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Abstract: The change in the thickness of an interface betwee immiscible fluids due to the
propagation of an internal capillary-gravity waveray the interface is considered using a Bhatnagar,
Gross and Krook (BGK) lattice Boltzmann model obiaary of fluid. The vertical thickness of the
interface is recorded from the simulations sinds th the most easily measured quantities in any
simulation or experiment. The vertical thicknesshisn related to the actual thickness (perpendicula
to the interface) which is seen to vary with theg of the wave. The positions of the maxima and
minimum thicknesses are seen to be approximataigtaat relative to the phase of the propagating
wave and the range of variation of the thicknessetses at approximately the same rate as the wave
amplitude is damped. A simplified model for theeifiace is considered which predicts a similar
variation due to the interface being stretchedhadriternal wave propagates.
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INTRODUCTION the thickness of the interface. A numerical study i
performed using an immiscible binary fluid congigti
Internal waves can propagate along an interfacef two fluids of similar but distinct specific detiss.
between fluids of similar densities in the same mean The parameters used in this study have been sgélsate
as surface waves propagate along the interfacecketw that both gravitational and surface tension foraes
a liquid and a gas, as is most commonly observetesponsible for the wave motion.
between water and air. Internal waves vary in scale
from capillary waves with wavelengths of the ordér MATERIALSAND METHODS
10" m* to gravity waves with wavelengths of the order

2.3 - : . . .
of 10 m*?. Capillary waves have wavelengths which \ merical Model: The internal waves are simulated

are short enough that gravity forces are .neg”gibl%sing a lattice Boltzmann model which has been used
compared to the surface tension forces acting et th

interface. and can ocour between an AR é)reviously to model internal standing gravity and
’ y two immisciblé ., o oravit "8 and progressive wavds
fluids. Internal gravity is dominant over surfaeasion capiiary-gravity wave - and progres
for the waves have a wavelength large enough thaIhIS utilizes }E}e |_mm|SC|bIe b|_nary fluid BGK r%%del
gravity is dominant over surface tension for thevava proposed b W'th th_e inclusion of a body for .
motion. Internal gravity and not surface tension isRather than considering separately the two density
responsible for driving the motion, they occur wineer ~ cOmponents of the binary fluichl andp,, we work
there is a change in the specific density of thedfl ~with the total fluid density,p = pi+p,, and the
either at the interface between two fluids of défe concentration difference or order parameter, p-p..
densities such as fresh and salt water, or wheze thTo this end we need to consider two BGK Boltzmann
density of a fluid change rapidly such as at artfter equation§" which describe the evolution of two
Cline. At intermediate wavelengths both gravity anddistribution function fand g
surface tension have a significant effect and tzapH
gravity waves are observed. The wavelengths attwhic 1 -
the different regime of pure gravity, capillary-gits fir+e,t+)-f (t)=——(f - fi)+-Fe,
and strength of the surface tension at the interfaa I 3
the densities of the two fluids.

The shape of internal waves has been studied byng:
many author§:®. Here we consider the manner in
which an interface between two fluids is alteree ¢
wave propagation at the interface, and in particula g,(r+e,t+)-g (r ,t)z_i(gi _di)
examine this by studying the change which occurs in Ty
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where, ¢ is a unit vector along direction i of the Ty, d d _2d
. . =2 H,=-d-6H,K=,0==,=-d Q="
underlying lattice andf and 1g are three parameters 3 3 6 3’
which are considered later. These equations are the
standard form of the lattice Boltzmann equationthwi The body force term and the chemical potential

the addition of the term ;&3 which are associated differences are given by:

with gravity force. Each equation describes the

evolution of seven. Distribution functions, fi on, g .
where i= 0 represents the rest distribution functio F=[r.(o-d)+b(p+d)]é:
which remains stationary at a grid site and i 2,1,..,

