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Abstract: This study presents the nonlinearity and dispersion effects involved in the propagation of 
optical solitons which can be understood by using a numerical routine to solve the Generalized 
Nonlinear Paraxial equation. A sequence of code has been developed in Mathematica, to explore in 
depth several features of the optical soliton’s formation and propagation. These numerical routines 
were implemented through the use with Mathematica and the results give a very clear idea of this 
interesting and important practical phenomenon. 
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INTRODUCTION 

 
 The field of nonlinear optics has developed in 
recent years as nonlinear materials have become 
available and widespread applications have become 
apparent. This is particularly true for optical solitons 
and other types of nonlinear pulse transmission in 
optical fibers. Subsequently, this form of light 
propagation can be utilized in the future for very high 
capacity dispersion-free communications. The purpose 
of this study is to describe the use of a very powerful 
tool to solve the generalized Nonlinear Paraxial 
equation that has stable solutions called optical 
solutions[2]. The solitary wave (or soliton) is a wave that 
consists of a single symmetrical hump that propagates 
at uniform velocity without changing its form. The 
physical origin of solitons is the Kerr effect, which 
relies on a nonlinear dielectric constant that can balance 
the group dispersed in the optical propagation medium. 
The resulting effect of this balance is the propagation of 
solitons, which has the form of a hyperbolic secant[3]. 
 
Nonlinear paraxial equation: The electric field E in 
an optical fiber with the dielectric constant ε satisfies 
the Maxwell equation: 
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Where, c is the speed of light, and the displacement D 
= ε × E. By virtue of a formula from vector calculus, 
Eq. (1) can be written in the form: 
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 It should be noted that ∇⋅E in Eq. (2) is not zero, 
since ∇⋅ D =  0. The constraint for D in Maxwell’s 
equation implies that: 

ε ×(∇⋅ E) = −(∇ε )⋅E ≠ 0 (3) 

 
 This implies that Eq. (2) cannot be reduced simply 
to a scalar equation. For the purpose of this paper, Eq. 
(2) can be reduced in the sense of the asymptotic 
perturbation method. This is done by writing Eq. (2) in 
the following form: 

 
LE = 0 (4) 

 
Where, E expresses a column vector, i.e., E = (Er, Eθ, 
Ez)

t and in the cylindrical coordinates with the z-axis as 
the axial direction of the fiber, the matrix L consisting 
of the three parts L = La + Lb − Lc is defined: 
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 It should be noted that these matrices imply that: 
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= ∇ ∇

 

 
 The electric field is considered as a monochromatic 
wave propagating along the z-axis with the wave 
number k and angular frequency ω , that is, the field E 
is assumed to be in the expansion form: 
 

l
l

E(r, ,z, t) E (r, , , ; )exp[i(kz t)]
∞

=−∞

θ = θ ξ τ ε − ω∑  (6) 

 
 With *

1 lE E− =  (complex conjugate) where kl = lk, 

ωl = lω and the summation is taken over all harmonics 
generated by the nonlinearity due to the Kerr effect and 
El(r, θ , ξ , τ ; ε ) is the envelope of the lth harmonic 
changing slowly in z and t. The slow variables ξ and 
τ are defined by: 
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z
z and t

V

 
ξ = ε τ = ε  

 
 (7) 

 
Where the small parameter ε (|ε| <<1)expresses the 
order of nonlinearity (i.e., the order of the electric field) 
and Vg is the group velocity of the wave. On this scale 
of the coordinates, Eq. (7) is looking at the behavior of 
the field in the balance between the nonlinearity and the 
dispersion, which results in the forming of optical 
solitons, confined in the transverse direction. From Eq. 
(6) and Eq. (7), the displacement is found by: 
 

l l lD E D exp[i(k z t)]= ε × = − ω∑  (8) 

 
 It has been shown by[4] that El(r, θ , ξ , τ; ε) can be 
expanded in terms of ε: 
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l t
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=

θ ξ τ ε = ε θ ξ τ∑  (9) 

 
 So in order ε: 
 

(1)
l lL E 0=  (10) 

 
where, Ll is L with the replacements: 
 

(0)
l l liK , i ,

z t

∂ ∂= = − ω ε = ε
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 (10a) 

 
 Note that the operator Ll is self-adjoint, l lL L+ = , in 

the sense of the following inner product: 
 

D
(U,V) U Vds+= ∫  (11) 

where, ds = rdrdθ is the cross section of the fiber and 
A+ is the adjoint *

ij jiA (A ) (A )+= = . 

