Research Article Open Access

Synthesis and Characterization of Au@TiO2 NWs and their Catalytic Activity by Water Splitting: A Comparative Study with Degussa P25

Abniel Machín1, María Cotto1, José Ducongé1, Juan C. Arango1, Carmen Morant2 and Francisco Márquez1
  • 1 Universidad del Turabo, United States
  • 2 Universidad Autónoma de Madrid, Spain
American Journal of Engineering and Applied Sciences
Volume 10 No. 2, 2017, 298-311

DOI: https://doi.org/10.3844/ajeassp.2017.298.311

Submitted On: 28 May 2017 Published On: 6 June 2017

How to Cite: Machín, A., Cotto, M., Ducongé, J., Arango, J. C., Morant, C. & Márquez, F. (2017). Synthesis and Characterization of Au@TiO2 NWs and their Catalytic Activity by Water Splitting: A Comparative Study with Degussa P25. American Journal of Engineering and Applied Sciences, 10(2), 298-311. https://doi.org/10.3844/ajeassp.2017.298.311

Abstract

Different amount of gold nanoparticles (1, 3, 5, 10 wt%) were deposited on the surface of synthesized titanium oxide nanowires (TiO2 NWs) and Degussa P25 (TiO2-P25). The results evidenced the presence of small and dispersed gold particles on the surface of TiO2 NWs and TiO2-P25 and an increase in the specific surface area of all the composites. The photocatalytic activity was characterized by measuring the hydrogen production by water splitting, using UV-vis radiation. Au@TiO2 NWs catalysts showed the highest production of hydrogen (1,436 μmol hg-1), with a gold loading of 10 wt%, while in the case of Au@TiO2-P25 the hydrogen production was slightly lower (800 μmol hg-1), with a gold loading of 5 wt%. The enhancement in the hydrogen production was 11.5 times higher than that reported by the TiO2 NWs catalyst (125 µmol hg-1) and 5.2 times higher than the TiO2-P25 (154 µmol hg-1). The activity of the catalysts was found to be dependent both on the surface area of the composites and on the amount of gold.

  • 882 Views
  • 1,399 Downloads
  • 3 Citations

Download

Keywords

  • Hydrogen Production
  • TiO2 Nanowires
  • Gold Nanoparticles
  • Photocatalysis
  • Water Splitting