A Priori Estimation of the Resolvent on Approximation of Born-Oppenheimer

Sabria Bouheroum-Mentri and Amina Benbernou

Department of Mathematics, University of Annaba B.P. 12 Annaba 23000 Algeria
Department of Mathematics, University of Mostaganem B.P. 227 Mostaganem 27000 Algeria

Abstract: In this study, we estimate the resolvent of the two bodies Schrödinger operator perturbed by a potential of Coulombian type on Hilbert space when h tends to zero. Using the Feschbach method, we first distorted it and then reduced it to a diagonal matrix. We considered a case where two energy levels cross in the classical forbidden region. Under the assumption that the second energy level admits a non degenerate point well and virial conditions on the others levels, a good estimate of the resolvent were observed.

Key words: Distorsion, eigenvalues, estimation, resolvent, resonances

INTRODUCTION

The Born-Oppenheimer approximation technique\cite{1} has instigated many works one can find in bibliography the recent papers like\cite{2-5}.

It consists to study the behaviour of a many body systems, in the limit of small parameter h as the particles masses (masses of nuclei) tends to infinity; (see the references therein for more information), we can describe it with a Hamiltonian of type

$$P = -h^2 \Delta_x - \Delta_y + V(x, y)$$

on $L^2(\mathbb{R}^3 \times \mathbb{R}^3)$, when $h \to 0$ and V denote the interaction potentials between the nuclei of the molecule and the nuclei electrons. The idea is to replace the operator

$$Q(x) = -\Delta_x + V(x, y)$$

by the so-called electronic levels which be a family of its discrete eigenvalues: $\lambda_1(x), \lambda_2(x), \lambda_3(x), \ldots$ and to study the operators P which can be approximatively given by

$$-h^2 \Delta_x + \lambda(x), \text{ on } L^2(\mathbb{R}^3)$$

Martinez and Messirdi's works, are about spectral proprieties of P near the energy level E_0 such that $\inf \lambda \leq E_0$. Martinez in\cite{6}, studies the case where $\lambda_0(x)$ admits a nondegenerate strict minimum at some energy level λ_0, the eigenvalues of P near λ_0 admits a complete asymptotic expansion in half-powers of h\cite{6}.

Messerdi and Martinez\cite{7} considers the case where λ_0 admits a minimum, such appears resonances for P. He gives an estimation of the resolvent of $O(h^{-1})$ at the neighbourhood of 0.

In this study we try to generalize this work to approximate the resolvent of P where V is a potential of Coulombian type at the neighbourhood of a point $x_0 \neq 0$.

In fact, we estimate the resolvent of the operator F_ς, given by a reduction of the distorted operator P_ς, of P modified by a truncature ς\cite{8}; and we try to have a good evaluation of the order of $O(h^{-1/2})$.

We apply the Feschbach method to study the distorted operator P_ς which allows us to go back to the initial problem and we put the virial conditions on λ_1 and λ_3.

Hypothesis and results

Hypothesis: Let the operator

$$P = -h^2 \Delta_x - \Delta_y + V(x, y)$$

on $L^2(\mathbb{R}^3 \times \mathbb{R}^3)$, when $h \to 0$. $V(x, y) = V(x, y_1, y_2, y_3, \ldots, y_p)$ is an interaction potential of Coulombian type

$$V(x, y) = \frac{\alpha}{|x|} + \sum_{j=1}^{p} \frac{\alpha_j}{|y_j - x|} + \sum_{j<k}^{p} \frac{\alpha_{jk}}{|y_j - y_k|}$$

where $\alpha, \alpha_j, \alpha_{jk}$ are real constants, $\alpha > 0$ (α_j is the charges of the nuclei).

It is well known that P with domain $H^2(\mathbb{R}^3 \times \mathbb{R}^3)$ is essentially self-adjoint on $L^2(\mathbb{R}^3 \times \mathbb{R}^3)$.
For $x \neq 0$, $Q(x) = -\Delta_x + V(x, y)$ with domain $H^2(\mathbb{R}^3)$ is essentially self-adjoint on $L^2(\mathbb{R}^3)$

Remark 1.1: The domain of $Q(x)$ is independent of x.

