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Abstract: It is common in hyperspectral remote sensing stidb perform analysis based on
derivative spectroscopy. However, this techniqueasicularly sensitive to noise in the data. Thus,
noise removal is essential before any derivativalyais. Various methods of noise removal are
described in the literature. A newly developed rodtthased on the wavelet transform appears
promising, though there is little practical guidaran its use. In this study, the investigationefesal
important parameters that govern Wavelet-Based Bemp (WBD) is undertaken. The optimal
parameter settings are then evaluated for use éttrspp analysis using field Spectroradiometer
hyperspectral data.
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INTRODUCTION (Adapted frorf!).
The WBD procedure involves three major steps:

Several methods have been used to smooth noigprward transformation of the signal to the wavelet
signals, including the Fourier transform, the Szwit  domain,  wavelet  coefficient  reduction  and
Golay local polynomial, the mean filter, Gaussiantransformation of the wavelet coefficients backthe
functions, and so on. However, these methods haweriginal signal domaifi®. Several fundamental
characteristics that could reduce their effectissna  decisions have to be made regarding: the selection
dealing with noisy signals. In recent years, a nesthod thg value of the threshold) (to distinguish S|gnal_ and
known as wavelet shrinkage has been introducetieto t N0iS€, the mother wavelet and the choice of
scientific community. It is said to offer a mordigent ~ tresholding method, as well as the optimal resmiut
and statistically rigorous approach to signal psspey.  €Vel Or scale for diagnosing.

Among the advantages of the wavelet shrinkage rdetho I_:or a (ja_ta series of lengththe first Ieyel v2)
. . L detail coefficients are selected. The median albsolu
is that it can be used to reduce the level of naikie

preserving the significant features of the origidata®. deviation (MAD) is calculated by (i) determiningeth

H ical quid th f the vesvel median of the absolute values of i@ selected detail
owever, practical guidance on the use of the VEVel ., fficients MEDL1) and (ii) the median of the absolute

based denoising is hard to fificand the use of wavelet o iations KMAD) from MEDL Following’. a
transform in the analysis of hyperspectral dataesy ' ’

) Universal Thresholdlis defined as
limited"™.

MATERIALSAND METHODS t=/2log(nMAD/0.674¢ (2)

. ) . wheren is the data series length. This method adopts
Wavelet-based denoising (WBD): The aim of WBD the ‘global’ thresholding principle in which one

methods_ s to recover a ftrue signhlfrom an constant threshold value is used for all coeffitsen
observation vectory; measured at n equally spaced ycross all levels.
points tj, with additive noisegj. The value ofn The first stage of the work involved a simulation
study carried out using synthetic data to deterntire
factors that affect the performance of the wavbhsed
denoising technique. This study also had the aim of
providing practical guidance on the use of the WBD
technique in remote sensing. Further analysis was
) carried out to determine the effects of noise resthown
yi=f(ti)+&,i=12....n (1) derivative analysis of field Spectroradiometer data
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(number of observations) is assumed to be the pofer
two. For signals not to the power-of-two sizes,oesr
are added to the one or both ends of the signdlthat
power-of-two size is achieved.
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a) Symmlet 4 b) Daubechies 4 ¢) Daubechies 12 d) Daubechies 20 ¢) Coiflet 12
Fig. 1: The mother wavelets used in this study

Users of the wavelet transform must specify inthe wavelet coefficients of the raw data (f) aneé th
advance the nature of the filter functions thattarbe  wavelet coefficients of the denoised data (g), coting
used. These functions are known as ‘mother wavgeletsthe sum of the absolute differences betwéemd g,

and they differ in terms of their symmetry andthen dividing this sum by, the number of wavelet
smoothing properties. The synthetic data were wsed gefficient®!.

assess the effects of the use of a range of differe
mother wavelets (Daubechies 4, Daubechies 12,
Daubechies 20, Coiflet 12, and Symmlet 4). ThewE = M (3)
experience gained from these experiments allowed th n
specification of a number of guidelines, which were
then used in noise removal and derivative analgbis In this first part of the simulation study, thdeets
the field and airborne spectroscopy data. Figuheilvs  of the different mother wavelets are investigatédrd
the shapes of the mother wavelets investigatedii& t thresholding and resolution level of eight wereduas
study. the constant parameters.

