by the transfer term in such a way tnat t
total vorticity remains unchanged. Sin@a/dy and

where the subscripts refer to the numbers of thietpo dv/ox both are negative, the well known vortex is
in Fig. 1. Since the pressure is static at bottsefdhe  allowed. The first term allows a negative horizdnta
control volume, p— p = p. — p and therefore the surface flow to develop downstream the jump, while
contents of the parenthesis in eqn. (19) vanigddeasce the second term feeds vertical flows. Accordingh®

[, = constant. This implies that the net transferfirst part of this section, the vortex is basicadtigated
imposed by the non-viscous transfer term vanishe§bove the surface level of the incoming flow. Hence
below the surface level of the incoming water. éast  the flow field in the vicinity behind the hydraulic
of point 2 and point 5, any pairs of points at atwati  JUMP IS to some extent explained by the non-viscous
level below them can be chosen with exactly theesamt€ms. _ _ _

result. Consequently, any vorticity of the incomftayv Any further discussion of the flow in the vortex
remains unchanged from cross-section 5-4 to crosgnust include all terms of Eq. (6) since the flow is
section 2 — 1. As viscous forces within the reckarage ~ strongly turbulent here. As the purpose of this
neglected, the incoming flow remains unchangedesinceéxample is to show how the conservation equatidns o
the three-dimensional terms in Eqg. (6) cannot dgvel partial vorticity work, a further discussion of the
by any other means. Consequently the vortex h&a®to hydraulic jump is considered to be outside the scop
located above the surface level of the incoming/flo of this study.
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CONCLUSION

In three studies, one of partial enétgyone with
partial angular momentufh and this on partial
vorticity, three partial conservation quantities fuid

dynamics have been established. They form a new sét

of conservation equations for use in fluid dynamigg

establishing conservation equations based on amy o
component of the equation of motion at a time,sit i 3.

possible to study the interaction between diffeftow

regimes by simple means. This has been demonstrated
4,

briefly here, where the horizontal flow and theticad

flow of a hydraulic jump are considered and their
interactions-have been
studied. For this purpose the transfer term betviken 5.

interactions-and absence of

two partial vorticities is described in Eq. (8) and
integral form of a two-dimensional non-viscous flaow
Eqg. (16)-(18).

Whether energy, angular momentum or vorticity is

treated, all three types of partial conservationagigns

have terms that give information on the transfer7.

between e.g. Horizontal and vertical flows. Frorasth

transfer terms, information can be obtained on thes.

stability of the flow, as non-zero transfer ternmply a

flow that changes, either in time or space. As9.
demonstrated, these conservation equations opeheor

solution of new problems and further insight inthey

1.

6.

problems. Here we have seen that the vortex in the

vicinity of a hydraulic jump is located above theface
level of the incoming flow. By adopting partial arfar

momentum equations on water waves, based on the

vertical flow only, the horizontal currents comgligt
disappeared from the equatiBhsHence disruptive

effects of waves-separated from horizontal currents
could be studied, with unexpected consequences as
down shifting induced by dissipation as a resuit. |

general, the partial equations open for studies of

interactions between different flow regimes without
having to adopt detailed numerical approaches.hen t

other hand, Eq. (18) appears well suited for nucaéri
applications, as it is based on the pressure atdheers
of rectangular control areas.

This study, d5? are first and foremost written to
establish the partial conservation concept. Hemee t

application parts are merely meant as examples.

Probably better applications exist and it is théhars
belief that the partial conservation equations Wiln
out to be valuable in the future.
challenge to the reader.

| leave that as a
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