Investigation Open Access

Investigating the Parameters Influencing the Behavior of Knee Braced Steel Structures

Edris Farokhi1 and Mehrdad Gordini1
  • 1 Islamic Azad University, Iran


In Knee-Braced Frames (KBF), the brace is connected to the knee element rather than the beam-column joint. For reasons such as having sufficient lateral stiffness despite its adequate ductile behavior, the concentration of damage in the Double Knee-Braced structural elements and also ease of repair and replacement of these elements after an earthquake, this bracing system is preferred over conventional systems. The lateral stiffness of this system is provided by the bracing system and the frame ductility is supplied by the flexural yield or the shear yield of the knee members depending on the knee length. Attempts have been made, in the present study, to investigate the non-linear seismic behavior of Knee-Braced Frame systems for various influencing factors and to formulate the effect(s) of the number of building stories, the length of the knee element and moment of inertia of the bending members on the seismic behavior, the drift of the stories and the failure mode of these systems. Finally, based on the results of the study, some recommendations have been offered for the effective range parameters for the optimal performance of these systems.

American Journal of Engineering and Applied Sciences
Volume 8 No. 4, 2015, 567-574


Submitted On: 16 March 2015 Published On: 21 September 2015

How to Cite: Farokhi, E. & Gordini, M. (2015). Investigating the Parameters Influencing the Behavior of Knee Braced Steel Structures. American Journal of Engineering and Applied Sciences, 8(4), 567-574.

  • 0 Citations



  • Knee-Braced Frames
  • Non-Linear
  • Seismic Behavior
  • Drift
  • Failure Mode