To describe our main results we introduce the following assumptions:

(H1) $\forall x \in \mathbb{R}^3 \setminus \{0\}$, $\sigma_{\text{disc}}(Q(x)) \geq 3$

Let λ_0 an energy level such that: $\lambda_0 \cap [-\infty, \lambda_0] \leq 3$,

denoting $\lambda_1(x), \lambda_2(x), \lambda_3(x)$ the first three eigenvalues of $Q(x)$.

(H2) we assume that the first three eigenvalues λ_j, $\forall j \in \{1, 2, 3\}$ are simple at infinity:

$\inf_{j,k \in \{1, 2, 3\}} |\lambda_j - \lambda_k| \geq \delta_1$

(H3) we suppose that $c_0 \exists \epsilon > 0$ such that $\lambda_j(x) \geq \alpha - \epsilon$

(H4) We are in the situation where $\lambda_2(x)$ admits a nondegenerate strict minimum; creating a potential well of the shape Γ

Remark 1.2: By Reed-Simon’ results, the first eigenvalue is automatically simple.

Remark 1.3: This hypothesis is still true for $\alpha, \langle \rho \rangle$

$\exists \delta_2 > 0$ such that

$\forall x \in \mathbb{R}^3 \setminus \{0\}$, $\lambda_2(x) + \delta_2 \langle \min \{\lambda_2(x), \lambda_3(x)\} \rangle$

we note by $K = \{x \in \mathbb{R}, \lambda_2(x) = \lambda_i(x)\}$

and for $\delta > 0$, we also note by:

$K_\delta = \{x \in \mathbb{R}, \text{dist}(x, K) \leq \delta\}$

Let $\delta > 0$ such that

* $K_\delta \cap K_\delta$ is simply connex
* $K_\delta \cap U = \emptyset$

* The connex composites of $\mathbb{R}^3 \setminus K_\delta$ are simply connex

(H5) Virial Conditions

It exists $d > 0$ such that for $j \in \{2, 3\}$,

The resonances of P are obtained by an analytic distortion introduced by Hunziker and so they are defined as complex numbers $\rho_j \ (j = 1, ..., N)$ such that for all $\epsilon > 0$ and μ sufficiently small, $\text{Im} \mu > 0$ $\rho_j \in \sigma_{\text{disc}}(P\mu)^3$. We denote the set of the resonances of P by: $\sigma(P) = \bigcup_{\mu} \sigma_{\text{disc}}(P\mu)$

Where $P\mu$ is obtained by the analytic distortion satisfying: $P\mu = U\mu P U^{-1}$. So, $P\mu$ can be extended to small enough complex values of μ as an analytic family of type.

The analytic distortion $U\mu$, for μ small enough associated to v is defined on $\mathbb{R}^3 \times \mathbb{R}^3$ by

$U\mu \varphi(x, y) = \varphi(x + \mu v(x), y_1 + \mu v(y_1), ..., y_p + \mu v(y_p))$,

where $J = J(x, y) = \det(1 + \mu Dv(x))^{1/2}$

is the Jacobian of the transformation $\Psi_\mu : (x, y) \rightarrow (x + \mu v(x), y_1 + \mu v(y_1), ..., y_p + \mu v(x))$ and $v \in C^\infty(\mathbb{R}^3)$ is a vector field satisfying:

$\exists \delta > 0$, large enough such that:

$\forall v(x) = 0, \ |x| \leq \frac{2}{N}$

$\forall v(x) = x, \ |x| \geq \tau_x - \epsilon$

$\epsilon > 0$, small enough, $|t| > \frac{3 \ N}{N + \epsilon}$.

Remark 1.4: The distortion is close to the potential well.

We localise our operator near the well v_0 by introducing a truncate function $\zeta \in C^\infty(\mathbb{R}^3)$ satisfying:

$\zeta = 1, \ |x| \leq \frac{2}{N}$

$\zeta = 0, \ |x| \geq \frac{3}{2N}$

fixing α_0 v_0, we set
\[
Q^{\pm}(x) = -U_{\mu} \Delta_{x} U_{\mu}^{-1} + \zeta(x) V_{\mu}(x,y) \alpha_{0} + (1 - \zeta(x)) \alpha_{0} \alpha_{0} \\
V_{\mu}(x,y) = (x + \mu \nu(x), y_{1} + \mu \nu(x),..., y_{p} + \mu \nu(x))
\]
We also denote:
\[
P^{\pm}_{\mu} = -h^{2}U_{\mu} \Delta_{x} U_{\mu}^{-1} + Q^{\pm}_{\mu}(x)
\]
(7)
With domain \(H^{2}(\mathbb{R}^{+})\).

