On the New Branch of Mathematical Science

M. Sivasubramanian and S.Kalimuthu

Department of Mathematics, Mahalingam College of Engineering and Technology, Pollachi Via, Tamilnadu-642003, India

Kanjampatti P.O, Pollachi Via, Tamilnadu-642003, India

Abstract: The origin of geometry dates back 30000 (Thirty thousand years) B.C. Euclid of Alexandria (2300 B.C.) compiled the Elements which is the first scientific text book. Euclid assumed five postulates. There is no proof for the fifth postulate. Almost all the celebrated mathematicians tried their best to deduce this from the first four postulates. But unfortunately, nobody was successful. Saccheri and Lambert worked on this problem for more than 50 years. The authors start where Saccheri and Lambert failed to obtain the following result/theorem. In a Lambert quadrilateral the fourth angle is the right angle or the lateral sides of a Lambert quadrilateral are equal. This proposition was proved by proof by contradiction.

Keywords: Euclid, elements, postulates and Non-Euclidean geometries

INTRODUCTION

The word geometry was derived from two Greek words geo meaning earth and metric meaning measuring. Euclid of Alexandria wrote his first scientific text book Elements. The Element assumes the following postulates:

- A straight line may be drawn between any two points
- A piece of straight line may be extended indefinitely
- A circle may be drawn with any given radius and an arbitrary center
- All right angles are equal
- If a straight line crossing two straight lines makes the interior angles on the same side less than two right angles, the two straight lines, if extended indefinitely, must meet on that side on which are the angles less than two right angles

After Euclid, many mathematicians tried their best to prove the above mentioned fifth postulate. But nobody could succeed. The authors attempt to deduce the fifth Euclidean postulate from the first four axioms.

MATERIALS AND METHODS

In this study, we begin where Saccheri and Lambert failed to achieve the result. In further studies, the application of number theory, matrix algebra and set theory may be used.

RESULTS

Let ABCD is the Lambert quadrilateral[2] where angles at A, B and C are right angles as shown in Fig. 1.

Case 1: Let CD is smaller than AB. On the extension of CD, cut off CE such that CE = AB. Now ABCE is a Saccheri quadrilateral. The summit angles of Saccheri quadrilateral are equal. Since angle BAE is obtuse, we get that angle CEA is obtuse. Erect EF perpendicular to ED. Angle DEF is 90°. From 1 and 2 we get a contradiction. This shows that case 1 is not possible.

Case 2: Let CD is greater that AB. On CD, cut off CH such that CH = AB. Now ABCH is a Saccheri quadrilateral. The summit angles of Saccheri quadrilateral are equal. Since angle BAE is obtuse, we get that angle CEA is obtuse. Erect EF perpendicular to ED. Angle DEF is 90°. From 1 and 2 we get a contradiction. This shows that case 1 is not possible.

Case 2: Let CD is greater that AB. On CD, cut off CH such that CH = AB. Join A and E. Now ABCH is a Saccheri quadrilateral. The summit angles of Saccheri quadrilateral are equal. Since angle BAE is acute, we get the angle CEA is acute. Construct HJ perpendicular to HC. Now the angle CHJ is 90°. From 3 and 4 we get a contradiction. This proves that case 2 is also not acceptable.

From cases 1 and 2, we get that AB = CD. If AB = CD, then the angle at D is 90°.
CONCLUSION

Labachevky, the noted Russian mathematician, was the first person in the history of mathematics to formulate a model of non-Euclidean geometry, which is also known as hyperbolic geometry. This formula, and this branch of geometry are widely used to study the properties of atomic objects in quantum physics. Also, the celebrated German mathematicians, Gauss and Riemann developed the second branch of non-Euclidean geometry which another name is elliptic geometry. Einstein, using the name of Riemannian geometry, only took 10 years to formulate his general theory of relativity. The authors do not make any top claim but politely state that their result is consistent. There is a hidden treasure. Further studies will definitely unlock this problematic problem and definitely give birth to a new branch of mathematics. A turning point in geometry is also a milestone in physics. Modern physics is facing many odds. The new future will solve these physical problems such as monopoles, quantum gravity, the dual property of electrons and protons, antimatter, dark matter, shadow of matter, gravitons and black holes.

ACKNOWLEDGEMENT

The authors wish to thank the late professor P. Kaliappan and the management of Nallamuthu Gounder Mahalingam College, Pollachi, Tamilnadu-642001, India for their kind encouragement.

REFERENCES

1. www.groups.dcs.stand.ac.uk/~history/HisTopics/Non.Euclidean_geometry.