6 represent the distribution functions hexagonal gn A T [1+d I p

which the simulations are performed. The left hand ~ And “:_27,+§ 1-d /p
Where &, is a unit vector in the vertical direction. The

sides of the Boltzmann equations correspond to the
streaming of the distribution functions along thidg

while the right hand side is a BGK collision oper8f’ parameters which have not yet been defined can in
which accounts for, in a simplified manner, the9eneral be;gsglected to determine the propertietheof
redistribution of the distribution functions due to Simulation}®. Here we define them and give the

particle collisions. The BGK collision operator tfe ~ Value used here and, for the parameters of paaticul
importance to our simulation, we briefly discuseith

fluid to its equilibrium state (f,org) at a rate sjgnificance. The temperature T was set to 0.5, the
determined by the relaxation parametgrandty. From  interaction strength parameterwas set to 1.1 and the
the evolution of the distribution functions the mobility Mwas set to 0.1; for these parameters an
macroscopic quantities can be obtained. The thia f immiscible binary fluid is simulated. The interfaki
density,p = p; p, the total fluid velocity, u, and the thickness of about ten lattice units. The graotai

density difference, d .p 2, can be found from the coefficientsy, andy, were set to 5.810° and 5.5%10

] - k0°d respectively

distributionfunctions as: ® respectively; this gives a gravitational strength
1.075 x 10* and a relative density difference =1.05.
po= Zfl, oM, Zf, , and d :Zgi The relaxation parameter, is set to 0.7; this gives a

fluid viscosity of 0.05. The other relaxation paeter
where, the summation is over all the lattice dimet, 7, is set to 0.789 to eliminate third order correusian

from i= 0 to i= 6, and we use Greek subscripts tthe equation of motion for the order parameter. All
represent  functions, ;i and g are  then thes_e parameters are _measured in_ the units oam_ﬁreel

' that is the lattice spacing and the time-step. Goiapn
with a physical situation can be made by considerin
the dimension parameters describing the systemasich
- the Froude number, the Reynolds number and the

selinteractionsimulate two ideal gases with repals
interactin enerdy *» and are given by:

f Bu,e, =Cu’ = Du,use &, =G, 6.8, fori = relative denosity difference. This binary fluid syst can
_ i be showH” to satisfy the continuity equation,
12,...6and,= A+ QU d0+0d,0u =0, and the Navier-Stokes equation,
And: 9,0u, =0 ,0uu, =-0,p+Vd0,0u,+0,¢0 ,0u,, Where
2r, -1
. = andf:[rf 1)[1 ﬁpj This ensures that the
g =H +Kue, +Ju’+Quuse e fori =12,..,6 8 2\2 op

lattice Boltzmann model used here is mimicking @ re
fluid. While the form of f, _ .+ 9 ansure that the

Where: equilibrium state is thermodynamically consistemd a
true binary fluid is being simulated.

andg, = H, + Ju’

) Internal Wave Simulations: This lattice Boltzmann
A:(pT — K1 2)/3 A =p-6A, model was used to simulated progressive internatwa
5 on an interface at the center of a 256 by 256gsite A
B=Pc=-Lc =-pD=22, solid no-slip boundaR? was applied at the bottom and
3 6 3 top of the grid and periodic boundary conditionghet
G =G K{O"p dp ,od ﬁd} G,=-G, _x outer edges. The wave was initialized in four stépp
WO 3 axdy dxdy| 3 the grid is set-up with a horizontal interface and
2 2 constant total density everywhere. Gravity is then
(ﬂp) —(‘?p] ﬂd 1 applied to a steady-state is reached-this initalithe
X y dx density is each fluid. (2) The interface is peradho a
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256- this

sinusoidal shape with wavelength

an approximately constant negative value of theesam

represents a standing wave at the extreme of itg1agnitude in the other fluid. At the interface digea

oscillatiod”. (3) The standing wave is allowed to
oscillate for a quarterly period until the interéaés

smoothly. In each vertical column of simulated dhi&
order parameter was fitte¥ to a curve of the form d =

flat”-*¥ this allows the shape and width of the interface? tanh (bz + c), where a, b and c are the parameter

to form. (4) The velocities under the standing wave

measured and used to initialize the progressiveewav .

the shape of the interface to form. (4) The velesit
under the standing wave are measured and used
initialize the progressive wave, the shape of th
interface is formed by shifting the grid by an amby,
the shape of the interfdt® this initializes the

being found by the fitting process.

