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Abstract: Problem statement: Identification of Quantitative Trait Loci (QTLs) idurable resistant
genotype is important for marker-assisted breediig study was conducted to identify QTLs linked
to FHB resistance in ‘Tokai 66’, a Japanese gereo#ppr oach: A cross was made between Tokai 66
and Jagalene and the single seed descend was aisatl/ance the population. TheFand b5
populations were evaluated by artificially inociragt disease in a mist-irrigated nursery in 2006 and
2007. Disease incidence, severity, FDK and DON emntvere evaluated in the 128 RILs. Map
Manager QTX was used to prepare the linkage mapQrid Cartographer 2.0 was used to identify
QTLs for FHB responses from the field data respefti Results: Four QTLs for FHB responses
were detected, of which one QTL each for severnity BEDK were stable across two years and were
located at the 5B and 3BSc, respectively. Both Qddusferred resistance to FHB. Two unstable QTLs
were detected at the 5B and 3D for FDK and DON eantrespectively using the field environment.
The 5B QTL for FDK contributed to susceptibilityhereas the 3D QTL for DON content contributed
to resistanceConclusion: The 5B QTL associated with resistance to seventy 2B QTL associated
with resistance to FDK could be utilized by winteneat breeding programs selection to enhance FHB
resistance.
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INTRODUCTION different types of resistance were positively aided,
though not very highly and suggested that the selec
Fusarium head blight, caused byfor one type of resistance would indirectly enable

Fusarium graminearum Schwabe, is an economically selection for other types of resistance (Lemmeire.,
important disease of wheat and other small grains i2005). Reduction in  mycotoxins, especially
warm and humid areas (Stack and Mcmullen, 1985peoxynivalenol (DON), is paramount as DON
Tuite et al., 1990). Nganjet al. (2002) estimated $ 2.7 adversely affects the health of humans and livéstoc
billion loss in wheat and barleyifrdeum vulgare L.)  (yoshizawa and Morooka, 1973; Aaket al., 2005).
farming due to the FHB epidemics in the US during t The prime emphasis in breeding for resistance t8 FH
period of 1998-2000. These losses were attributedl t s 1o gevelop genotypes with low disease symptoth an
comblngtlon of facpors, mcludmg deprease_ln ylélde. very low level of mycotoxins.
to shrl\{eled grains, .redgcnon n gran quality, Use of molecular makers and consequently marker
mycotoxins contamination in the mfected seeds anqﬂssisted selection would reduce the confounding
cost of transportation _Of grains from dlsease-&mas._ effects of the various environmental factors and

Breeding for resistance has been a predominanf rease gain from selection for FHB resistance.
approach to manage the disease. There are five §fpe g erstmayret al. (2009) reviewed the FHB response
phy5|qlog|cal resistance for EHB in the ho_st Ilsied QTLs and reported that QTLs for FHB response have
the literature, namely resistance to (i) diseasgeen identified in all wheat chromosomes except 7D.
penetration (type 1), (i) floral spread (type Ilili) ~ The Chinese line ‘Sumai3’ and its derivatives are
Fusarium Damaged Kernel (FDK) (type IlI), (iv) ydel mostly utilized in breeding programs around the Idor
reduction (type 1V) and (v) mycotoxin accumulation as they displayed stable resistance to diseasadjme
(type V) (Schroeder and Christensen, 1963;the spike (Bai and Shaner, 1994; Mesterhazy, 2003).
Mesterhazy, 1995). Studies have shown that théapping studies of Sumai3 and its derivatives had
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showed that they contain QTLs on different Table 1: Pedigree and seed sources of the pagemnatypes used in

chromosomes for resistance to spread and FDK but this study _
only a single stable QTL for mycotoxin resistance.Parents Pedigree/P| Source
The most prominent QTL in this Chinese source is'oka 66 PI382161 Japan

Jagalene Abilene/Jagger Agripro Inc.

