
Journal of Computer Science 3 (4): 249-258, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Ramdane Maamri, Lire laboratory, Computer Science Department, University of
Mentouri Algeria

249

MAEST :Multi-Agent Environment for Software Testing

Ramdane Maamri and Zaidi Sahnoun

Lire Laboratory, Computer Science Department, University of Mentouri, Algeria

Abstract: The test is a significant aspect of software development and plays a considerable role in
detecting errors in the implementation phase. As the software becomes more pervasive and more often
employed to achieve critical tasks, it will be increasingly required to be of high quality. Significant
reductions in the cost of software development and software maintenance could be achieved if we can
find efficient ways to perform effective and rapid testing process.

Key words: Testing agent, multi-agent, test cases, testing process

INTRODUCTION

 Software testing is a very labour-intensive and
very expensive process. Studies indicate that more than
fifty percent of the total cost of software development
with the percentage for testing critical software being
even higher. Software testing is also a very costly part
of software maintenance in terms of contribution in the
total time of the process of maintenance. Significant
reductions in the cost of software development and
software maintenance could be achieved if we can find
efficient ways to perform effective and rapid testing
process.
 Although many computer aided software test tools
are available today, most are limited to automating only
one part of the test effort. A testing tools that minimize
tester interference, cuts down on testing time and
carries out the tests independently needs to be
developed in the software development scene, we
therefore propose a new testing environment that
minimize the tester interference and provide an open
test multi-agent environment which can help during the
whole testing process.
 In this article, we propose a multi-agent system
using agents to provide assistance during the whole
testing process. This system has several characteristics.
Firstly, it minimizes the interference of the tester by
automating the process of test. Secondly, by
intellectually selecting redundant free and consistent
and effective test cases, the testing time is reduced
while the fault detection ability increases. Thirdly,
architecture suggested is open and extensible. It
supports dynamic addition, suppression of the agents

and the services. Lastly, the agents can be located in
only one computer or a network.

Test levels: The testing view has evolved during the
last few years and the testing is no longer considered as
the last activity which begins after the coding phase is
completed. The testing activity is seen now as a process
that begins from the development phase to the
maintenance phase. Each activity in the development or
the maintenance process should have a corresponding
part in the testing activity
 Each testing phase in Fig. 1, is dedicated to
particular class of errors[1], the aim of acceptance test is
to verify that user requirements are respected, the goal
of system test is to verify the system specification are
respected, the integration test is to verify that the
interfaces between software units respect their
specifications, while the unit test is to verify tat each
software unit operate as defined in its specification.

J. Computer Sci., 3 (4): 249-258, 2007

 250

The testing process: The testing process can be
divided mostly in three different phases: test
generation, test execution and Test result analysis.

a) Test generation phase: Involves analysis of the
specification and determination of which functionalities
will be tested, determining how these can be tested and
developing and specifying test scripts.

The test cases are mostly generated by using two
strategies: White box and black box strategy.. In black
box testing (functional testing)[2], (e.g. partition, flow
testing, syntax testing, domain testing, logic-based
technique and state testing) only the outside of the
system under test is known to the testers. They generate
test cases based on requirement and design information.
While the white box testing (Structural techniques)[3],
(e.g. control flow graph path testing) are based on
internal code. There are mainly three types of structural
testing techniques: control flow based testing, data flow
based testing[4] and mutation testing[5]. Control flow
based testing coverage criteria expresses testing
requirement in terms of nodes, edges, or path in the
program control flow graph. Data flow based testing
coverage criteria expresses testing requirements in
terms of the definition-use association present in the
program. Mutation testing begins by creating mutants
of the original program. The changes made in the
original program correspond to most likely errors that
could be present. The goal of the testing is to execute
the original program and its mutants on test cases that
distinguish them from each other.
 Naturally, the distinction between black and white
box testing leads to many gradations of grey box
testing, e.g., when the module structure of a system is
known, but not the code of each module.
b) Test execution phase: Involves the development of
a test environment in which the test scripts can be
executed.

c) Test result analysis: When all test events have been
carefully registered, they can be analyzed for
compliance with the expected results, so that a verdict
about the system's well-functioning can be assigned.