 In Eq. (10), there is only one bound state with the 
eigenvalue 2

1K  (i.e., l = ±1) and the eigen function U 

=U(r,θ) called the mode function describing the 
confinement of the pulse in the transverse direction and, 
in general, consists of two parts corresponding to the 
right and left polarizations. Then, the solution to Eq. 
(10) may be written as: 
 

(1)
1 1
l

u ( , )U(r, ) for l 1
E (r, , , )

0 for l 1

 ξ τ θ = ± θ ξ τ =  
≠ ±  

 (12) 

 
 Here the coefficient (1)

1u ( , )ξ τ  with (1) (1)
1 1u u− =  is a 

complex scalar function satisfying certain equations 
given in the higher-order Eq. (4). From the equation 
L1U = 0, the inner product (U, Ll U) = 0 gives the linear 
dispersion relation K1 = K(ω1): 
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where, (0) 1/2

0 1N ( )= ε  is the index of refraction, and have 

assumed the normalization for U by 2 2
x yU U 1+ = . 

 At order ε(2): 
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 From which (2)

lE 0=   is obtained if l = ±1. In the 

case l = 1 it is required that the inhomogeneous Eq. (14) 
satisfies the compatibility (or integrability) condition:  
 

2
1 1(U,L E ) 0=  (15) 

 
 This gives the group velocity Vg in terms of the 
linear dispersion relation Eq. (16): 
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 (16) 

 
 For l = 1, Eq. (14) becomes: 
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 (17) 

 
 From Eq. (10) for l = 1, the solution of Eq. (17) 
may be found in the form[1,5]: 
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where, (2) (2)
1 1u u ( , )= ξ τ  with (2) (2)

1 1u u− =   is a scalar 

function to be determined in the higher-order equation. 
 At order (3)

1ε  : 
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Where: 
 

(2) (2)
l l1/2/3 il1 l2 l3

(l 1)
+ +

ε = ε = ±∑   
 
 Note that (2)

lε  is a positive real number for the Kerr 

effect. From Eq. (19), one can obtain the solutions, 
(3)
lE 0=  for l = ± 1 or ± 3, and seigenmodeoes not have 

the eigenmode: 
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9
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c
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 Which is a harmonic generated by the nonlinearity. 
For l = 1, the compatibility condition is required: 
 

(3)
1 1(U,L E ) 0=  (21) 

 
 From which the Generalized Nonlinear Paraxial 
equation for (1)

1u ( , )ξ τ  is obtained[1,5]: 
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 Now the new variables and constants are 
introduced: 
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 The importance of Eq. (22) is that it can be saved 
into normalized reference coordinates. A clear view of 
the evolution of the envelope along the normalized 
propagation path results. This will also allow us to 
study the different cases, such as the classical situation, 
where Γ = 0, which results in the standard Nonlinear 
Paraxial equation[5]. 
 
Initial conditions: The solution of the Nonlinear 
Paraxial equation can be solved exactly by the inverse 
scattering method. A planar stationary light beam in a 
medium with a nonlinear refractive index can be 
described as a dimensionless form[6]: 
 

2
2

2

u u
i k | u | u 0
∂ ∂+ + =
∂ξ ∂τ

 (27) 

 
 The method used to solve the exact inverse 
scattering method is applicable to equations of the type: 
 

u
Ŝ[u]

∂
∂ξ

 (28) 

 
where, ̂S is a nonlinear operator differential in z, which 
can be represented in the form: 
 

L̂ ˆˆi[L,A]
∂ =
∂ξ

 (29) 