Fhbl, formerly Qfhs.ndsu-3BS (Ligt al., 2006),
expressing resistance to spread (Waldebal., 1999; . :
Bai et al., 1999). The 3BS region was also reported to ~ Inoculum (corn spawn and conidial suspension)

contain QTLs providing resistance to FDK and DONPréeparation and application and disease rating¢dis
accumulation  in Sumai3 and its derivativesindex, Fusarium Damaged Kernel (FDK) and DON

(Lemmenset al., 2005; Yanget al., 2005). content) were followed as described in (Madaal.,
Resistance to FHB has been reported from differen2009). Disease index, calculated as the produtisefise
regions of the world. Despite contributing stableB=  incidence and disease severity, was highly coeelat
resistance in the crosses, Sumai3 and its deragtiv With severity (#0.99, p<0.01) in both years. Therefore,
resulted in poor vyield and low grain quality disease index was not used in the analysis.
(Buerstmayret al., 2002). Breeding programs have
meticulously been searching for germplasm that willGenotyping:
contribute to high resistance for FHB as well asnsfer  Diversity Array Technology (DArT): Leaf
good agronomic traits into resulting crosses.samples were collected from plants at the seveih-lea
Additionally, significant additive gene action irHB  stage. DNA was extracted from the leaf samples
resistance has indicated that gene pyramiding cbeld following the CTAB method as described by Tritieart
realized by combining different sources of resistan Pty. Ltd. (http://www.triticarte.com.au/content/DNA
(Snijders, 1990). A genotype from Japan, ‘Tokai, 66 preparation.html). Triticarte Pty. Ltd. (Canberra,
has shown resistance to FHB in field evaluationAustralia;  http://www.triticarte.com.au)  screened
(Zzhanget al., 2008). Tokai 66 is a novel source of parents and RILs according to the method descililyed
resistance, though Liu and Anderson (2003) sugdesteWenzl et al. (2004) and Akbariet al. (2006). Each
that Tokai66 contained one out of 5 alleles simitar genotype was scored as either present “1” or al§é&nt
Sumai3 at the 3BS region. This novel resistance ifior DArT markers. Triticarte Pty. Ltd. assigned the
Tokai 66 is not yet clearly understood. The objexti prefix “wPt” (w stands for wheat, P stands for Rstd t
of the study, therefore, were to (i) identify QTLs stands for Tagl) followed by a unique four digit
linked to disease index (type | and Il resistané®)K identification number for each of the DArT markargl
(type Il resistance) and DON content (type V the same nomenclature of DAIT markers is usedim th
resistance) and to (ii) determine the novelty afsth  publication.
Tokai 66 QTLs in comparison to other available
resistance sources. Single Sequence Repeat (SSR): DNA was extracted
from leaf samples following Saghai-Maroat al.
MATERIALSAND METHODS (1984) with minor modifications. The polymeraseioha
Plant material and field evaluation: A total of 128 reaction mixture (13uL) contained 0.05uM of

F.s and B¢ Recombinant Inbred Lines (RILs), atleast forward-tailed primer (5’ to 3', ACG ACG TTG TAA
eight seeds per line, developed using the Singkl Se AAC GAC), 0.05uM 6-FAM/VIC/NED/PET-labelled

Decent (SSD) procedure, from the crossM13 primer (5' to 3, ACG ACG TTG TAA AAC
Tokai66/'Jagalene’ were evaluated in field envirems  GAC, Applied Biosystems), 0.1QM reverse primer,

in 2006 and 2007 at Brookings, SD (Latitude =200 uM of deoxynucleotide, 2.5 mM Mggl1.5 unit
44°16'14”, Longitude = -96°46'18"). Tokai66 is a Tagq polymerase, 200 ng of template DNA and 1X
Japanese spring wheat with unknown moderatémmonium Sulfate Buffer. After heating the mixtuce
resistance to FHB, while Jagalene is popular Haed R 95°C for 5 min., the PCR reaction occurred over 35
Winter wheat (HRW) that is highly susceptible toB-H cycles. The first five cycles consisted of denaigrat