Multi agent environment for software testing
(MAEST):
Multi-Agent systems[6] have been identified as essential
to the successful engineering of complex or large
systems. A multi-agent system is composed of a group
of agents that are autonomous or semiautonomous and
which interact or work together, to perform some tasks

or achieve some goals. The agents in such systems may
either be homogeneous or heterogeneous and they may
have common goals or goals that are distinct [7]. Several
methodologies have been proposed for the development
of multi-agent systems. Most of them are either an
extension of object-oriented methodologies: GAIA[8],
multi-Agent Software Engineering MaSE[9-11], or an
extension of knowledge-based methodologies:
COMOMAS[12], MAS-Common KADS[13].
 In this paper, we propose a multi-agent system,
named MAEST, which purpose is to provide assistance
to testers in the test process. This section presents the
beginning of its specification. When designing and
specifying MAEST, we used Multi agent Systems
Engineering (MaSE), a methodology for developing
heterogeneous multi agent systems. MaSE uses a
number of graphically based models to describe system
goals, behaviors, agent types and agent communication
interfaces. MaSE is also associated with a tool,
agentTool, which supports the methodology.
 The first task when designing agent and multi-
agent systems is to identify goals and sub-goals. In
MaSE, this is made during the Capturing Goals step.
This step consists of two sub-steps: identifying goals
and structuring them in a Goal Hierarchy Diagram.
 The system under test is composed out of
subsystems communicating with and affecting each
other. Each of the components may be used in
completely different configuration. In general each
subsystem is tested by team of testers using both static
and dynamic approaches in order to increase the quality
of the system. The main task of the supervisor is to
coordinate control and inspection activities of
integrated test. However, when testing complex
systems it is not sufficient to support the aspect of
coordinating test tools only, but also the whole process,
from the test specification to the analysis of test results.
Therefore, the following aspects of the test process
have to be supported by any integrated test
environment:

- Organisation of test relevant data,
- Design of test cases and composition of test

suite,
- Coordination of test execution and Analysis of

test execution results.

The Goal Hierarchy Diagram of MAEST is shown
in Fig. 2.

MAEST architecture: The basic components of our
multi-agent testing environment are shown in Fig. 3. It
consists of four types of agents:

J. Computer Sci., 3 (4): 249-258, 2007

 251

* Administrator agent
* Testing agent
* Interface agent and
* helping agents (TGC agent, oracle agent, execution
agent and verdict agent).

 The proposed MAS is completely decentralized.
Each agent runs locally or on different machines in a

Administrator Agent

Interface Agent

User

TCG Agent

Oracle Agent

Execution Agent

Testing Agent verdict Agent

Fig. 3: Proposed MA system architecture

network. Further, Agents can dynamically join and
leave the system to achieve the maximum flexibility

and extendibility. The only links between the agents
represents a service level dependency. Such a

J. Computer Sci., 3 (4): 249-258, 2007

 252

dependency can represents a fact that one agent
depends on another for a goal to be fulfilled, task to be
performed, or a resource to be made available. A test
task can be decomposed into many small tasks until it
can be carried out directly by an agent. The
decomposition of testing tasks is also performed by
agents. More than one agent may have the same
functionality, but they may be specialized to deal with
different information formats, executing on different
platforms, using different testing methods or testing
criteria, etc. The overall architecture of the MAEST
environment is shown in Fig. 3.

Administrator agent: Administrator Agent manages
the whole system, processing the complex
communication between the inside of the system,
coordinating all the Agents in the system and
distributes controls in the system. It is unique in the
system. The main functions of administrator Agent
include:
* The interface of the system with other systems or

Agent systems;
* Administrating Agent registers the table of the

system;
* Coordinating the interaction of Agents in the same

system;
* Creating and administrating all the active Agent

instances, including the status and life cycles of
active Agents;

* Processing the communication of Agents.
 The Agent register table includes all information
that identifies the Agent, besides its ID, address, name,
etc. It is an important part that records the specific
method and the service function of the cooperation of
Agents. According to this register table, administrator
Agent creates Agent instances and uses them to create
an instance, it is necessary to analyze the testing
request, then try to find out what type of Agent need to
be created and how to create it by accessing the register
information of the administrator Agent. Finally, create
it.
Plan construction algorithm
input: the product to test (a set of units)
output: sets of units to be tested in parallel and their
orders.