Remark 1.5: Like in \([10]\), near \(\nu\), \((P)_{\mu}\sigma\) and \((P)_{\mu}\) coincide up to exponentially small error terms. For this we will study \(P^{\pm}_{\mu}\) instead of \(P_{\mu}\).

RESULTS

Here we write the results of our works as following:

Theorem 1.6: Under assumptions (H1) to (H5) and for \(\mu \in C,|\mu|\) and \(h\) small enough, we have
\[
\left\| (F^{\pm}_{\mu} - z)^{-1} \right\| = O(h^{-1/2})
\]
where \(F^{\pm}_{\mu}\) is the Feshbach reduced operator of \(P^{\pm}_{\mu}\) verifying
\[
F^{\pm}_{\mu} = -\frac{h^{2}}{(1 + \mu)^{2}} \Delta_{x} I + M^{\pm}_{\mu} + \tilde{R}^{\pm}_{\mu}
\]
and the error \(\tilde{R}^{\pm}_{\mu}\) is satisfying:
\[
\left\| \tilde{R}^{\pm}_{\mu} \right\|_{L^2(\mathbb{R}^{3})} = O(h^{2})
\]
We need for our proof the main important theorem for the operator \(P_{2,\mu}\) which is the distorsion of the operator \(P_{2,\mu}\):
\[
P_{2,\mu} = -h^{2}U_{\mu} \Delta_{x} U_{\mu}^{-1} + \lambda_{2}(x) \alpha_{0} + \tilde{R}^{\pm}_{\mu}(x)
\]
(8)
at the neighbourhood of point \(x_{0}\) of the well such that \((\forall \varepsilon \gamma 0,\text{small enough}, \left| |x_{0}| r_{0} + \varepsilon^{*}\right|)\), the distorsion \(P_{2,\mu}\)
is in fact a dilatation of angle \(\theta\) such that \(\varepsilon^{*} = (1 + \mu)\).
We denote it by \(P_{2,0}\) \([11]\) and is defined by
\[
P_{2,0} = -h^{2} \Delta_{x} + \lambda_{2}(x) \alpha_{0}
\]
(9)
Let \(e_{j}, j = 1,...,N_{0}\) be the eigenvalues of the operator \(P_{0}\) that is bounded by \(P_{2,0}\) and is defined by
\[
P_{2,0} = -h^{2} \Delta_{x} + \lambda_{2}(x) \alpha_{0}
\]
(10)
For \(x \neq 0\), we denote also
\[
\tilde{Q}_{\mu}(x) = Q_{\mu}(x) - \frac{\alpha}{\left| x + \mu \nu(x) \right|} \quad \text{and} \quad \tilde{\lambda}_{j}(x) = \lambda_{j} - \frac{\alpha}{|k|} j \in \{1,2,3\}
\]
Let \(C(x)\) be a family of continuous closed simple loop of \(C\) enclosing \(\tilde{\lambda}_{j}(x), j \in \{1,2,3\}\) and having the rest of \(\sigma(\tilde{Q}_{\mu}(x))\) in its exterior. The gap condition (4) permits us to assume that:
\[
\min_{x \in C} \text{dist}(\gamma(x), \sigma(\tilde{Q}_{\mu}(x))) \geq \frac{\delta}{2}
\]
(11)
Using the relation (6) and (H3), we can take \(C(x)\) compact in a set of \(C\). So, we deduce from (11) the following result\([8]\).

Lemma 2.1

1. \(\forall j, k \in \{1,...,p\}, j \neq k, \beta \in \text{IN}^{p}\), the operators
\[
\frac{1}{|y_{j} - y_{k}|} \left(\tilde{Q}_{\mu}(x) - z \right)^{-1}, \quad \frac{1}{|y_{j} - y_{k}|} \left(\tilde{Q}_{\mu}(x) - z \right)^{-1}
\]
and \(\tilde{Q}_{\mu}(x) - z\) are uniformly bounded on \(L^{2}(\mathbb{R}^{3})\), \(x \in \text{IN}^{3}\), \(z \in C(x)\)
2. If \(\mu \in \text{small enough}\), then for \(x \in \text{IN}^{3}\), \(z \in \text{IN}^{3}\), the operator \(\left(\tilde{Q}_{\mu}(x) - z \right)^{-1}\) exists and satisfies uniformly
\[
\left(\tilde{Q}_{\mu}(x) - z \right)^{-1} = O(|\mu|).
\]
Now we define for $\mu \in C$ small enough, the spectral projector associated to \tilde{Q}_μ and the interior of $C(x)$.

$$\pi_\mu(x) = \frac{1}{2\pi} \int_{\mathbb{R}(x)} (z - \tilde{Q}_\mu(x))^{-1} \text{ and } \text{rg}\pi_\mu = 1$$

This projector permits us to construct the Grushin problem associated to the operator P_μ.

