TY - JOUR AU - Himeda, Toshiki AU - Hayakawa, Natsumi AU - Tounai, Hiroko AU - Tanaka, Aki AU - Kato, Hiroyuki AU - Araki, Tsutomu PY - 2005 TI - Immunohistochemical Detection of Apoptosis-Related Proteins in Gerbil Hippocampus Transient Cerebral Ischemia: Neuroprotective Effect of Pitavastatin JF - American Journal of Biochemistry and Biotechnology VL - 1 IS - 4 DO - 10.3844/ajbbsp.2005.212.225 UR - https://thescipub.com/abstract/ajbbsp.2005.212.225 AB - Delayed and selective neuronal damage was caused in the CA1 sector of hippocampus following 5 min of transient cerebral ischemia in gerbils. We investigated the immunohistochemical alterations of apoptosis-related proteins such as bcl-2α, bcl-xs/l, bax, cytochrome c, and active caspase 3 and TUNEL staining in the hippocampus at 1 and 5 hr and 1, 2, 5 and 14 days after transient cerebral ischemia in gerbils. We also examined the effect of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor pitavastatin against the alterations of apoptosis-related proteins and TUNEL staining in the hippocampus after cerebral ischemia. The alterations of apoptosis-related proteins in the hippocampal CA1 sector were more pronounced than the changes of hippocampal CA3 sector and dentate gyrus after cerebral ischemia. The alterations of apoptosis-related proteins in the hippocampal CA1 sector after cerebral ischemia preceded the neuronal damage in this region. Furthermore, the study with TUNEL staining showed that a marked increase of TUNEL-positive nuclei was evident only in the hippocampal CA1 sector 5 days after cerebral ischemia. Our immunohistochemical study also showed that pitavastatin prevented the alterations of apoptosis-related proteins and the increase of TUNEL-positive nuclei in the hippocampal CA1 sector 5 days after cerebral ischemia. The present study indicates that transient cerebral ischemia in gerbils causes the mitochondrial-dependent apoptosis in the hippocampal CA1 sector. Furthermore, our present study demonstrates that pitavastatin can prevent the alterations of apoptosis-related proteins and the increase of TUNEL-positive nuclei in the hippocampal CA1 sector after cerebral ischemia. Thus our study provides novel therapeutic strategies in clinical stroke.