Algorithm
1- Construct calling tree
2- i 0
3- if there is no leaf in the tree
 Si one node of the high level
 Replace this node by a stub
 else
 Si all the leaves of the call’s tree

4- Eliminate all nodes included in Si
5- i i+1

6- repeat (3-5) until root of the tree is included in Si

Plan execution algorithm
input: set S={ Si /(Si is a set of units which can be
tested at in the same time i}
output: global rapport of the testing process
Algorithm:
1 i 0
2 for each unit in the set Si
 -Send a message to testing agent
 - Receive a verdict message from the testing agent

 - If unit has been detected faulty, replace it by
 driver

3 i i+1
4 repeat (2) et (3) until (i=j / the root of the calling

tree is in Sj)

Example of the messages treated by administrator
agent:
* Administrator Agent receive an assertive message
from a new agent ; after registering all the information
about this agent (capability, address , etc..) in its data
base and creating a new mailing box ,it sends an
assertive message containing the address of the mailing
box to this new agent.
* Administrator Agent receives an expressive message
from an interface agent; it constructs a testing plan and
sends a sequence of expressive messages to the testing
agent in order to execute the plan.
* Administrator Agent receive an expressive
message from all other agents (except the interface
agent), it forwards it the appropriate agent.
* Administrator Agent receive an assertive message
from a (clone of) testing agent, it registers the partial
results contained in the message in its data base.
* When the administrator agent receives an assertive
message from the (and all clones of) testing agent or the
allowed time is over, it sends an assertive message to
the interface agent containing the final result of testing
process.

Testing agent: The main objective of the testing agent
is to supervise the all testing process from the test cases
generation to the final verdict of a unit. It takes
formally recorded specification and code information
and then sends message asking for test cases. When it
receives different test cases from different test cases
generation agents, it tries to take optimal test suite by
eliminating redundant test cases. The testing agent uses
two types of rules; the first one is applied to select

J. Computer Sci., 3 (4): 249-258, 2007

 253

redundant free test cases and the second one to select
consistent test cases.
Redundant test cases rule

yxyxyxcasestestofsetredundantnon
casetestofsetyandxlet

∩−∪=),(

Consistent test cases rule
let x and y set of test case
Consistent test case (x,y)









=
otherwisey

ygeneratetousedonethethenapproachgeneralmorebygeneratedisxifx

 For example the set of test cases generated by
condition approach is more general then the one
generated by instruction approach.

Example of the messages treated by testing Agent: *
* When the testing agent receive expressive message
from the administrator agent; it treat the information
contained in the message and then sends an expressing
message to each test cases generating agent(TGC)
asking them to generate test cases for the given unit.
* When the testing agent receives an assertive message
from a TGC agent, it stores the set of test cases
contained in the message in its local base.
* When the testing agent receive an assertive message
from each TGC agent or the time is over, it takes all
sets of test cases stored in its local data base and creates
one optimized set of test case and then sends an
expressive message to program execution agent and the
oracle agent.
* After testing agent receives an assertive message
from both program execution agent and oracle agent, it
sends an expressive message to the verdict agent.
* Once an expressive message is received from the
verdict agent, the testing agent forwards it to the
administrator agent.

Fig. 4: Input interface

Interface agent: In our environment, interface Agent is
designed to achieve the interaction between system and
users. It realized the generality of user interface. After
requesting testing command, the only thing we need to
do is just to wait easily but need not know how or
where test is performed. Agent will do everything for
us. And the system will return the final result to users.
One advantage of interface Agent is that it is a friendly
interface. The main functions of interface Agent
include:
* Describing user’s testing request in some kind of

visual format;
* Communicating with other agents of the system,

submitting the testing request and returning the
resulting rapport to user;

* When user gives an incorrect request description
(such as file not found error) interface Agent will
display error information and prompt user to
correct it.

The main role of this agent is receiving, from the user,
program information such as (Fig. 4):
* Program file
* Programming language
* Specification file
* Specification language
* time allowed
Transforms these information in KCML message and
sends it to administrator agent. When it receives a
message from the latter agent at the end of the testing
process, it treats the message and shows the final
reports about the results of the testing process such as
(Fig. 5):
* The number of the tested units
* The passed units
* The failed units
For each failed unit, which test cases caused failure?

J. Computer Sci., 3 (4): 249-258, 2007

 254

Fig. 5: Result interface

Helping agent: The software architecture of these
agents reflects our desire to reuse the existing tools for
test case generation, oracle agent and verdict agent.
Each one of these agents consists of a core
implementing the functionality of the tool and the local
user interface and a wrapper which gives the tool the
behaviour and the appearance of an agent.

Program execution agents: To enable concurrent
execution of multiples test cases, The administrator
agent may invokes one program execution agent for
each test cases. So we can initiate execution of
individual test case or a test suite (i.e., the test cases in
a test series) with various parameters choosing which
test cases to execute and when to stop.
 Program execution agent simply invokes an
executable component; so Components to be tested
may be developed in any language. The tested
component may be a single procedure during unit
testing, a set of integrated components during
integration testing, or the entire system during software
system testing. This agent develops the driver and stubs
for unit and integration testing as necessary.