Problem of Grushin associated with the operator P_μ: We begin this section by the result which is (lemma 1.1 of [12] and proposition 5.1 of [7]).

Proposition 2.2: Assume (H1), (1.7), (1.9), (1.10) hold, then for $\mu \in C$, $z \in C$ small enough, there exist N functions $\omega_{k,\mu}(x, y) \in C^0(\mathbb{R}^3, H^2(\mathbb{R}^3))$, $(k = 1, 2, 3)$, depending analytically on μ in \mathbb{R}, such that

i. $\langle \omega_{k,\mu}, \omega_{k,\mu} \rangle_{L^2(\mathbb{R}^3)} = \delta_{j,k}$

ii. For $|x| \geq \frac{3}{N}$, $\omega_{k,\mu}(x)$ form a basis of $\pi_\mu(x)$

iii. $\epsilon \in C^\infty\left(\left\{ |x| \leq \frac{1}{N} \right\}, H^2(\mathbb{R}^3)\right)$

iv. For $|x|$ large enough, $\omega_{k,\mu}(x)$ is an eigen function of $\tilde{Q}_\mu(x)$ associated with $\lambda_k (x + \mu\omega(x))$

We first introduce the family $\{\omega_{k,\mu}, \omega_{k,\mu}, \omega_{3,\mu}\}$ of $\pi_\mu(x)$ depending analytically on μ for μ small enough and normalized in $L^2(\mathbb{R}^3)$ by

$$\langle \omega_{k,\mu}(x), \omega_{3,\mu}(x) \rangle_{L^2(\mathbb{R}^3)} = \delta_{j,3}$$

and then we associate the two following operators

$$R^-_\mu : \bigoplus_1^3 L^2(\mathbb{R}^3) \rightarrow L^2(\mathbb{R}^3)$$

$$u^- = (u_1, u_2, u_3) \rightarrow R^-_\mu u^- = \sum_{k=1}^3 u_k \omega_{k,\mu}(x)$$

$$R^+_\mu = (R^-_\mu)^* : L^2(\mathbb{R}^3) \rightarrow \bigoplus_1^3 L^2(\mathbb{R}^3)$$

$$u = \langle (u, \omega_{3,\mu}) \rangle_{\mathbb{R}^3}, \langle (u, \omega_{3,\mu}) \rangle_{\mathbb{R}^3}, \langle (u, \omega_{3,\mu}) \rangle_{\mathbb{R}^3}$$

where A^* denote the transposed of the operator A, $(\cdot, \cdot)_\mathbb{R}^3$ the inner product on $L^2(\mathbb{R}^3)$ and $(\cdot, \cdot)_\mathbb{R}^3$ is the adjoint of the operator $L^2(\mathbb{R}^3)$.

As P_μ^i and $\omega_{k,\mu}$, $k = 1, 2, 3$ have analytic extensions with μ, the Grushin problem is then defined, for $z \in C$, by:

$$P_\mu^i(z) = \begin{pmatrix} P_\mu^i - z & \omega_{k,\mu} & \omega_{k,\mu} & \omega_{k,\mu} \\ \omega_{k,\mu} & 0 & 0 & 0 \\ \omega_{k,\mu} & 0 & 0 & 0 \\ \omega_{k,\mu} & 0 & 0 & 0 \end{pmatrix}$$

which sets on $H^2(\mathbb{R}^3) \oplus (\bigoplus_1^3 L^2(\mathbb{R}^3))$ to $L^2(\mathbb{R}^3) \oplus (\bigoplus_1^3 H^2(\mathbb{R}^3))$

The following proposition, gives the inverse of the operator (12) by using a result of Grushin problem. This is proved in [3, 8].

