

© 2018 Ankur Rameshbhai Khunt and P. Prabu. This open access article is distributed under a Creative Commons Attribution

(CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

An Empirical Analysis of Android Permission System Based

on User Activities

Ankur Rameshbhai Khunt and P. Prabu

Christ University, Hosur Road, Bangalore-560029, Karnataka, India

Article history

Received: 09-12-2017
Revised: 13-01-2018
Accepted: 6-02-2018

Corresponding Author:
Ankur Rameshbhai Khunt
Christ University, Hosur Road,
Bangalore-560029, Karnataka,
India
Email:
ankur.khunt@mca.christuniversity.in

Co-Author:
Dr. Prabu. P.
Christ University, Hosur Road,
Bangalore-560029, Karnataka,
India
prabu.p@christuniversity.in

Abstract: In today’s world there has been an exponential growth among

smart-phone users which has led to the unbridled growth of smart-phone

apps available in Google play store, app store etc., In case of android

application, there are many free applications for which the user need not

shell out a penny to use the services. Here the magic word is “free” which

entices millions of pliant people into installing those apps and giving

unnecessary access to their data and device control. Current studies have

shown that over 70% of the apps in market, request to gather data

digressive to the most functions of apps that might cause seeping of

personal data or inefficient use of mobile resources. Of late, couple of

malignant applications gather unobtrusive information of the user through

third-party applications by increasing their permissions to high-level on

the Android Operating System. Android permission system provides, the

user access to the third party apps and in return based on the permissions

granted by the user, an app can access the related resource from the user's

mobile. A user is bound to grant or deny permits during the installation of

the application. For the most part, users don't focus on the asked

permissions, or sometimes users do not understand the meaning of the

permission and install the app on their device. They allow a way for

attackers to perform the malicious task by demanding for more than

expected set of permissions. These extra permissions permit the attacker

to exploit the device and also retrieve sensitive information from it. In

this research paper we describe how permission system security can

create an awareness among the users that would assist them in deciding

on permission grants. This improved and responsible user activities in

Android OS can help the users in utilizing their device securely.

Keywords: Android Security, Permissions, Malicious Application, Data

Leakage

Introduction

Android is simply an operating system that facilitates

a user to interact and manage mobile devices through a

Graphical User Interface (GUI). Some of the features of

an android driven smart-phone are GPS capability,

camera functionality, internet accessibility, touch screen

interface, provision for application installation which is

the main differentiating and important feature in

comparison with generic mobile phones. To run these

applications, Android devices support Operating System

(OS) in the similar way as computer supports the

operating system. Some most popular OS are Windows,

Android, Linux, iOS, etc.

Android is the widely used open source operating

system. This in-turn makes it very difficult in

managing as any developer can make application in

their own way and user isn’t aware of pitfalls in the

application, about its background services and

activities and the related security threats.

Android operating system is based on Linux kernel.

There are four layers in Android architecture. Each layer

has different tasks. The base layer is Linux kernel which

maintains Android operating system security and other

components. This layer contains all device drivers, USB

drivers, Bluetooth drivers, Wi-Fi drivers, display drivers

and it is also helpful in maintaining power management of

Android system. Rooting of the device creates security

Ankur Rameshbhai Khunt and P. Prabu / Journal of Computer Science 2018, 14 (3): 324.333

DOI: 10.3844/jcssp.2018.324.333

325

vulnerability in the Android operating system. After rooting

the device hacker or attacker can have direct access to

Linux kernel. Once the device is rooted, then there is no

permission required for accessing the device.
Native libraries are the upper layer of Linux kernel

which mainly consist of all kind of default libraries, for

example, SQLite is for all database related operation,

Webkit is used for inbuilt web browser, OpenGL is

utilized for 2D and 3D graphics in Android and SSL is

giving network access related authentications. The

developer can use all libraries in their application, but

many times attackers may put some extra permission in

their apps and might misuse those libraries.

Android runtime also provides the core libraries

and most importantly Dalvik Virtual Machine (DVM)

facilities which help to run the application on the

device. DVM as compared to JVM optimizes the

Android device providing fast performance while

consuming less memory.

Android Framework provides us with the lot of

APIs like package manager, View Manager, content

provider, Activity Manager, Resource Manager and

also provides lots of classes and interfaces for

Android application development.

The existing android system is a permission based

system. For most applications, there are a set of

permissions that need to be accepted for successful

launching of the application. Most of these permissions

concern with user sensitive data that are not needed for

that application, for example a gaming app asking for

permission to access contacts. So, the proposed system

lets the user know how many other users have either

accepted or rejected these permissions.

Permission System

In Android, each application has one manifest .xml file

and in the absence of this file, task of running the

application is nearly impossible. It contains the entire list of

activities which are used in the apps and additionally it also

includes all the permissions which the application needs.