in South Dakota (Table 1). The RILs were transgldnt 96°C for 1 min, 68°C (-2°C/cycle) for 5 min, 72°Grf
into the field in May 2006 and 2007. The plot sizes a 1 min, followed by five cycles of 96°C for 1 ming&C
12.7 cm row in both greenhouse and field. Seedling§2°Clcycle) for 2 min, 72°C for 1 min and the
were vernalized for eight wk at 4°C prior to remaining 30 cycles consisted of 96°C for 1 mifG0
transplanting. The £ and k. RILs nurseries were laid for 1 min, 72°C for 1 min with a final extensioreptof

out in the field as a randomized complete blockgies 72°C for 5 min. PCR products were scanned with
with two replications. GeneScan-500 LIZ as an internal size standard
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(Applied Biosystems) in an Applied Biosystems 3730 RESULTS
DNA Analyzer (Applied Biosystems) and the results
were analyzed with GeneMarker software (Softgenetic Statistical result: Correlation coefficients of lines
LLC.). between years were significant for incidence (r.320
p<0.01), severity (r = 0.61, p<0.01) and FDK (r ZZ)
QTL analysis. Marker map distance was constructedp<0.01). However, there was no correlation (r =10.1
with Map Manager QTX (Manlet al., 2001) setting p = 0.50) between DON content in either year. There
search linkage criterion at p<0.05 and using Kosambwere significant correlations between severity BBK
map functions. RECORD (Van Ost al., 2005) (r = 0.38, p<0.01), severity and DON content (r.28)
was used to reorder the marker position within thegp<0.01) and FDK and DON content (r = 0.28, p<0.01).
linkage group. Simple interval mapping with Incidence was significantly correlated with setyer
p<0.001was used to detect QTL in the Map Manage(r = 0.40, p<0.01) but not with FDK (r = 0.12, 0-18)
QTX. The linkage groups containing significant QTL and DON content (r = 0.14, p = 0.16).
were again reanalyzed in Windows QTL Cartographer  Since line means were correlated between the years
2.0 (Wanget al., 2007) software. Composite interval for incidence, severity and FDK and that the test f
mapping (Zeng, 1994) with a background control of 5homogeneity of variance was significant, data acros
markers and a 10-cM window size was used for QTLthe years were pooled for combined analysis. There
analysis in the Windows QTL Cartographer. (Voorrips were  significant  differences among genotypes
2002) was used to draw the linkage map for thecombined over years. The genotype-by-year
markers. interactions for the above traits were also sigaifit
(Table 2). Broad-sense heritability was highestiDK
Statistical analysis: An analysis of variance for single (0.45) and lowest severity (0.38).
and combined years was conducted for disease The RILs distributions were shown for incidence,
incidence, severity, index and FDK. Proc GLM of SASseverity, FDK and DON content in Fig. 1-4,
Institute Inc. (2008) was used to analyze the datarespectively in the field environment averaged s&ro

Broad-sense heritability thwas estimated by: the two years. The distribution was skewed toward
susceptibility for incidence as the mean incideoicthe
h? = oq/(ogtogly+odry) RILs was 98.7%. The resistant and susceptible pgaren
had 93.4 and 100.0%, respectively for disease
Where: incidence. This indicated that both the parents|ares
oy = Genotypic variance component were highly susceptible to FHB initial infection.
ogy = Genotype X year interaction variance component Continuous distribution was observed for sevefHK
o = Residual error variance component and DON content inferring that the traits were
r = Replications quantitatively inherited. The average severity e t
y = Years RILs was 52.0% with the lowest severity being 22.8%

and the highest severity being 84.0%. The mean FDK
The 90% confidence interval of heritability was and DON content in the RILs were 55.4% with a range
calculated as described by (Knamp al., 1985). of 10-85.0 and 8.5 ppm with a range of 1.2-29.0 ppm
Pearson’s correlation coefficient was computedesst t respectively. Few lines in the study had eitherdoar
the association between disease incidence, severithigher values than the two parents for severityKFD
index, FDK and DON content using Proc Corr of SASand DON content which indicates both positive and
Institute Inc. (2008). negative transgressive segregation.

