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Abstract: This study presents the nonlinearity and dispersiifects involved in the propagation of
optical solitons which can be understood by usinguanerical routine to solve the Generalized
Nonlinear Paraxial equation. A sequence of codeble&n developed in Mathematica, to explore in
depth several features of the optical soliton’smiation and propagation. These numerical routines
were implemented through the use with Mathematiod the results give a very clear idea of this
interesting and important practical phenomenon.
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INTRODUCTION ex(OE)=-(0e )E#£O0 3

The field of nonlinear optics has developed in g impjies that Eq. (2) cannot be reduced simply
recent years as nonlinear materials have becomg 5 gcajar equation. For the purpose of this paper
available and widespread applications have becom&) can be reduced in the sense of the asymptotic

apparent. This is particularly true for optical ismis erturbation method. This is done by writing Ed). i@
and other types of nonlinear pulse transmission i, following form:

optical fibers. Subsequently, this form of light
propagation can be utilized in the future for vaigh
capacity dispersion-free communications. The puposLE =0 (4)
of this study is to describe the use of a very péue

tool to solve the generalized Nonlinear Paraxiahypere Eexpresses a column vector, i.e., E 5 @&
equation : that has stable solutions called opticak )tang in the cylindrical coordinates with the z-axts
solution&. The solitary wave (or soliton) is a wave thatne axial direction of the fiber, the matrixdonsisting

consists of a single symmetrical hump that propat ¢ ihe three parts £ Lo+ Ly - L. is defined:
at uniform velocity without changing its form. The 2 ¢ '

physical origin of solitons is the Kerr effect, whi

relies on a nonlinear dielectric constant that lsalance 2 1 20 0
the group dispersed in the optical propagation oredi S r?oe
The resulting effect of this balance is the propiageof | _| 20 . _1 (5a)
solitons, which has the form of a hyperbolic seéant @ rrge 7 r?
0 0o
Nonlinear paraxial equation: The electric field Ein
an optical fiber with the dielectric constansatisfies )
the Maxwell equation:
i o7 192 1 00
OxOxE=-225D RS e (50)
cot L 00 1
Where, cis the speed of light, and the displacement D
=¢ x E. By virtue of a formula from vector calculus, (o010 0190 9’
Eqg. (1) can be written in the form: §F§r aorrae  ardz
2 G N
?E=- 123 >D=0(0.E) 2) S =l o8’ roe® roenz (5¢)
cot 100 100 @
| rordz  roedz 07 |

It should be noted thdfilE in Eq. (2) is not zero,
since OD = 0. The constraint for Dn Maxwell’s
equation implies that: It should be noted that these matrices imply that:
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e (10 8 102 where, ds=rdrdd is the cross section of the fiber and
LE=0E =(rarr6r ﬂzaezJ ’ A'is the adjointa =(A,)* =(A}) .

3 192 In Eq. (10), there is only one bound state with th
LbE:[azz'CzatzsjE' eigenvaluek? (i.e., | =x1) and the eigen function U
LE=0(0E) =U(r,0) called the mode function describing the

confinement of the pulse in the transverse direcsind,
The electric field is considered as a monochraenati N 9eneral, consists of two parts correspondinghte
wave propagating along the z-axis with the waveright and left polarizations. Then, the solution Eq.
number k and angular frequenay, that is, the field E  (10) may be written as:
is assumed to be in the expansion form:

(12)

! _[u®E,T)u(re) forl=+1
5105 ’T)_{ 0 for | ¢il}

E(8.2.0= Y E (19 18 )explitke-0 1) (6)

Here the coefficientu® ¢, 1) with u% =u® is a

complex scalar function satisfying certain equation

« =lwand the summation is taken over all harmonicsyiven in the higher-order Eq. (4). From the equatio
generated by the nonlinearity due to the Kerr ¢ffexd L,U =0, the inner produdtU, L, U) = 0 gives the linear

E(r, 8, &, 1; €)is the envelope of thé"lharmonic dispersion relation K= K(o):
changing slowly in zand t. The slow variable§and
T are defined by:

With E_ =E (complex conjugate) wherg k Ik,

<=L UND) +(ULY) (13)
E=¢’zandr= s[ tvi] @

9 where, N, = (e{”)"? is the index of refraction, and have

assumed the normalization fordy U2 +UZ =1.
Where the small parameter (jg| <<l)expresses the by U+ U,

order of nonlinearity (i.e., the order of the etaxfield) At ordere®®:
and \j is the group velocity of the wave. On this scale

of the coordinates, Eq. (7) is looking at the bétvaof .| oL, (1 oK) o W )| 0B
the field in the balance between the nonlinearity the ~ LEr =1 Toa V. ow awl[l'l_zsl } o 19
dispersion, which results in the forming of optical ’
solitons, confined in the transverse direction.nfigg. _ ) ) )
(6) and Eq. (7), the displacement is found by: From which E® =0 is obtained if I=£1. In the
case E 1 it is required that the inhomogeneous Eq. (14)