Since there are many points away from the
interface the value n of a should be found veryeate.
]'(pe values of b and c are determined by about ten

eDomts over the interface. This is, however, enough

points to determine a good fit with the simulatedad
A typical fit is shown in Fig. 1 indicating that eh
interface has a tan h shape and that the resualts fr

progressive wave with the correct velocities andcurve fitting are accurate. The accuracy of theveur
interface shape (measured from the standing wavfitiing can also be seen by considering the velrtica
simulation) rather than imposing them on the waveposition of the center of the interface, where @ Now

Using this initialization technique the verticaldkness
of the interface is approximately constant.
technique is used so that no velocities or demssdie
imposed on the wave; alternatively the wave cowd b
initialized from linear or higher-order wave theory

Approximating the fluid by two immiscible, in
viscid fluids at a sharp interface the frequencyttaf
wave motion is given 6%’15]'

Ko
p(f +1)

of =g'k+

where,o is the surface tension, k is the wave number,
is the relative density differenceg/ p, and g’ is the

relative gravity:

Now, the strength of the surface tension can be

determined by considering, in the absence of grasait
‘bubble’ of one fluid inside the second. The densit

for the interface defined as d = a tan h (bz +he t

Thiscenter of the interface occurs when z = -c/b. FgRr

shows the position of the interface measured is thi
manner and the position of the last site above the
interface. These results show that the curve dttin
procedure gives an accurate method for determithieg
position of the interface to an accuracy much great
than one lattice site and that the values of b @iade
found to a reasonable accuracy despite the rekative
small number of sites in the interface region.

The gradient of d can be easily found by
differentiatingd = a tan h bz + c¢), allowing us to find
the gradient of the order parameter at the cerfténeo

interface:ﬁ‘ =ab.
0zl

Now we can define the vertical thickness of the
interface:
J—l

where, Ad is the change in d across the interface which

2

b

v=Ad [ad
0z

difference, 40, between the fluid inside and outside theis 2a. This definition of v is chosen since it fiswith
bubble can be measured and the surface tensidl analysis scheme. In other situations a differen

calculated through Laplace’s lawg =Apr, where r is
the radius of the bubble and the differemgeis given by
the ideal gas lawap=np7 . The surface tension is

calculated in this way to be = 1.8<10°2. Hence we see
that, for the parameters used here:

Thus both surface tension and gravity forces ar
important in determining the wave motion, althotiyé
influence of gravity is less than that of surfagesion.

Determination of the interface thickness: This
interface thickness can be found bgnsidering the
concentration difference, d, which is the differenn
the densities of the two fluids. This has an
approximately constant positive value in one flaid

7

e

destination may be preferred, for example the ca&irti
interface thickness might commonly be taken to’be v
Z1 —2 where d () = 0.95 a and dgz = -0.95 a. In this

casev'=|tanti* (0.95)v that is the different definitions

of the vertical interface thickness will only diffey a
constant magnitude term.

Consider a linear interfacial wave with the
interface at z = sin (kx +W¥) as shown in Fig. 3 At
any point % the tangent to the interface intersects the
horizontal at an angle where tard = ak sin(kx +W¥).

Now the interface thickness, t, is given by t = v
cos@) or:

t= Ecos(taﬁl[ak cosx+y ) )

This means that the interface thickness can be
found from the fitted parameter b provided the ealu
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of a, the wave amplitude, anf, the wave phase can be The method used here, however, was to find theevalu
found, the value of k is known when the wavelerigth of ak cos (kx +) rather than the individual variables.
fixed. Several methods were considered for obtginin This was done by differentiating the central iraed
these values include estimating them from the jwsit profile (-c/b) using a central difference equation.

and depth of the crest and the trough and appliag

curve fitting algorithm to the surface profile. RESULTS

130— ‘ T - - s A progressive internal wave was initialized usihg
method described above for the parameters discussed
Analysis of the position of the interfagg,= -c/b, (scaled
by a factor 1/30), the vertical thickness, v = 2feasured