Proposition 2.3: $\forall z \in C$ close enough to λ_{μ}, P_μ is invertible and we can write its inverse:

$$P_\mu^{-1} = \begin{pmatrix} X_{\mu}^2 & X_{\mu}^3 \\ X_{\mu}^3 & X_{\mu}^4 \end{pmatrix}$$

With $X_{\mu}^2(z) = (P_\mu^i - z)^{-1} \hat{\pi}_\mu(x)$, where P_μ is the bounded inverse of the restriction of \tilde{P}_μ to $\{u \in H^2(\mathbb{R}^3), \hat{\pi}_\mu u = 0\}$.

$$X_{\mu}^2(z) = (\omega_{k,\mu} - X_{\mu}^3(z) P_\mu^i(\omega_{k,\mu}))_{k \in \mathbb{R}^3}$$

$$X_{\mu}^3(z) = \langle (1 - P_\mu^i(z) X_{\mu}^2(z), \omega_{k,\mu})_{k \in \mathbb{R}^3} \rangle$$

$$X_{\mu}^4(z) = \langle Z\delta_\mu - (P_\mu^i - P_\mu^i X_{\mu}^2(z) P_\mu^i) \omega_{k,\mu} \rangle_{L^2(\mathbb{R}^3)}$$

Remark 2.4

1. For $z \in C$, close enough to λ_{μ}, we have $z \in \sigma(P_\mu^i)$ if and only if $\exists \mu, |\mu|$ small enough and $\Im \mu > 0$, such that $z \in \sigma_{\text{disc}}(X_{\mu}^4(z))$ where $X_{\mu}^4(z)$ is a pseudodifferential operator of principal symbol defined by the matrix:

$$B(x, \xi, z) = zI - (\langle \omega_{k,\mu}(x) \rangle_{k \in \mathbb{R}^3} + \omega_{k,\mu}(x))_{k \in \mathbb{R}^3}$$

and $\tilde{t}_\mu(x, \xi) = \langle \omega_{k,\mu}(x) \rangle$.

2. z is a resonance of the operator P_μ^i only and only if $\exists \mu \in C$, $|\mu|$ small enough $\Im \mu > 0$, such that:

$$0 \in \sigma_{\text{disc}}(X_{\mu}^4(z)) \text{ or } 0 \in \sigma_{\text{disc}}(F_{\mu}^i(z))$$

where F_{μ}^i is the Feshbach operator $F_{\mu}^i = z - X_{\mu}^4(z)$.
Reduced Feshbach operator: To reduce the Feshbach operator in a matricial operator, we input:

$$\Phi_{\mu} = P_{\mu}^* - P_{\mu}^* X_{\mu}^*(x) P_{\mu}$$ \hspace{1cm} (13)

$$F_{\mu} = \left(\begin{array}{c} \left(\left(\Phi_{\mu} \omega_{\mu} (x) \right) (x) \right)_{1 \leq i, k \leq 3} \\ \left(\left(\Phi_{\mu} \omega_{\mu} (x) \right) (x) \right)_{1 \leq i, k \leq 3} \end{array} \right)$$ \hspace{1cm} (14)

and

$$\Phi_{\mu} (z) = \left(\begin{array}{c} \left(\left(\Phi_{\mu} \omega_{\mu} (x) \right) (x) \right)_{1 \leq i, k \leq 3} \\ \left(\left(\Phi_{\mu} \omega_{\mu} (x) \right) (x) \right)_{1 \leq i, k \leq 3} \end{array} \right)$$ \hspace{1cm} (15)

The following proposition gives us the estimation of the resolvent of the operator (15).

Proposition 2.5: For \(z \in C, |z| \) small enough, \(\mu \in C, |\mu| \) small enough, the operator or \((\Phi_{\mu} (z) - z) \) is bijective for \(H^2 (\mathbb{R}^3) \) to \(L^2 (\mathbb{R}^3) \). Its inverse is extended for \(H^m \) in \(H^{m+1} \).

\(H^m = H^m (L^2 (\mathbb{R}^3), L^2 (\mathbb{R}^3)), \forall m \in Z \) and verify for \(j \in \{1, 2, 3\} \), \(h > 0 \) small enough:

$$\| (\Phi_{\mu} (z) - z) \|_{(L^p, H^{m+1})} \leq \frac{C(m)}{h^{(|\text{Im} \mu|)}}$$ \hspace{1cm} (16)

To prove this proposition, we first use a lemma in [3], to prove the following lemma:

Lemma 2.6: \(\forall m \in Z \), the operator \(X_{\mu} (z) \) is uniformly extensible in a bounded operator on \(H^m (L^2 (\mathbb{R}^3), L^2 (\mathbb{R}^3)) \), \(\forall m \in Z \), for \(h > 0 \), \(z \in Z \) and \(\mu \in C, |\mu| \) small enough and

$$\| X_{\mu} \|_{(L^p, H^{m+1})} = O \left(h^{-2} \right)$$

See [3] for the proof.