D=exE=) D, expli(k z- )] (8)  satisfies the compatibility (or integrability) cdtidn:

It has been shown BYythat E(r, 8, %, 1;€) canbe  (U,LE2)=0 (15)

expanded in terms af
This gives the group velocity ;Mn terms of the

E (6.1 ;s):is” Y (B 1) ©) linear dispersion relation Eq. (16):
n=1
1 ok
So in ordek: VT, _aT)ll (16)
LE®=0 (10)

For I=1, Eq. (14) becomes:

where, L.is L with the replacements:
0L, 0EY oL, aup

LE2=- = . 17
FrT o0 ot ow, ot (17)

d

—=iK,,
0z

0 _ =¢©
=-Hw,e= 10a
ot (W ETE (10a)

From Eqg. (10) for =1, the solution of Eq. (17)
Note that the operator Is self-adjoint,L; =L,, in  may be found in the forfr?"

the sense of the following inner product:
2 —j aEil) aiu (2)
(UV) =] U'vds an T Y (18)
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where, u® =u®E,1) with u?=u® is a scalar K _ 0%k K = 0%k (26)
function to be determined in the higher-order eigpumat 0w’ aw’

Atordere® :

LlE(3)

=0if 1 # 1,43
2
= —i%eg2>u;1>3(u.U)u if1=3

_ oL, B 19%,9E”
0w, 0t 20w oar’
Lfi0u _10%k 0%u?
ot 200 ot

2.2
*Li[k-‘*’i“ﬂ“-usl”
1 C

2.(2)
ui”%(U.U)U, if 1 =1

Where:

(2) = (2) =
& = Z|1+|2+|3€|1/2/3(|i - i:I')

The importance of Eq. (22) is that it can be saved
into normalized reference coordinates. A clear vidw
the evolution of the envelope along the normalized
propagation path results. This will also allow ws t
study the different cases, such as the classitaltiin,
where " =0, which results in the standard Nonlinear
Paraxial equatidr.

(29) - - . .
Initial conditions: The solution of the Nonlinear
Paraxial equation can be solved exactly by therswee
scattering method. A planar stationary light beanai
medium with a nonlinear refractive index can be
described as a dimensionless f6tm

.ou  0%u
—+—+k =0 27
'az ot? lufu @7

The method used to solve the exact inverse
scattering method is applicable to equations otype:

Note thate! is a positive real number for the Kerr g, -
effect. From Eq. (19), one can obtain the solui;ionsﬁSu (28)
E® =0 for | =+ 1 or+ 3, and seigenmodeoes not have
the eigenmode:

2
£9 =2 LU )]

where, S is a nonlinear operator differential in z, which
can be represented in the form:

(20) oL
% =i[L,A] (29)

Which is a harmonic generated by the nonlinearity.

For I= 1, the compatibility condition is required:

(U.LEP)=0

Here L and A are linear dif (e, ential operators
containing the sought function u(z,t) in the forrheao
coefficient. If the condition of Eq. (29) is satesl, then
the spectrum of the operator L does not depenchen t

(21)

From which the Generalized Nonlinear Paraxialinitial values with respect to time. The reconstiarc of

equation foru® ¢,1) is obtaineé":

.ou  10%u
+77

98 201’

R
+luf u=-ifu+id—
luf ot®

the function u (z, t) at any arbitrary instant ohé is
realized by solving the inverse scattering probfem
the operator_ .

The result in Eq. (27) can be verified in Eq. (29)
with the operator's. and A taking the form:

(22)

Now the new variables and constants are
introduced:

R M e~ (308)
0 1-pjoz |[u O 1-p
(23)
. [0 0] :ll.if) Iu
A=- — 30b
(24) p{o 0}622+ .y -luf (30)
X 1+p

Without the loss of generality, the assumption k
(25) >2 andp? > 0 can be made on the above equation. As t

- o0 of any initial condition, a finite set of solitons
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becomes present. In this problem, an analogousisole a) Propagation of a simple soliton
played by the particular solutions of the Nonlinearb) Two solitons plotted on the same graph
Paraxial equatidh™: c) Propagation of a square wave soliton
d) Propagation of two solitons at collision
u(z,t)= Ny sechlg (z ¢y & t 31 , i
e g2 2 (31) A series of codes has been devel&pétb assist in
expli(-2x-4€" —n"))t+ 9] : o - v
this process, where the initial condition in Eq2)3s
) ) applied to the finite-difference formula Eq. (3B)gure
where,n, &, @ t, % are scaling parameters. This form 15 represents the basic soliton wave, with parenset
0{ tgle ?0'““0;‘ can also be known as a soliton tlaata of amplituden =1, and initial position on the t-axis, 32.
stable formation. to = (n does not appear in the equation (4.1), as this is

f The tsohtpn Eq' .(|31) f's thet3|m|plt(_est rep}r?e7@gtlv the finite difference form of equation (22)). Thature
of an extensive family of exact solutions of Eq7) of this wave is in agreement with results founé'tin