Android forces apps to declare the permissions

during the installation. The app user has to decide to

grant or revoke the permission of any android

applications before or after the installation. Malicious

apps cannot be a treat to device until user allow access to

demanded permissions. Most of the time user allow

application to access android sub-services unknowingly,

which causes improper working of device. To create

basic awareness, the user could decide whether to allow

to access certain permission or not. By providing

information at bottom of the permission box, about how

many people liked or disliked the set of permissions

asked by application at its first time of use. Based on

number of likes it helps the user to make certain

decisions. Providing this reference, it helps to reduce

android threats, crime and also protect the sensitive data.

Given below are some sorts of permissions mostly used

in the android application:

• Android.permission.READ_CONTAC

• Android.permission.WRITE_CONTACT

• Android.permission.READ_STORAGE

• Android.permission.WRITE_STORAGE

• Android.permission.RECEIVE_SMS

• Android.permission.WRITE_SMS

• Android.permission.SEND_SMS

• Android.permission.READ_SMS

• Android.permission.INTERNET

• Android.permission.READ_PHONE_STATE

Through the above given set of permissions, the

applications can have access over all the resources. This

manifest file is written within the XML which contains

some kind of tags. Through those tags one can define the

usage of application and structure of permission.

In Fig. 1 we can see the architecture of the Access

Permission in Android. This is a basic model and it's

same for all android devices. There are two applications,

Application 1 and Application 2 where application 2

provides access to local data like contacts, sms, etc. and

device component control like camera, mic, etc. In

Application 1, there is one module “A” and in

Application 2 there are modules “B” and “C”. Module A

can access the module “B” and “C” if they are assigned

permission labels of Application 1.

Fig. 1: Access permission architecture (Enck et al., 2009)

Ankur Rameshbhai Khunt and P. Prabu / Journal of Computer Science 2018, 14 (3): 324.333

DOI: 10.3844/jcssp.2018.324.333

326

Literature Review

All applications once installed resides in the sandbox,

a secluded zone of the framework that does not have

access to device control or device data, unless

permissions are explicitly allowed by the user when the

apps is being installed. In most cases, permission is

requested only when the application is run on the device

by the user and not when installed. In either case,

permission based mechanism is broadly criticized for its

coarse-grained control of application permissions and the

inefficient permission management by developers,

marketers and end-users. For instance, users can either

acknowledge all permission demands from an

application to install it or not install the application

(Rashidi and Fung, 2009).

Luyi et al. (2014) proclaimed that they had developed

a new service for automatically identifying the Pileup

risks on a mobile OS. They also claim that their

approach can continuously scan new emerging Android

versions to find out new vulnerabilities and can also

conveniently detect related malicious apps on Android

devices without undermining its utility.

To be on the safer side always make sure that only

apps published in trusted and well-known market place

like Google play are download and installed. Disabling

application download from poorly trusted sharing

channels can protect from accidental installation of poorly

trusted or malicious packages (Vecchiato et al., 2016).

With all said and done android security depends on

equipment and programming along with the portrayal

and integration of user interface with the device. An

individual smart-phone uses various technologies i.e.

music player, telephone, advanced camera and much

more, which may contain directions for serious roles to

abuse different attack routes (Vecchiato et al., 2016).

The developers gain consent permissions through the

Manifest file inside an application. Developers

characterize the application’s security framework. By

duping the users into giving consent to the permission

requests, the developers gets undetectable access to the

device’s secured resources and data (Faruki et al., 2015).

When approaching users for permission in an
Android app, the OS may face proper restrictions which
enforced upon by the server. To avoid the forced
restriction by the server, the app must be stated as

medicinal application while installing. This ensures that
the user application is properly interfaced with the
trusted server of association (Andow and Wang, 2015).

For introducing an application, the user needs to

grant all the asked permission requests for that particular

application or else that application won’t be installed on

the user’s device. Accepting the installation implies that

user is giving the permission to the application for

getting access to all the resources asked for by the

application from the device. Along these lines, the user

must be vigilant in setting the choice since attacker and

malware developer exploit user's lack of regard and

develop the malicious application that requests

unnecessary permissions (Jain and Prachi, 2016).

In the early years of android, according to William

Enck and their team android straightforwardly made use

of permission mark task show to limit access to

resources and applications. Later on developers brought

about several changes in the way android applications

were built by which explicit permission setting wasn’t

needed to access the resources but it can be done just by

installing the applications. It can be done by setting the

exported attribute to false or by letting the android

decide at its discretion based on a distinct attribute in its

manifest to create a private component. Security control

can be trimmed using such components. By making a

component private, the developers do not have to worry

about permissions label that has to be assigned to it or

about the likelihood that application might get them

another label (Enck et al., 2009).

A survey was done based on a research paper on the

topic of security issues on Android Smartphone’s. This

research paper was named as Timing Information

Stealing Smartphone Application (TISSA). According to

this research, TISSA is a structure which is convenient

for serving security to the call logs, contacts and so on.