Table 2: Analysis of variance and heritability esites for incidence, severity and Fusarium Dam#&gedels (FDK) averaged across two years
(2006 and 2007) in a field at Brookings, SD

2006-07
Source DF Incidence Severity FDK

BLOC (Year) 2 6.3F 124.89° 137.94°

Year (Y) 1 93.64* 647.89* 512.26*
Genotype (G) 127 2543 471.39% 503.59*

YxG 96 15.33* 292 .52 276.96%

Error 149 19.59 124.31 125.90

h? (90% CI) 0.39 (0.53, 0.22) 0.38 (0.52, 0.20) q@as57, 0.29)

*, **: Significant at 0.05 and 0.01 probability lels, respectively'>: Non-Significant
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Table 3: QTLs for resistance to FHB severity (typeas detected by composite interval mapping ifolai 66/Jagalene population in a field
environment at Brookings, SD

2006 2007 2006 and 2007
Region
Length Additive Additive Additive
Chromosome  Marker interval (cM) LOD effects 2(®) LOD effects R(%) LOD effects R(%)
Severity 5B wPt-9006-wPt-6348 30.3 3.5 -6.4 14.3 0 8. -9.46 324 8.7 -7.6 25.7
FDK' 3B wPt-5310-wPt-7024 39.5 5.9 -8.3 27.3 5.1 -11.147.9 5.3 -9.6 38.4
5B WPt-8132-wPt-8637 9.8 - - - 34 6.2 12.2 - -
DON 3D wPt-0524-wPt-3815 60.7 - - - 3.3 -2.9 18.1 - - -

TFDK: Fusarium Damaged Kernel; DON: Deoxynivalenol
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Fig. 1: Histogram of 115 RIL lines for incidence Fig. 3: Histogram of 115 RIL lines for Fusarium
averaged across two years (2006-2007) in a Damaged Kernels (FDK) averaged across two
field environment at BrookingS, SD years (2006'2007) in a field environment at

Brookings, SD
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Fig. 2: Histogram of 115 RIL lines for disease séye DON

averaged across two years (2006-2007) in a
field environment at Brookings, SD
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Fig. 4: Histogram of 115 RIL lines for Deoxynivat#n

Markers and linkage map: A total of 249 (DON) content averaged across two years
polymorphic DAIT (244), SSR (4) and STS (1) markers (2006-2007) in a field environment at
were used to construct the linkage map. Sixty-mine Brookings, SD

of 244 DArT markers were not mapped to any

chromosomal location. The ‘distribution’ optionMep  QTL mapping and analysis: Simple and composite
Manager QTX was used to assign the unmappethierval mapping showed that there were four QTLs a
markers into different linkage groups. There wefe 3 ,.ca chromosomes for severity, FDK and DON

formed linkage groups (Fig. 5-9). Some of theskdige content (Table 3). Consistent resistant QTL at 53 w
groups were vertically stacked based on the marker

position in the chromosomal map of Akbai al. observeq for severity in both years. Likewise, abkdt _

(2006): Crossat al. (2007); Mantovanit al. (2008) and resistant 3BSc QTL for FDK was observed in
and Semagret al. (2006). The longest linkage map both years. A second susceptible 5B QTL_ was
distance was 414.4 cM for 3B linkage group, whereagecorded for FDK and the QTL was unstable as it was
the shortest linkage length was 1.7 c¢M for 5D lgga oObserved only in one of the two years. An unstable

group. The average length of the linkage group wasesistant QTL for DON content was observed at 3D in
83.9 cM. 2007.
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were used in this study. A change in the dominasfce
F. graminearum isolates across the two years might
have also lead to variability in DON content in Ri.s
in 2006 and 2007.