Caso such & selution can &lso be called an N-seligT2L i @ single puise wave, and i siable doag

. . ) distances. The effect of altering these basic patrars
solution, which depends on 4N arbltrgry_cpnstaqps, is to change the amplitude and lateral positiorthef
& @, G, Z; However for the non-coinciding; this  ise. The axes of the figures are labeled as,i) i&

solution breaks into individual solitons if & . the magpnification raticz is the lateral displacement and
Using this solution and beginning at the origir @, a  t s the time displacement.

wave formation can be acknowledged’by Figure 1a, below, represents the graphical
representation of the optical soliton in its singpléorm.
u(0,1)=n sech[t ¢ (32) To achieve this result, all that is necessary ie th

programming phase is to present a simple pulsaitief;
pulse 2 sech[?) (j-zp)], wheren represents the amplitude
of the wave, and gzis the phase constant of lateral
displacement, herein referred to as the displacemen
constant. In this representation it is also foumat it is
sufficient here to define the initial pulse defmit in one
L ) . dimension, represented in the program as j, rafgtd the
Finite difference solution: In order to compute a valid ; csordinate. Placing the amplitude constant instde t
solution, Eq. (22) is converted to a finite difflec@  goch function serves to give the wave more bodshatit
equanoﬁ] using z= &andt=T1. The_tlme dlscreusatlo.n its placement here would give a much narrower veawef
will be indicated by a rsuperscript and the spatial 55 shown in Fig. 1b. In this graph, the numberiroet
position will have an associated integer subsclipt ivisions in the wave, specified in the programtia®
Thus u(z,t) is denoted byi'. The various zvalues gjyisions 1=64. Respectively, the number of space
become A z whereAz is the mesh width and=0,1,2, divisions is represented in the program by curves. =
....... , I. Similarly, the time variable becomest mwhere ~ Note: The wave is travelling outwards, from thegior

This initial condition takes z 0, because we are
investigating the effect of the coefficient on the
evolution of the wave, and to do this we must sthiz
=0, not the usual initial condition where 0.

At is the time step 0,12, ....... , N. Following a along the t axis, in these graphs having 64 disido
standard explicit procedure, the finite-differencegive it a lateral displacement of 32 divisions gltinis axis
version of equation (2.22) is fourld it is necessary to specify z 32. To give the wave a phase

angle it is necessary to program the equation o tw
dimensions, adding to the initial pulse definitive term

n n

n-1 N1 n1
iui+l_ui—1+ u -2yt T+ +

A7 2017 [ur™ Py 8n¢t, wheref represents the time-phase constant, hereafter
e (33)  referred to as the phase constant. Care must ée take,
—ruieisYl T2y T 24— as this logic here can appear confusing, at fimsbenter.
' 2(aty’ Figure 2 represents two solitons, on the same

graph, producing a result that shows varying amnqgbét
The computer software Mathemafitdas all the and the time-shift. the wave on the left of thepgrhas
tools to code this finite-difference equation, adve it amplituden =0. 075 and 45, ;z=while the other is
and to produce the output graphics in two and threq = 0. 125 and 25xz= Respectively. This Graph Serves
dimensions. a very important purpose in its representation ledre
this stage. Since it is obvious that the wave \athest
RESULTS amplitude constant must be the one on the lefthef t
graph, it establishes the above-mentioned hypathesi

This section investigates a numerical result ef th that the wave is moving outwards from the origin.
Nonlinear Paraxial equation (31), for the formatimin ~ Furthermore, the displacement of the center ofitaee
solitons with Mathemati¢3 for the following cases: for the origin is established by the parameter 0
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0.1
luitl b

Fig. 1a: The Simple Soliton; Pulse Definition 8ch[2)  Fig. 2: Two Solitons with Amplitude aj =0. 25 and
(-z0)]; Displacement Constant 32, 0z n=0. 1 Respective to 38,z=and 32; z
=Amplituden = 0.1, and Time Divisions, = 64 = Plotted on the Same Graph, to lllustrate the

Difference Made by Varying the Amplitude and

Lateral Displacement

0.1

0.075
0.05

lub)

Fig. 1b: This Figures Shows the Effect of Excludihg
Amplitude Constant) from the Pulse Definition