Oracle agent: A test oracle is mechanism for
specifying correct and /or expected behaviour and
verifying that test execution meet that specification.
Testing process is of little importance if we can not
verify the behavioural correctness. Most of testing
research has neglected the issue of oracles. They focus
only on defining what to test without checking the
behavioural results, thereby ignoring the test oracle and
requiring manual checking of test results. In that most
test criteria require high number of test cases, manual

checking make the testing process insure - the test
executions may be run, yet the goals of testing are not
achieved since results may be checked only manually.

Test generation cases (T.G.C) agent: The main
objective of each T.G.C agent is to assist a tester in the
generation of test cases for software using one testing
approach. It takes formally recorded needed
information (specification and or code information) of
the unit under test and then uses one testing technique
to generate test cases suite.
 Our system is designed as an open system, it is
relatively easy to add new T.G.C agent with different
core to the set of the testing agents.
Verdict agent: The main work of the verdict agent is
to analyze the correctness of the test run. It compares
the expected output and real output and gives its
verdict.
Cloning of agents: When a particular agent is need but
not free, the administrator agent creates a clone of this
agent, which is identical in that it has exactly the same
behaviour. The clone agent can manage and control
itself on a local dimension and interact directly with its
originator to exchange, provide and receive services,
data. The life time of the clone is limited to end of
required work.

The Agents Intercommunication: In our system,
agents communicate with the administrator by
messages sending. The information contained in the
messages can be divided into two types:
* Testing tasks descriptions, which include requests of

testing tasks to be performed and reports of the
results of testing activities;

* Agents description, such as the capability of an agent
to perform certain types of testing tasks and its
resource requirements such as hardware and software
platform and the format of inputs and outputs. Such
information are represented in an ontology[14] about
software testing.

 A message goes through several stages before
being processed. Once a message is received by an
agent, it is passed on to its communication component
which takes as input the string KQML message and
converts it into a KQML message object and then test
the validity of the message, as well as the value of
various fields of the message examples of which are the
sender, the content, etc. and then checks if the message
is invalid, the appropriate error message is dispatched
to the sender. If it is valid, the KQML message object is
send to the planning processor.

J. Computer Sci., 3 (4): 249-258, 2007

 255

Message communication mechanism: The message
mechanism consists of a set of communication
primitives for message passing between agents[14]. Its
design objectives are generally applicable, flexible,
lightweight, scaleable and simple.
 The communication mechanism used in our system
is based on the concept of message box (an unbounded
buffer of messages). All messages are sent to mboxes
and stay there until they are retrieved by agents.
 Each mbox is identified in the system with a
different id. However, its location is transparent to the
agents. Given an mbox id, the agents can operate the
mbox without knowing its physical location. The mbox
can be opened by more than two agents at the same.
For example, a administrator agent has a mbox to
receive task requests. Multiple agents can send message
to this mbox.
Ontology of software testing: Ontology defines the
basic terms and relations comprising the vocabulary of
a topic area, as well as the rules for combining terms
and relations to define extensions to the vocabulary[15].
It can be used as a means for agents to share
knowledge, to transfer information and to negotiate
their actions[16]. For this reason, we designed ontology
for software testing which takes in consideration the
following aspects:
 Software testing activities occur in various
software development stages and have different testing
purposes. For example, unit testing is to test the
correctness of software units at implementation stage.
The context of testing in the development process
determines the appropriate testing methods as well as
the input and output of the testing activity. Typical
testing contexts include unit testing, integration testing,
system testing and regression testing and so on.
 There are various kinds of testing activities,
including test planning, test case generation, test
execution, test result verification, test coverage
measurement, test report generation and so on.
 For each testing activity, there may be a number of
testing methods applicable. For instance, there are
structural testing, fault-based testing and error-based
testing for unit testing. Each test method can be further
divided into program-based and specification-based.
There are two main groups of program-based structural
test: control-flow methods and data-flow methods. The
control flow methods include statement coverage,
branch coverage and path coverage, etc.
 Each testing activity may involve a number of
software artefacts as the objects under test, intermediate
data, testing result, test plans, test suites and test scripts
and so on. Testing results include error reports, test