120 from the simulation and the interface thickness:

t= gcos(taril[ )
b dx

d(—c/b)} .
110

After 2,000 times-steps. The value of the intezfac
thickness, observed in Fig. 4 is seen to vary byuab
4% depending on the phase of the wave. The two
vertical lines are at the crest and the trougthefwave
and correspond to the position at which t and naide

Fig. 1: Comparison, in the Area of the Interfackthe  since the interface is horizontal. The peak vahfethe

Simulated Order Parameter (Symbols) and thdnterface thickness occur slightly behind the crasd
Fitted Tanh Profile the trough of the internal wave. The interface ¢fesn

from its initial uniform vertical thickness (with v
varying by only 0.05% in a non-sinusoidal manner) t
the approximately seasonal variation (with half the
wavelength of the internal wave) in the first 2,000
times-steps. During the next 4,000 times-steps the
interface thickness continues to change until dches
the final from shown in Fig. 5 which shows the
thickness of the interface after 8,000 times-stfpe
thickness sill peaks just behind the crest andregh
of the wave, however now the peak of the wave ¢gest
larger than the one at the trough. The minimum eslu
of the interface thickness occur between the pedtks
the minimum behind the crest being more pronounced
115.0 - : : - than the other minimum. This appears to be thd fina
60 02 04 06 08 form of the interface thickness.
X/ The variation in the thickness of the interface is

) caused by the propagation of the internal wave sacro
Fig. 2: The Center of the Interface Calculated=as/b  the interface. Thus we would expect the variatiothie
(Dashed Line) and as the Last Site above thehickness to decay at the same rate as the wabirig
Interface (Solid Line) damped. The height of the internal wave, H, whigh i
twice the wave amplitude can be calculated as the
differences between the maximum height of the

10_%.

135.0 -

125.0

z =0t keos[k(xg+ W) ]x+cg

S interface and the minimum height. Similarly h, the
sk 7 N height of the variation in interface thickness, dam
/ / ) " horizontal found as the difference between the mean of the two

maximum thicknesses and the mean of the two
"'“\31939“1 ) minimum thicknesses. This is shown in Fig. 6 which
S/ shows the rate at which H and h are damped. The
damping rate of the wave is approximately constant.
The best straight-line fit through the results tdr
was found and a straight line with the same gradien
Fig. 3: The Interface Thickness, t, the Verticalhas been drawn through the results for the h. Four
Thickness, v, and the Angle between the times greater than about 8,000 time-steps to be
Interface and the Horizontd, damped at approximately the same rate as the.wave
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Fig. 4. The Shape of the Interface (Dot-Dashed Line Fig. 6: The Damping of the Wave Height (Solid Line)

Travelling from Left to Right, the Measured

Vertical Interface Thickness (Dashed Line) and
the Calculated Interface Thickness (Solid Line)
after 2,000 Time-Steps

4,367
4.84_—
4‘325
T4'30:_
4,28
4.26-_

4.24+-

9.0

7.0

B 2.0

[ —
00

10

20

A
4.0

50 60

7.0 1.0

Fig. 5: The Thickness of the Interface after 8,000
Time-Steps as a Function of the Wave Phase,

the Crest of the Wave Correspondingpto0

At times earlier than 8,000 times-steps there meso
deviation probably due to the initial formation tbfe
variations in interface thickness and the changpfig

these variations as observed between Fig. 4 anthé.
position of the maxima and minima are shown in Fig.
relative to the phase of the wawes0 corresponds to the
wave crest. In general these occupalightly less than

and the Interface Thickness Variations (Dashed
Line) as Functions of Time. Also Shown (Dot-

Dash Line) is a Line with the Same Gradient as
the Best-Fit Strength Line through the Results

for H Drawn through the Results far
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Fig. 7: The Positions of the Maxima and Minima