Lemma 2.7: We assume that

$$\| (P_{\mu} - z) \|_{(L^2, H^{m+1})} = O \left(\frac{1}{h^{\text{Im} \mu}} \right)$$

for \(h > 0 \), \(z \in C \) and \(\mu \in C \) small enough, where

$$P_{\mu} = -h^2 \frac{1}{(1 + \mu)^2} \Delta_x + \lambda_i (x + \mu \nu (x)) -$$

$$-h^2 \left(\Delta (\omega_{\mu} (x)) \omega_{\mu} (x) \right)_{x} -$$

$$-h^2 \left(R (x, D_x) \omega_{\mu} (x), \omega_{\mu} (x) \right)_{x}$$

\(R (x, D_x) \), is an differential operator of coefficients \(\mathcal{C}^\infty \).

Proof of lemma 2.7: Using (H5) we have:

$$\text{Im} \frac{1}{(1 + \mu)^2} \lambda_i (x + \mu \nu (x)) \leq -\frac{\text{Im} \mu}{C_1}$$

and we easily deduce with a simple computation that

$$\| (P_{\mu} - z) \|_{(L^2, H^{m+1})} = O \left(\frac{1}{h^{\text{Im} \mu}} \right)$$

Proof of the proposition 2.5: From (13) and (15), we have \(\Phi_{\mu} = \left((P_{\mu} - P_{\mu}^* X_{\mu}^*(z) P_{\mu}^* (\omega_{\mu} (x)) (x) \right) \), then we subtitue \(P_{\mu} \) from (7) with

$$U_{\mu} \Delta_x U_{\mu}^{-1} = \frac{1}{(1 + \mu)^2} \Delta_x + R \left(x, D_x \right)$$

is a second order differential operator with \(\mathcal{C}^\infty \) coefficients in \(x \) with compact support, analytic in \(\mu \) and whose derivative of any kind compared to \(x \) are \(O \left(|\mu| \right) \) and we put

$$\Lambda_{\mu} = \frac{1}{(1 + \mu)^2} \left(\Delta_x, X_{\mu}^*(z) \omega_{\mu} (x), \omega_{\mu} (x) \right)_{x} +$$

$$+ \frac{1}{(1 + \mu)^2} \left(R \left(x, D_x \right) X_{\mu}^*(z) \omega_{\mu} (x), \omega_{\mu} (x) \right)_{x}$$

Using the fact that \(\hat{\pi}, \omega_{\mu}, \omega_{\mu}, \omega_{\mu}, \omega_{\mu}, \omega_{\mu}, \omega_{\mu}, \omega_{\mu} \) = 1, we have:

$$\Phi_{\mu} (z) = \hat{P}^\infty_{\mu} - h^2 \Lambda_{\mu} \omega_{\mu}$$

where

$$\hat{P}^\infty_{\mu} = -h^2 \frac{1}{(1 + \mu)^2} \Delta_x + \lambda_i (x + \mu \nu (x)) -$$

$$-h^2 \left(R \left(x, D_x \right) \omega_{\mu} (x), \omega_{\mu} (x) \right)_{x}$$

We have \(R \left(x, D_x \right) \) bounded, so \(\Lambda_{\mu} \) is \(O \left(h^2 \right) \) from \(H^m \) to \(H^m \) and we also see from (H5) and lemma2.6 that:

for \(h \) small enough, \(\| (P_{\mu} - z) \|_{(L^2, H^{m+1})} = O \left(\frac{1}{h^{\text{Im} \mu}} \right) \), then, we deduce

$$\| (\hat{P}^\infty_{\mu} - z) \|_{(L^2, H^{m+1})} = O \left(\frac{1}{h^{\text{Im} \mu}} \right)$$

Finally, we have:

$$\| (\Phi_{\mu} (z) - z) \|_{(L^2, H^{m+1})} = O \left(\frac{1}{h^{\text{Im} \mu}} \right)$$