 
Here L̂  and Â  are linear dif (e, ential operators 
containing the sought function u(z,t) in the form of a 
coefficient. If the condition of Eq. (29) is satisfied, then 
the spectrum of the operator L does not depend on the 
initial values with respect to time. The reconstruction of 
the function u (z, t) at any arbitrary instant of time is 
realized by solving the inverse scattering problem for 
the operator ̂L . 
 The result in Eq. (27) can be verified in Eq. (29) 
with the operator’s ̂L  and Â taking the form: 
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ɺ
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 Without the loss of generality, the assumption k 
> 2 and ρ2 > 0 can be made on the above equation. As t 
→ ± ∞ of any initial condition, a finite set of solitons 
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becomes present. In this problem, an analogous role is 
played by the particular solutions of the Nonlinear 
Paraxial equation[1,5]: 
 

0

2 2

u(z, t) 2 sech[2 (z z ) 8 t]

exp[i( 2 x 4( ))t ]

= η η − + ηξ

− ξ − ξ − η + φ
 (31) 

 
where, η, ξ , φ, t, z0 are scaling parameters. This form 
of the solution can also be known as a soliton that has a 
stable formation. 
 The soliton Eq. (31) is the simplest representative 
of an extensive family of exact solutions of Eq. (27); 
this can be shown in an explicit form[1]. In the general 
case such a solution can also be called an N-soliton 
solution, which depends on 4N arbitrary constants, ηj, 
ξj, φj, tj, z0j. However for the non-coinciding ξj  this 
solution breaks into individual solitons if t → ± ∞. 
Using this solution and beginning at the origin z = 0, a 
wave formation can be acknowledged by[5]: 
 

0u(0,1) sech[t t ]= η −   (32) 

 
 This initial condition takes z = 0, because we are 
investigating the effect of the coefficient on the 
evolution of the wave, and to do this we must start at z 
= 0, not the usual initial condition where t = 0. 
 
Finite difference solution: In order to compute a valid 
solution, Eq. (22) is converted to a finite difference 
equation[7] using z = ξ and t = τ. The time discretisation 
will be indicated by a n superscript and the spatial 
position will have an associated integer subscript I. 
Thus u(z,t) is denoted by niu . The various z values 

become i∆ z where ∆z is the mesh width and i = 0,1,2, 
......., I. Similarly, the time variable becomes n∆t where 
∆t is the time step n = 0,1,2, ......., N. Following a 
standard explicit procedure, the finite-difference 
version of equation (2.22) is found[5]: 
 

n n n 1 n 1 n 1
n 1 2 n 1i 1 i 1 i i i 1
i i2

n 2 n 1 n 1 n 2
n 1 i i i i
i 3

u u u 2u u
i | u | u

2 z 2( t)

u 2u 2u u
i u i

2( t)

− − −
− −+ − −

+ + − −
−

− − ++ +
∆ ∆

− + −= − Γ + δ
∆

 (33) 

 
 The computer software Mathematica[8] has all the 
tools to code this finite-difference equation, to solve it 
and to produce the output graphics in two and three 
dimensions. 
 

RESULTS 
 
 This section investigates a numerical result of the 
Nonlinear Paraxial equation (31), for the formation of 
solitons with Mathematica[5] for the following cases:  

a) Propagation of a simple soliton 
b) Two solitons plotted on the same graph 
c) Propagation of a square wave soliton 
d) Propagation of two solitons at collision 
 