Interface Thickness Relative to the Phase of the
Internal Wave,¢ = 0 Corresponds to the Crest

of the Wave

The maximum and minimum behind the crest are larger
and so an estimation of their position can be nfade
>32,000 although it will be less accurate thatehdier
measurements. The approximately constant position o

n7f2 for n = 1,2,3,4 as was observed for the maxima ifhe maxima and minima relative to the phase of the

Fig. 4. Initially the position of the extremes datively

propagating wave is consistent with the interface

constant. As the wave decays and the variatiorhén t thickening and thinning being a direct result o th
interface thickness becomes small, the results rbeco \wave motion.
noisy making the determination of the exact maxinmm
minimum impossible, thus the results become less
accurate as time increases. This is particulauky tor the

first maximum and minimum after the wave crest so
these results are only shown four times < 32,000.

9
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DISCUSSION

results have shown that

internal
propagation at an interface can cause a variaticha

wave
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interface thickness. Consider the following simple

., 1(1): 5-11, 2004

The results presented here show a variation in the

model for the interface. Assume that the interfacehickness of a fluid interface as an internal wave

consists of a series of small incompressible elésnen

propagates along it. The variation can be thoudjlatso

which do not translate in the x-direction and whichbeing approximately sinusoidal with wavelength half

have lengtidx and width t when the interface is flat. If
the interface is perturbed by an amoniit) = a cos

that of the progressive wave, although the twoimax
which occur slightly behind the wave crest and gtou

(kx-¥), then each element is stretched to a lengtteed not have the same value, and similarly the two

ds=[(40)* +(4y) 1", where
Ay= a cosk (X +4Ax) #y |- coskx+¢ |
Thus the new length of the element is

2
AszAx[h;a;(x)] that is a relative increase in
X

2
length of AX = 10
2 0x

. Thus we expect a relative

decrease in the thickness of t*, where:
* 1 21,2 - 2
t ~5a ksin“(kx+¢)

Comparing the expression for t* with the resiits

minima need not be equal. In a binary system wttere
two fluids have the same mass any wave propagating
the interface is a pure capillary wave. In suchaaec
inverting the z direction should have no effecttba
system and so we would not expect there to be any
differences between the values of the two maximum
thicknesses or the two minimum thicknesses. This
should also be true if the two fluids have diffdren
masses but the wavelength is short enough that the
waves can be considered as capillary waves. Thas th
differences observed between the interface thickaes
the wave peak and the wave trough can be associated
with the density difference of the two fluids. I§ i
expected that this difference will decrease witle th
wavelength and the density difference. As the

Fig. 1 and 4, we see from Fig. 4 that the interfacavavelength is increased or the density difference

thickness has a maximum of 4.33 when cos(ifY += 1
and cos(kx HJ)) = -1, (corresponding to t& 0). This

value of t is comparable to the value of 4.35

(corresponding to b = 0.46) found from the tanhirfit
Fig. 1. The minimum value of the thickness in Hg.
occurs close to cos (kxy) =0. The maximum relative
variation in t is found from Fig. 4 to beyty = 0.036.
The analytic value is . = 0.097 which is somewhat

becomes larger we expect the difference to remaih a
probably become larger.

In conclusion, we have observed a variation in the
thickness of a fluid interface when an internal wav
propagates along it. The magnitude of this vanmtio
was seen to depend on the wave amplitude in that it
damped at approximately the same rate. The thisknes
of the interface is maximum slightly behind the wav

larger but of the same order of magnitude. Thiscrest and trough and minimum halfway between the
suggests that the observed change in the interfad@axima. Some variation was also observed betwen th

thickness may be due to the interface stretchiyg'dis
shape changes. As noted in Fig. 4, there is a sl

lag between the wave amplitude and the interfac
thickness which is not predicted by the simple nhode

represented by above. A time lag is to be expesitene
the thickness will not change instantaneously veth
change in the interface shape. Other factors, aadhe

two maxima and minima in each wavelength,
particularly at larger themes: the maximum justibeh

dhe crest being larger than the maximum just betfied

trough and the minimum behind the larger maximum
being more pronounced than the other minimum.
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