Proof of theorems

Proof of theorem 2.1: Proposition3.5 permits us to reduce the Feshbach operator \(F_{\mu} \) in a matricial operator
The operators T^j_μ are defined by:

$$T^j_\mu(z)(\alpha) = (\Phi^j_\mu(\alpha z), \alpha \in L^2(\mathbb{R}))$$

hence, the spectral study of the Feshbach F becomes the study of the operator A^j_μ on $L^2(\mathbb{R})$ by:

$$A^j_\mu(z)(\alpha) = (\Phi^j_\mu(z)(\alpha), \alpha \in L^2(\mathbb{R}))$$

So we establish easily that:

$$A^j_\mu = -\Delta + \lambda + \mathcal{M} \mathcal{V} \mathcal{V},$$

where \mathcal{M} is a diagonal matrix outside of 0 and it equal to:

$$M^j_\mu = \left\{ Q^j_\mu(x)(\alpha_{j,\mu}) \right\}_{j=1,2,3},$$

where $Q^j_\mu(x)(\alpha_{j,\mu})$ are the eigenvalues of $Q^j_\mu, \forall x \in IR - \{0\}$

The remainder

$$\tilde{R}^j_\mu(h, z) = O(h^2), \forall m \in Z uniformly$$

for $h \to 0$ and $z \in C$ closed to λ_0.

At the end we prove the second result. To describe it, we apply a technical of Briet Combs Duclos [13].

Let $J_1 \in C_0^\infty(\{x - x_0 \leq \delta, (\delta)0 fixed small enough and x_0 a point of maximum) and $J \in C^\infty(\mathbb{R}^n)$ such that:

$J_1 = 1$ near x_0 and $J_1 + J_2 = 1$

J is an identification mapping such that:

$$J : L^2(\mathbb{R}^n) \oplus L^2(\text{supp} p_j) \to L^2(\mathbb{R}^n)$$

$$J(u \oplus w) = J_u + J w$$

It is easily proved that: $J^*J = L^2(\mathbb{R}^n)$

Now, if we note P^Ω_μ the Dirichlet realisation of P^j_μ on Ω, on Ω, $x = v(x)$ and the distorsion $x + \mu v(x) = x e^0$, is an analytic dilatation (whose Dirichlet realisation is the operator H^0 obtained for $\zeta = 1$). We set

$$H^0_z = -h^2 e^{2\lambda} (\lambda \alpha(x)(x - x_0), (x - x_0)\mathcal{V} e^0)$$

$$H^0 = P^0 \mathcal{V} = -h^2 e^{2\lambda} (\lambda \alpha(x)$$

$$H^0 = H^0 \mathcal{V} L^2(\text{supp} p_j), \text{ with Dirichlet conditions on} \partial \text{supp} p_j$$

Remark 3.1: Since $\inf_{\text{supp} P} \text{Re} e^{2\lambda}(x e^0) \mathcal{V} 0$, $(H^0 - z)^{-1}$ is uniformly bounded for $|z|$ and h small enough.

Before we prove the second result, we introduce the following lemma

Lemma 3.2: For all $p \in [0, 1]$,

$$\left\| x^p (H^0 - z)^{-1} \right\|_{L^2} = O(h^2), \text{ uniformly for} z \text{ outside of} \gamma(x)$$

$z \in [-e - x_0, C_0 h - x_0] + i[0] \text{, where} \lambda \geq 0, \text{ and} h \text{ small enough.}$

Proof of Lemma 3.2: If we put $y = x - x_0$, we can write H^0:

$$H^0 = \mathcal{H}^0$$

where $H^0 = -h^2 e^{2\lambda} \mathcal{V} \mathcal{V} + \mathcal{V} e^{2\lambda} \mathcal{V} e^0$, with $\mathcal{V} e^0 = \mathcal{V} (1 + (x - x_0) e^0 + \mathcal{V} e^{2\lambda} e^0)$

It is enough to show that, for $\theta = \alpha, \theta \geq 0, \text{ small enough.}$ We have from (16)

$$\left\| x^p (H^0 - z)^{-1} \right\|_{L^2} = h^{2 - \frac{p}{2}} \left\| x^p (H^0 - zh^{-1})^{-1} \right\|_{L^2}$$

and the eigenvalues of the operator H^0 in

$$[-\alpha, C_0 - x_0] i IR$$

We distinguish three cases for $p = 0$.