A second analysis investigated the properties of
two different methods of noise thresholding, kno@®  Effects of different wavelet bases: Figure 2 shows the
hard and soft thresholding. Thresholding is a Way 0mean WE values for three noise levels using differe
subdividing the wavelet coefficients into two s&i8e  \ayelets in denoising the contaminated sine wate. T
of which represents information while the other hoan \WE increase as the noise level increaseslifor a

reprﬁgsgntf n_?;]se. | N0||se I?h astshoc?r;[ed hv;/tlith théhe wavelets. In general, Daubechies 20 waveletsgiv
coefficients with values less than the thresholdeyl o |ovest WE while Symmlet 4 wavelet gives the
are assumed to contain no important informatiore Th highest WE

denoised signal is constructed from the remaining
wavelet coefficients. Soft and hard thresholding te _ ) o
most widely used methods proposed for this purplase. Effects of different thresholding types: After gaining
hard thresholding, the wavelet coefficients areSOme idea of the most suitable wavelet, the usgt ne
compared to the value of the threshold. Then,tal t has to determine whether to use soft or hard
coefficients that are smaller than the absolutestwld ~ thresholding. This section presents the resultsarof
are eliminated or suppressed to zero. The otheeltiv investigation of the influence of hard and soft
coefficients are left unchanged. thresholding on the denoising result. Daubechies 20
Thirdly, as the wavelet transform is hierarchiqal i was used as the mother wavelet on the basis oftsesu
nature, the effects of noise estimation using diffié  reported in the preceding section, and a resoluéoeel
levels of resolution were considered. The resofutio of eight was chosen. The performance of the hadd an
level is also known as the decomposition levelaades  soft threshold techniques was investigated forrmea
It refers to the level beyond which the waveletof noise levels.
thresholding is applied. For a discrete signal \iitite Figure 3 shows the mean RMSE and mean WE for
length 2, the maximum number _of[sdecomposmon the hard and soft thresholding for different ndeseels
level that can be investigated is M At each  sing the Daubechies 20 wavelet. The WE increases a
decomposition level, a signal is decomposed intQpe oise level increases for both hard and soft
approximation coefficients and detail coefficienthe thresholding, but the values of the mean WE usang h

approximation signal is then iteratively processedr . C :
a number of stages specified. The highest or finesttmgzﬂg:g:gg are significantly lower than using tsof

resolution level contains most of the high frequesdén
the signal and the coarsest resolution contains the

average of the signal. The level of resolution: Another important factor to
consider is the level of decomposition or the lesEl
RESULTSAND DISCUSSION resolution at which the denoisingis applied. Thistfi

level is the finest or highest resolution and thealf

In this analysis, Walker Error (WE) measure waslevel is the coarsest or lower resolution. In testion

employed. The WE measure was calculated by takinghe effect of varying the resolution level is intigated.
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Mean WE vs noise level
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Fig. 2:  Mean WE against different noise levels (A% and 30%) for the different mother wavelets
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Fig. 3: Mean WE of hard and soft thresholding fiffedent noise levels using Daubechies 20 wavelet

The constant parameters are the Daubechies 20 amnding the ASD instrument and its first derivative
hard thresholding for the different noise levelheT spectrum is shown as in Fig. 5. The first derivativ
length of the signal is 1024 points, which meara th  spectrum is significantly noisy which indicatestthze
has 10 decomposition levels (from'°2= 1024). reflectance spectrum itself is inherently noisyic®ithe
However, only levels one to eight are evaluated tdclean’ spectrum is unknown, assessment of theitgual
avoid denoising too much into the coarser levels. of the denoised or smoothed data and the restitistg