 A series of codes has been developed[1,5] to assist in 
this process, where the initial condition in Eq. (32) is 
applied to the finite-difference formula Eq. (33). Figure 
1a, represents the basic soliton wave, with parameters 
of amplitude η = 1, and initial position on the t-axis, 32. 
t0 =  (η does not appear in the equation (4.1), as this is 
the finite difference form of equation (22)). The nature 
of this wave is in agreement with results found by[6] in 
that it is a single pulse wave, and is stable over long 
distances. The effect of altering these basic parameters 
is to change the amplitude and lateral position of the 
pulse. The axes of the figures are labeled as |u (z,t)| is 
the magnification ratio, z is the lateral displacement and 
t is the time displacement.  
 Figure 1a, below, represents the graphical 
representation of the optical soliton in its simplest form. 
To achieve this result, all that is necessary in the 
programming phase is to present a simple pulse definition; 
pulse 2η sech[2η (j-z0)], where η represents the amplitude 
of the wave, and z0 is the phase constant of lateral 
displacement, herein referred to as the displacement 
constant. In this representation it is also found that it is 
sufficient here to define the initial pulse definition in one 
dimension, represented in the program as j, referring to the 
z coordinate. Placing the amplitude constant inside the 
sech function serves to give the wave more body. Without 
its placement here would give a much narrower waveform, 
as shown in Fig. 1b. In this graph, the number of time 
divisions in the wave, specified in the program as time 
divisions τ = 64. Respectively, the number of space 
divisions is represented in the program by curves = 5. 
Note: The wave is travelling outwards, from the origin, 
along the t axis, in these graphs having 64 divisions. To 
give it a lateral displacement of 32 divisions along this axis 
it is necessary to specify z0 = 32. To give the wave a phase 
angle it is necessary to program the equation in two 
dimensions, adding to the initial pulse definition the term 
8ηξt, where ξ represents the time-phase constant, hereafter 
referred to as the phase constant. Care must be taken here, 
as this logic here can appear confusing, at first encounter. 
 Figure 2 represents two solitons, on the same 
graph, producing a result that shows varying amplitude 
and the time-shift. the wave on the left of the graph has 
amplitude η = 0. 075 and 45, z0 = while the other is 
η = 0. 125 and 25 z0 = Respectively. This Graph Serves 
a very important purpose in its representation here at 
this stage. Since it is obvious that the wave with lowest 
amplitude constant must be the one on the left of the 
graph, it establishes the above-mentioned hypothesis 
that the wave is moving outwards from the origin. 
Furthermore, the displacement of the center of the wave 
for the origin is established by the parameter 0z. 
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Fig. 1a: The Simple Soliton; Pulse Definition 2η sech[2η 

(j-z0)]; Displacement Constant 32, 0 z 
= Amplitude η = 0.1, and Time Divisions, τ = 64 

 

 
 
Fig. 1b: This Figures Shows the Effect of Excluding the 

Amplitude Constant η from the Pulse Definition 
 
 Figure 3 represents a square wave soliton. This is 
the next step in the natural progression towards 
programming solitons in a collision. After producing 
the wave in Fig. 2, the program is expanded to 
accommodate the second variable, t represented in 
program code by k. This is more fully explained in the 
lead up to Fig. 4. This square wave is produced by 
using a value of η = 0. 1, where the time divisions have 
been expanded to τ =128, and the program has been 
coded for two variables. This is the input format of 
some soliton waves as found in[9,10] though here the wave 
is frozen in its square form. The appearance of the square 
wave is a very important point in optical solitons 
evolution, along the path of its rising coefficient, as this 
marks the point in the development of the optical soliton 
where, upon continuing to raise the amplitude coefficient 
η, the property of solitons selffocusing[5] begins. 
 Figure 4 represents a soliton wave with a phase 
angle. This represents the first stage in the operation 
to show two solitons in a collision. The first task is to 
produce a soliton with a phase angle. As discussed 
above in (a), this involves the introduction of the 
second variable, t represented in the coding as the k. 
The pulse definition is firstly expanded to become 
pulse = 2ηsech [2η (j-z0) + 8ηξt], where, ξ represents 
the phase  angle   coefficient,   set   for Fig. 4 at 
ξ = −0. 07.  

 
 
Fig. 2: Two Solitons with Amplitude at η = 0. 25 and 

η = 0. 1 Respective to 38 z0 = and 32; z1 
= Plotted on the Same Graph, to Illustrate the 
Difference Made by Varying the Amplitude and 
Lateral Displacement 

 

 
 
Fig. 3: Square Wave Soliton. 
 

 
 
Fig. 4: Here the Program has been Allowed to set the 

Scales Automatically, at 0 − 60, to 
Accommodate the Square Array in Order that 
the Program May Successfully Compile. 