Figure 3 represents a square wave soliton. This is
the next step in the natural progression towardstig. 3: Square Wave Soliton.
programming solitons in a collision. After produgin
the wave in Fig. 2, the program is expanded to
accommodate the second variable, t represented ir
program code by k. This is more fully explainectie
lead up to Fig. 4. This square wave is produced by
using a value off = 0. 1, where the time divisions have
been expanded to=128, and the program has been
coded for two variables. This is the input formdt o
some soliton waves as foundi{! though here the wave
is frozen in its square form. The appearance oftjuare
wave is a very important point in optical solitons
evolution, along the path of its rising coefficieas this
marks the point in the development of the opticditan
where, upon continuing to raise the amplitude c¢ciefit
n, the property of solitons selffocusitigegins.

Figure 4 represents a soliton wave with a phase
angle. This represents the first stage in the djmera
to show two solitons in a collision. The first taiskto
produce a soliton with a phase angle. As discussed
above in (a), this involves the introduction of the The program is then re-coded to accommodate two
second variable, t represented in the coding askthe variables. In this graph amplitude constaii set at 0.1,
The pulse definition is firstly expanded to becomeand displacement constant G4=zand time the divisions
pulse = Zsech [2) (j-zo) + 8¢&t], where,& represents to 1=128. To accommodate this it is also necessary to
the phase angle coefficient, set for Figat4 allow the program to automatically fix both scalesz
£ =-0.07. and tat 0-60. The result is shown in Fig. 4.

104

Fig. 4: Here the Program has been Allowed to set th
Scales Automatically, at 0 -60, to
Accommodate the Square Array in Order that
the Program May Successfully Compile.
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Fig. 8: The Final Effect for the Soliton Collisiomith
Zo=80 and z=50.
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Continuing with this progression, to investigate
graphically the collision of solitons, the nextsis to
present two soliton waves following in phase. The
process continues to the next step being the inttozh
of a second set of terms to the pulse definiticiclea to
the first. This now becomes:

pulse = 2 sech[2) (z-z) + 8&ll,
+2n sech [B) (z-z) + 8n&4]

where &y and&, are the respective phase constants, here
both set at 0, to produce parallel waves. The
displacement constants are sef@t 100 andn; = 30.

Figure 6, represents two solitons in phase, the
displacement constants are set@t 30 and g =100.
The phase constants are sefat 0. 07 and¢, =-0.

07. The time divisions constant are set at128. This
shows the two solitons, in opposing phases, meeting
the rear edge of the plot, the collision processing
from the rear to the front of the curve when préseiin
this manner. This again follows the hypothesisas¢he
beginning, where the waves run outwards from the
origin.

Figure 7, below represents two solitons in phase,
the later displacement constants are sep at100 and
z; =30. The phase constants are se,;at0. 07 and
&,=-0. 07. The time divisions constant are set at
1=128. Figure 7 shows the two solitons, in opposing
phases, meeting at the near edge of the plot, the
collision process running from the rear to the frof
the curve when presented in this manner.

Figure 8, below represents the midpoint for the
collision, is programmed by setting the displacemen
constants atyz=80 and z =50. The phase constants
andt remains at the values used in Fig. 6 and Fig. 7.

CONCLUSION

The formation and propagation of solutions have
been observed and understood in this paper by
implementing a numerical routine to solve the
Nonlinear Paraxial equatibh A sequence of code has
been developed to explore in depth several featfres
the soliton’'s formation and propagation. This paper
investigated changes in the solutions of the nealin
paraxial equation when the parameters, ¢, t, z are
modified in the following way. The parametgrhas
most noticeable effect on the amplitude of the wave

Whenn > 0. 1, this condition usually encountered
a square wave. Whan< 0.1, a normal plane soliton is
resulted. Changing the inequality sign has no eatite
effect. The parametéf gives the wave a phase angle.
This phase angle becomes noticeable above 0.001.

A phase angle above 0.1 tends to separate the
soliton solution into a row of peaks. The resultsrav
found to be most useful at a phase angle of 0.0@. T
direction of the phase changes with the sign. The
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parameter ¢t moves the soliton peak back and forth 4.

along the t-axis. Finally the timer divisions, omet

same scale asg fare constant in the Mathematica 5.
progrant!. This constant investigates the spread of the

graph along the t-axis. This constant was showeto
most useful when the time divisions were set at/64.
time division of 128 was used in this paper atstege
soliton collisions.

Nonlinearity and dispersion effects involved ie th
propagation of optical solitons have been preseited
for 7.
Mathematica. This program can be used extensieely t
study other combined effects of pulse propagation i

graphical form, using a numerical routine

nonlinear dispersive media. The results displapetiis

6.

study give a very clear idea of this interestingd an 8.

important practical phenomenon.
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