Figure 4 shows the trend of the WE with respect taderivative curves is subjective and based on aalisu
different resolution levels. In general, the WE ®ase assessment only.
as the resolution level increases. The lowest egor Based on the guidelines developed for the
achieved at the resolution level of five, then #reor  simulation study, WBD was applied for the purposts
begins to rise again but only slightly. This indesa noise removal and derivative analysis of the field
that, in general, if an optimal resolution levelused, spectroscopy data. The WBD method uses a
the best denoising result can be obtained (i.e. dDaubechies 20 mother wavelet and hard thresholding
resolution level of five). with a resolution level of five. After some

experimentation, the Universal Threshold value was
Application to field spectroscopy data: The field increased in order to remove the noise presenirsh f
spectroscopy data used in this study were acqfrioed  derivative curve more effectively. Other researsher
the La Mancha, Spain study site collected by using have also found that the Universal Threshold
ASD field Spectroradiometer. This instrument has aunderestimates noise levéls A  threshold
very high spectral resolution and a spectral samgpli multiplication value of 12 was found to achieve
interval of 1 nm after processing to reflectancegréen  satisfactory denoising and produced a relativelgan’
vegetation spectrum obtained by field measuremeriirst derivative result.
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Mean WE vs resolution level
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Fig. 4: Mean WE against resolution level for diffat noise levels
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Fig. 5: A green vegetation spectrum from the ASBcsral library in the range of 0.350 to 0.861 peftjland its
noisy first derivative spectrum (right)
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Fig. 6: The wavelet-based denoised green vegetapentrum (left) and its first derivative (righBseudo-Gibbs
phenomena are seen at the ends of the derivatberam

The first derivative spectrum derived from the deed  which in this case is obvious in the start and poithts

data is more easily interpreted than the equivdiestt of the curve. This could be the result of the

derivative curve derived from raw data. Howeveg th discontinuity of the data at the end points and an

WBD method suffers from the introduction of pseudo-insufficient boundary treatment algorithm currently

Gibbs phenomefd at the end points of the spectrum, being adopted by the computer program. The denoised
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spectrum and its first derivative curve are preserin
Fig. 6. The use of wavelet-based denoising resnlts

amplified ripples at both ends of the derivativel.

spectrum derived from the field Spectroradiometer.
Nevertheless, the procedure has obviously reduced
instrumental noise and produced a more easily
interpretable derivative spectrum.

CONCLUSION 2.

The WBD procedure is able to reduce the amount

of noise and help to extract important featuresftbe 3.

first derivative analysis. However, the major cance
brought out in this paper is the presence of ripiilbe
pseudo-Gibbs phenomenon) that are introduced livgto t
derivative spectrum by the application of the WBD

method. The following guidelines for the use of the4-

wavelet-based denoising technique is suggested,;
Mother wavelet: the longer the wavelet filter vector the
smoother will be the output. The selection of trether

wavelet should also depend on the properties of thg"

input signal and on the desired outcoriresholding
type: it was found that hard thresholding performs
better than soft thresholdingresolution level: the
decomposition level at which denoising is applied
should be moderate.

Proper treatment of the boundary problem is alsq.

required; otherwise the pseudo-Gibbs phenomenon

will affect the usability of the results. How thipples 8

affect the entire first derivative spectrum is uovm
but their presence are certainly quite disturbingnie’s

aim is to obtain a smooth derivative analysis. An9-

elegant way to overcome this problem is to use more
sophisticated procedures to deal with the pseudd<sGi
and boundary problems. The ability to effectively
remove noise from hyperspectral data will faciétat
advanced analysis to be carried out on hyperspectra
data such as spectral derivative technique. This wi
open up new possibilities for the modeling, assessm

and analysis of remote sensing data in manyl.
agricultural, environmental and engineering
applications.
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