1/ If $z \in \left[-Ch - x_0, C_0 h - x_0\right] + i\left[-Ch - x_0, C_0 h - x_0\right]$ we deduce for all C, $(H^0 - zh^{-1})^{-1}$ is bounded on L^2 uniformly for z outside the γ_j, so (17) is verified.

2/ If $z \in \left[-e - x_0, C_0 h - x_0\right] + i\left[-e - x_0, C_0 h - x_0\right]$ then for $u \in C^\infty_0(\mathbb{R}^n)$:
\[e^{2\theta}H_{0}^{0} = -\Delta y + \frac{1}{2} \langle \lambda ''(x_{0})y, y \rangle e^{i0} + \]
\[h^{-1}(z + i(1 + (x - x_{0}))e^{i0} + \frac{1}{2}(x - x_{0})^{2} e^{i0}) \]
and
\[\text{Im} \langle e^{2\theta}(H_{0}^{0} - zh)^{-1}u, u \rangle = \frac{1}{2} \sin 2\alpha \langle \lambda ''(x_{0})y, y \rangle u, u \rangle - \]
\[h^{-1}(z\sin 2\alpha + \text{Im} z\cos 2\alpha + h^{-1}(y\sin 3\alpha + z\cos 4\alpha) \parallel u \parallel^{2} \]
We take particularly \(\alpha \) small enough and \(C \) large enough such that: \(C\cos 2\alpha \cdot C \sin 2\alpha \)
At least we obtained
\[\parallel e^{2\theta}(H_{0}^{0} - zh)^{-1}u, u \parallel \geq h^{-1} \langle x_{0} \sin 2\alpha + y\sin 3\alpha \rangle \parallel u \parallel^{2} \]
so the result is also verified. It remain the case:
3) If \(z \in [e - x_{0}, -C\sin x_{0}] + i[-C - x_{0}, C\cos x_{0}] : \]
\[\text{Re} \langle e^{2\theta}(H_{0}^{0} - zh)^{-1}u, u \rangle \]
\[\geq h^{-1} \langle \text{Re} z\cos 4\alpha - \text{Im} z\sin 2\alpha + y\sin 3\alpha \rangle \]
we deduce the estimation when \(C\cos 2\alpha \cdot \alpha \) small enough and \(C \) large enough such that \(\cos 4\alpha \cdot \sin 2\alpha \)
Now we consider the case when \(p \neq 0 , \)
\[e^{2\theta}(H_{0}^{0} - zh)^{-1} = -\Delta + \frac{1}{2} e^{i0} \langle \lambda ''(x_{0})y, y \rangle \]
and
\[zh^{-1} e^{2\theta} + h^{-1} e^{2\theta} \Sigma(\epsilon) \]
\[-\Delta + \frac{1}{2} e^{i0} \langle \lambda ''(x_{0})y, y \rangle - zh^{-1} e^{2\theta} + h^{-1} e^{2\theta} \Sigma(\epsilon) \]
\[\geq \frac{1}{2} \cos 4\alpha \langle \lambda ''(x_{0})y, y \rangle u \parallel u \parallel^{2} \geq \frac{1}{C} \parallel u \parallel^{2} \]
if we put \(u = (H_{0}^{0} - zh^{-1})^{-1} v \) the result is deduced from an a priori standard estimation.

Proof of theorem 1.2: We put \(H_{0}^{d} = H_{0}^{0} \oplus H_{0}^{0} \) and \(\Pi = H_{0}^{0}J - JH_{0}^{0} \), for \(z \) outside the spectrum of \(H_{0}^{0} \), with a simple calculation we obtain:
\[(H_{0}^{d} - z)^{-1} = J(H_{0}^{0} - z)^{-1}J'(1 + \Pi(H_{0}^{d} - z)^{-1}J')^{-1} \] (18)
Using the lemma3.2 (with \(p = 2 \)) and the lemma3.1 of Briet Combs Duclos[13], we can easily prove that: \(\exists \beta \langle 1 \]
such that
\[\parallel \Pi(H_{0}^{0} - z)^{-1}J' \parallel \leq \beta \] (19)
Using the lemma3.2 and (19), we obtain from (18)
\[\parallel (H_{0}^{d} - z)^{-1} \parallel \leq C \parallel (H_{0}^{0} - z)^{-1} \parallel , \]
finally the result is obtained from lemma3.2 and remark3.1

REFERENCES