 
The program is then re-coded to accommodate two 
variables. In this graph amplitude constant η is set at 0.1, 
and displacement constant 64 z0 = and time the divisions 
to τ =128. To accommodate this it is also necessary to 
allow the program to automatically fix both scales for z 
and t at 0-60. The result is shown in Fig. 4. 
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Fig. 5: Two Solitons Following in Phase 
 

 
 
Fig. 6: Two Solitons in Early Stage of Collision. 
 

 
 
Fig. 7: Two Solitons Set at z0 = 100 and z1 = 30. 
 

 
 
Fig. 8: The Final Effect for the Soliton Collision with 

z0 = 80 and z1 = 50. 

 Continuing with this progression, to investigate 
graphically the collision of solitons, the next step is to 
present two soliton waves following in phase. The 
process continues to the next step being the introduction 
of a second set of terms to the pulse definition, added to 
the first. This now becomes: 
 
pulse = 2η sech[2η  (z-z0) + 8ηξ0t],  
+2η  sech [2η  (z-z1) + 8ηξ1t] 
 
where, ξ0 and ξ1 are the respective phase constants, here 
both set at 0, to produce parallel waves. The 
displacement constants are set at η0 = 100 and η1 = 30. 
 Figure 6, represents two solitons in phase, the 
displacement constants are set at z0 = 30 and z0 = 100. 
The phase constants are set at ξ1 = 0. 07 and ξ2  = −0. 
07. The time divisions constant are set at τ = 128. This 
shows the two solitons, in opposing phases, meeting at 
the rear edge of the plot, the collision process running 
from the rear to the front of the curve when presented in 
this manner. This again follows the hypothesis set at the 
beginning, where the waves run outwards from the 
origin. 
 Figure 7, below represents two solitons in phase, 
the later displacement constants are set at z0 = 100 and 
z1 = 30. The phase constants are set at ξ1 = 0. 07 and 
ξ2 = −0. 07. The time divisions constant are set at 
τ =128. Figure 7 shows the two solitons, in opposing 
phases, meeting at the near edge of the plot, the 
collision process running from the rear to the front of 
the curve when presented in this manner. 
 Figure 8, below represents the midpoint for the 
collision, is programmed by setting the displacement 
constants at z0 = 80 and z1 = 50. The phase constants 
and τ remains at the values used in Fig. 6 and Fig. 7. 
 

CONCLUSION 
 
 The formation and propagation of solutions have 
been observed and understood in this paper by 
implementing a numerical routine to solve the 
Nonlinear Paraxial equation[5]. A sequence of code has 
been developed to explore in depth several features of 
the soliton’s formation and propagation. This paper 
investigated changes in the solutions of the nonlinear 
paraxial equation when the parameters η, ξ, φ, t, z0 are 
modified in the following way. The parameter η has 
most noticeable effect on the amplitude of the wave. 
 When η > 0. 1, this condition usually encountered 
a square wave. When η < 0.1, a normal plane soliton is 
resulted. Changing the inequality sign has no noticeable 
effect. The parameter ξ gives the wave a phase angle. 
This phase angle becomes noticeable above 0.001.  
 A phase angle above 0.1 tends to separate the 
soliton solution into a row of peaks. The results were 
found to be most useful at a phase angle of 0.07. The 
direction of the phase changes with the sign. The 
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parameter t0 moves the soliton peak back and forth 
along the t-axis. Finally the timer divisions, on the 
same scale as, t0 are constant in the Mathematica 
program[1]. This constant investigates the spread of the 
graph along the t-axis. This constant was shown to be 
most useful when the time divisions were set at 64. A 
time division of 128 was used in this paper at the stage 
soliton collisions. 
 Nonlinearity and dispersion effects involved in the 
propagation of optical solitons have been presented in 
graphical form, using a numerical routine for 
Mathematica. This program can be used extensively to 
study other combined effects of pulse propagation in 
nonlinear dispersive media. The results displayed in this 
study give a very clear idea of this interesting and 
important practical phenomenon. 
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