Research Article Open Access

Quantization of Map-Based Neuronal Model for Embedded Simulations of Neurobiological Networks in Real-Time

Nikolai F. Rulkov1, Ariel Mark Hunt2, Peter N. Rulkov3 and Andrey G. Maksimov4
  • 1 University of California, United States
  • 2 Ariel Systems, United States
  • 3 California State University San Marcos, United States
  • 4 National Research University Higher School of Economics, Russia

Abstract

The discreet-time (map-based) approach to modeling nonlinear dynamics of spiking and spiking-bursting activity of neurons has demonstrated its very high efficiency in simulations of neuro-biologically realistic behavior both in large-scale network models for brain activity studies and in real-time operation of Central Pattern Generator network models for biomimetic robotics. This paper studies the next step in improving the model computational efficiency that includes quantization of model variables and makes the network models suitable for embedded solutions. We modify a map-based neuron model to enable simulations using only integer arithmetic and demonstrate a significant reduction of computation time in an embedded system using readily available, inexpensive ARM Cortex L4 microprocessors.

American Journal of Engineering and Applied Sciences
Volume 9 No. 4, 2016, 973-984

DOI: https://doi.org/10.3844/ajeassp.2016.973.984

Submitted On: 21 October 2016 Published On: 9 November 2016

How to Cite: Rulkov, N. F., Hunt, A. M., Rulkov, P. N. & Maksimov, A. G. (2016). Quantization of Map-Based Neuronal Model for Embedded Simulations of Neurobiological Networks in Real-Time. American Journal of Engineering and Applied Sciences, 9(4), 973-984. https://doi.org/10.3844/ajeassp.2016.973.984

  • 4,438 Views
  • 2,518 Downloads
  • 1 Citations

Download

Keywords

  • Map-Based Neuron Models
  • Quantization
  • Spiking-Bursting Activity
  • Embedded Solutions
  • Biomimetic Robotics
  • Neurobiological Networks