DArT markers detected one stable QTL for
severity. This stable 5B QTL should be in a similar

The mean disease incidence in this study was Ve;ygion where 5B QTL from Wangshuibai, a Chinese

high. Both Tokai66 and Jagalene showed highly>OUrce of resistance, was reported (Akleadl., 2006;
susceptible reaction to incidence which suggested t Jia & &., 2005; Somerst al.,, 2004). In a haplotype
the resistant parent, Tokai66, lacks type | resista study, L|u_and Ande_rson (2003) reported that Sumai3
This finding disagrees with Zhareyal. (2008). Due to and Tokai66 .contamed the same 3BS allele when
high incidence, the distribution was skewed towardgJenotyped with the XBARC133 marker, whereas
susceptibility. Wangshuibai did not contain any Sumai3 allele. We
Correlation was observed among severity, FDKWere not able to detect a 3BS QTL for severity in
and DON content. The result was in agreement withf 0kai66. In another mapping study involving Tok&i 6
earlier findings where disease index, FDK and DONX Y1193-6 phenotyped under greenhouse condition
content were correlated (Malla, 2005). The sigaific  (spikes were point inoculated) for three seasort an
correlation among the traits suggested that satpdtr ~ genotyped with four SSR markers, Xgwm389,
one trait would indirectly lead to gain in othemits. = Xgwm493, Barc147 and STS3B-206, could not detect
Likewise, there was correlation between years foQTL at 3BS region for severity, FDK and DON content
severity and FDK but not for DON content. This traits (Y. Yen, South Dakota State University, o
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communication). These findings suggested that Tgkai Akbari, M., P. Wenzl, V. Caig, J. Carling and Aligh et al.,

is more similar to Wangshuibai than Sumai3 with ~ 2006. Diversity Arrays Technology (DArT) for

regards to disease severity. high-throughput profiling of the hexaploid wheat
This study detected one stable and another uestabl ~ genome. Theor. Applied Genet., 113: 1409-1420.

QTLs for FDK. The stable FDK QTL in Tokai 66 in DOI: 10.1007/s00122-006-0365-4

this study was detected at 3BSc region exactly eherBai, G.H. and G. Shaner, 1994. Scab of wheat-

Wangshuibai was also reported to have a QTL for  Prospects for control. Plant Dis., 78: 760-766.

severity (Zhouet al., 2004). In 2007, simple interval Bai, G.H., F.L. Kolb, G. Shaner and L.L. Domier 989

mapping showed a QTL for FDK at 3BS in addition to ~ Amplified fragment length polymorphism markers

a QTL at 3BSc in Tokai 66. Simple interval mapping  linked to a major quantitative trait locus contir

also showed a 3BS QTL for DON content in 2007.  Scab resistance imheat. Phytopathology, 89: 343-348.

When data was analyzed through composite interval PMID: 18944781

mapping, the QTL at the 3BS region for FDK and DONBuerstmayr, H., M. Lemmens, L. Hartl, L. Doldi and

content was not detected. It can be inferred that t P. Ruckenbaueet al., 2002. Molecular mapping of
QTL at the 3BS region for FDK and DON content ~ QTLs for usarium head blight resistance in spring
might not have a large effect, or in the case oKFhe wheat. |. Resistance to fungal spread type II

large effect of the 3BSc QTL might have masked the  resistance. Theor. Applied Genet., 104: 84-91.
effect of the 3BS QTL. This study suggested thateh Buerstmayr, H., T. Ban and J.A. Anderson, 2009. QTL
might be a small effect putative QTL at the 3BSiorg mapping and marker-assisted selection for
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