TY - JOUR AU - Bhattarai, Shankar PY - 2017 TI - Interpretation of Double Langmuir Probe I-V Characteristics at Different Ionospheric Plasma Temperatures JF - American Journal of Engineering and Applied Sciences VL - 10 IS - 4 DO - 10.3844/ajeassp.2017.882.889 UR - https://thescipub.com/abstract/ajeassp.2017.882.889 AB - Where the plasma potential is fluctuating significantly, Single Langmuir probe method is not relevant to determine the plasma characteristics. This weakness was overcome by the development of the floating double probe. A distortion of the probe characteristics due to varying potential is eliminated, while the whole probe system is floating. This supports probe operation also in discharges with strongly varying potential. Double Langmuir probes provide valuable information on the behavior of space plasmas including ionospheres and the interstellar medium. This research paper focuses on the study of Spherical Double Langmuir Probe I-V characteristics in Maxwellian interstellar plasma. To generate the exact plasma conditions of the experimental testing environments computational procedures is adopted. The investigations address the development of a technique to model Maxwellian plasma. Three different ionospheric plasma temperatures are theoretically taken and its effects on floating potential are studied in this research. The variation of floating potential and ion saturation current due to temperature is clearly depicted. A noticeable trail in the I-V curves is the bump that occurs right after the floating potential. This feature in the transition region affects ability to determine the electron temperature, ion saturation current and plasma potential. Symmetric characteristic when both tips are of equal geometry is an important advantage of the double probe. Generally, all surfaces adjacent to the plasma become contaminated with deposits, so also does any probe. Here I have also deliver some sense of how one might proceed to use these results in the analysis of experimental I-V curves acquired in space.