coverage measurements, etc. Each artefact may also be
associated with a history of creation and revision.
 Information about the environment in which
testing is performed includes hardware and software
configurations. For each hardware device, there are
three essential fields: the device category, the
manufacturer and the model. For software components,
there are also three essential fields: the type, product
and version.
 The capability of a tester is determined by the
activities that a tester can perform together with the
context for the agent to perform the activity, the testing
method used, the environment to perform the testing,
the required resources (i.e. the input) and the output
that the tester can generate.
 Consists of a testing activity and related
information about how the activity is required to be
performed, such as the context, the testing method to
use, the environment in which to carried out the
activity, the available resources and the requirements
on the test results.
 Figure 5 shows a message send by a new agent to
the administrator agent expressing its capability. The
agent is capable of doing path coverage test case
generation in the context of unit testing of a program
written in C language.
Communication protocol: In our system, agents of
similar functionalities may have different capabilities
and are implemented with different algorithms, may be
executed on different platforms and specialized in
dealing with different formats of information. The
agent society is dynamically changing; new agents can
be added into the system and old agents can be replaced
by a newer version. This makes task scheduling and
assignment more important and more difficult as well.
Therefore, the administrator agent manages a register of
agents and keeps a record of their capabilities and
performances. Each agent registers its capability to the
administrator when joining the system. Tests tasks are
also submitted to the administrator. For each task, the
administrator will send it to the most suitable agent.
When an agent sends a message to the administrator, its
intension must be made clear if it is to register their
capabilities or to submit a test job quests, or to report
the test result, etc. Such intensions are represented as 1
of the 7 illocutionary forces, which can be assertive,
directive, commissive, prohibitive, declarative, or
expressive.

The MAEST analysis
The system autonomy: Software testing consists of
formatting the test plan, selecting the test items,

J. Computer Sci., 3 (4): 249-258, 2007

 256

producing the test cases, executing the test and finally
analyzing the test result. For the case of regression
testing, regression test cases are selection for test
execution. As we can see in Fig. 1, when a test tool is
used, it is necessary for the tester to interfere in the test
process. The sections (1) - (7) of Fig. 6a, which are
carried out by the tester, are automated within tour
system as we can see in Fig. 6b. Therefore by using
our system, we can minimize the tester’s interference
and autonomously carry out the testing process.
Whereby, the general testing tool passively executes
testing. Our system actively executes testing through its
autonomy. For this purpose, out system has control
over the execution actions and the internal status
transformations.

Time estimation: Our system reduces also the test time
by intellectually selecting redundant free and consistent
test cases from the massive amount of test cases
generated from test case generation agents. In order to
assess the effectiveness of our environment, we carried
out two experiments to test a small example but have
complex decision logic, the triangle program which
accepts the lengths of three sides of a triangle and
classifies it as scalene, isosceles and equilateral or not a
triangle at all.
 In the first one, we used three independents tools
written (TCG1, TCG2 and TCG3) by us which
respectively automate the random testing approach, all
paths approach and equivalence partitioning approach

(ASSERTIVE
Receiver Administrator
Ontology testing ontology
(Content (CAPABILITY
(CONTEXT type ”unit_test”>)
(ACTIVITY type ”test_case_generation”>)
(METHOD type =”path_coverage”>)
(CAPABILITY _DATA type =”input”>
(ARTEFACT type =”object_under_test” FORMAT=”c”>))
(CAPABILITY _DATA type =”OUTPUT”>
(ARTEFACT type =” test_suite” FORMAT=”list”))))

Fig. 5: KQML message

(The equivalents classes were manually calculated) to
generate test cases. And in the second, we used our
environment with three testing agents (using the same
testing approaches as the three tolls in the first
experiment). Table 1-4 indicate respectively the
number of generated test cases and the necessary
time to generate in the first experiment, the number
of identical test cases generated between the various
approaches, the number of test cases and the time
estimation to execute them in the second experiment
and the .time comparison in the two experiments.

Table 1: Time
USED

APPROACH
NUMBERS

OF
TEST CASES
GENERATED

UNITS OF TIME
TO GENERATE

THESE TEST
CASES

UNITS OF TIME
TO EXECUTE
THESE TEST

CASES
TCG 1 50 40sec 5 sec
TCG2 25 22 sec 2.5 sec
TCG3 10 2sec 1 sec

Table 2: common test cases

COMMON TEST CASES NUMBERS OF TEST CASES
TCG 1 and TCG 2 20
TCG 1 and TCG 3 8
TCG 2 and TCG 3 7

Journal of Computer Science 3 (4): 249-258, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Ramdane Maamri, Lire laboratory, Computer Science Department, University of
Mentouri Algeria

249

unit testing planning

testing approach

test cases generation

test execution

test result analysis

test regression

1 2

3

4

5
Tester

6

Fig. 6a: Classical testing process

the administrator agent dynamic testing agentuser interface agent

Tester

test generation agents

test execution agent

test results validation

test oracle generation agent

1 2

3

4

5

6

7

Fig. 6b: Our system process

Table 3: Number of test case and time estimation in our

environment
Number of test cases 12
Time estimation 10, 2 sec

Table 4: Time

 NECESSARY TEST CASES
TO TEST PROGRAM USING
THE THREE APPROACHES

TIME TO GENERATE AND
EXECUTE THE

NECESSARY TEST CASE
Classical
way

85 72.5 sec

Our system 12 10.2 sec

CONCLUSION

 In this study, we proposed a multi-agent testing
system where the all testing process can be executed on
its own without the interference of tester. It also

supports a test integration environment where testing
can be executed gradually from unit test to system test.
 In this system, the tester only has to concentrate on
the high level goal, which is overseeing the test result,
the detailed test procedures are carried out by our
system’s agents. In order words, these agents do all
steps from the beginning to the end of the testing
process (selecting test cases, executing testing…).
 Our system has advantages in 4 aspects; first, it
minimizes tester interference by executing the tests
autonomously. Second, by intellectually selecting
redundant free and consistent and effective test cases,
the testing time is reduced while the fault detection
ability increases. Third, the described architecture is
open and extensible. It supports the dynamic addition

J. Computer Sci., 3 (4): 249-258, 2007

 258

and retraction of agents and services. And finally, the
agents can be in the same or different computers.

REFERENCES

1. Myers, G..J., 2004. The art of Software Testing.

Willy 2nb.
2. Beizer, B., 1995. Black-Box Testing: Techniques

for Functional Testing of Software and Systems.
Wiley: New York.

3. Ntafos, S., 1988. A comparison of some structural
testing strategies. IEEE Trans. onSoft. Eng., 14:
868-874.

4. Rapps, S. and E.J. Weyuker, 1985. Selecting
software test data using data flow information.
IEEE Trans. Software Engg., 11: 367-375.

5. William, E.H., 1982. Weak mutation testing and
completeness of test sets. IEEE Trans. on Software
Eng.g, 8: 371-379.

6. Lesser, V., 1995. Multiagent Systems: An
Emerging Subdiscipline of AI. ACM Computing
Surveys, 27: 340-342.

7. Wooldridge, M. and N.R. Jennings, 1994. Agent
Theories, Architectures and Languages: A
Survey”. Proceedings of the ECAI-94 Workshop
on Agent Theories, Architectures and Languages,
Amsterdam, The Netherlands, pp: 1-39.

8. Wooldridge, M., N. Jennings and D. Kinny, 2000.
The GAIA methodology for agent oriented
analysis and design. J. Autonomous Agents and
Multi-Agent Systems, 3: 285-312.

9. Deloach, S.A., 1999. Multi-agent system
engineering: a methodology and knowledge for
designing agent systems. Proc. AOIS-1999.

10. Deloach, S.A., 2001. Analysis and Design using
MaSE and agentTool. The 12th Midwest Artificial
Intelligence and Cognitive Science Conference

11. Deloach, S.A., M.F. Wood and C.H. Sparkman,
2001. Multiagent Systems Engineering. Intl. J.
Software Engineering and Knowledge
Engineering. World Scientific Publishers, 11: 231-
258.

12. Glaser, N., 1999. Contribution to knowledge
modeling in a multi-agent framework (the
COMOMAS approach), Phd thesis, Université
Henry Poincaré, Nancy 1, France.

13. Iglesias Carlos A., Garijo Mercedes, C. Gonzalez
José and R. Velasco Juan, 1998. Analysis and

Design of Multiagent Systems using MAS-
CommonKADS, Intelligent Agents IV (ATAL97),
LNAI 1365, pp: 313-326, Springer-Verlag.

14. Neches, R. et al., 1991. Enabling Technology for

Knowledge Sharing. AI Magazine, pp: 36-56.
15. Cao, J., X. Feng, J. Lu and S.K. Das, , Mailbox-

based scheme for mobile agent communication.
Computer.

16. Staab, S. and A. Maedche, 2001. Knowledge
portals --- Ontology at work, AI Magazine, 21: 2.