The user without being worried can safeguard all of its

contacts and call logs by stuffing all of the permissions,

by employing TISSA. The users without any doubt can

give the unrestricted access to its data in exceptional

protection mode and this all happens in the groove of

submitting all of the permissions. The private data of the

user which is spilled under some circumstances

influence a whole lot of android applications which is

examined by TISSA. TISSA uses three principle

components such as dexterous CPU, memory and vitality

which give safety and reliability to the call logs, contacts

and other data. These principal components are the

privacy setting content provider that is deployed to

provide current privacy setting to the already installed

apps. Privacy setting manager is very beneficial in

enhancing the privacy setting for the installed apps or

any execution. Privacy aware components are extended

to access the entrance into the user's data which further

integrates contacts, call logs and other data. When the

user dispatches a request through an installed application

to the current provider that is when TISSA start to work.

Third party applications collect user’s routine usage,

ask for high priority permissions and demand to be a part

of Android OS. Chances of getting attacked by the

malicious and unsafe third party applications cause risk

to Android OS as it changes the various root-level

permission and can separate the entire framework

security. That will cause malfunctioning of the system

(Android device) and android OS will not perform as per

Ankur Rameshbhai Khunt and P. Prabu / Journal of Computer Science 2018, 14 (3): 324.333

DOI: 10.3844/jcssp.2018.324.333

327

the expectation. Transitive rights utilization is not

managed by the android OS which allows applications to

bypass the denied access services. This is done by

forcing a user to allow access in term of permissions

asked during installation of a particular application.

Allowing for various permissions is a loop hole in

Android OS causing possibilities of various attacks that

have been reported (Lee et al., 2013).

During installation, any application asks for permissions

which are granted by the user, but there are some

applications which disturb the performance of android OS

and also affect the working of other applications, without

asking for permissions. Permission security model is a part

of Android which allows the user to decide whether to trust

on any application or not. Any applications cannot collect

information like ISP unless and until user allows or permit

application. Allowing applications by granting

permissions could lead to attack scenario which cause

malfunctioning of the device as well as Android OS. So

during installation process any application, the user must

focus on what kind of permission is asked and be careful

while granting permissions requested by the particular

application (Mohini et al., 2013).

Concluding all, the secured and safe behavior of

Android device is completely user depended because at

the end users decision matters a lot. During installation,

the display shows the list of permissions demanded by

the application. It could be dismissed or approved at the

will of the user (Enck et al., 2012).

Android gives authentication to component security

prerequisites by using permissions. Android OS has a

capability of permitting centrally so that the system

software and other application work properly. A similar

mechanism is used by the third-party application to set

and define new permissions that are brought in work by

taking OS permission. Finally, permissions are accorded

to apps during installation and stored in Package

Manager Service (PMS) (Heuser et al., 2014).
Most users do not bother to read or have a

comprehensive understanding of the way that the install
time permission works in android application.
Considering that the users are exploited by malware
which uses Android Security Model (ASM) applications
benefits (Heuser et al., 2014).

The different security mechanism like permission

systems, robust detachment between apps, etc., are being

executed in android and other portable operating

systems. But it was found that this mechanism was

insufficient (Fragkaki et al., 2012).

Proposed Work

In our research work, we want to implement small

extra module in Android permission system.

Occasionally many users might not know or might not

understand that how many permissions should be

allowed or denied, but after applying this module users

will frequently be able to decide whether the permission

need to be allowed or denied.

In the module, we are putting one label with

permission which is recommended to the user to allow or

deny the permissions. This special label shows the how

many users had allowed or denied that special permission.

Based on working of application, its requirements

must be fulfilled. If user does not grant permit to any one

of the permissions, those service will not be accessed by

application.. So blindly never grant access to any

application to use our device services.

Fig. 2: Demo view of permission module in Android

Fig. 3: Implementation of module

Android

Device

 Local
DB

Permission,
Device ID,

Application ID

Cloud

DB

Ankur Rameshbhai Khunt and P. Prabu / Journal of Computer Science 2018, 14 (3): 324.333

DOI: 10.3844/jcssp.2018.324.333

328

Due to advancement in android security, user can

grant or deny permissions demanded. Further Fig. 2

shows the exact scenario with examples which is

outcome of the proposed work. Figure 3 is the overall

architecture of proposed work. It would lead to

increases the awareness of user and help the user to

make the decision whether to allow or deny the

permission before or after installation of the

applications. Providing a bottom line showing likes

and dislike help user as well as developer.

Hangouts application is asking permission for “send

and view SMS messages?” which was permitted by 2K

users and denied by 110 users. In the same way

WhatsApp application is asking permission for “access

your Microphone?” that was permitted by 9K users and

denied by 11 users. Now the new user installing the app

can check these permissions statistics to decide whether

or not to allow that permission request.

The statistical information will come from the

Internet when user’s internet is ON or OFF and it will

display the label. Through this tag, the user can quickly

decide the permission should be allowed or denied.

Based on this simple tag we can improve the Android

permission related security than the existing.

Implementation

When the user gets his device connected to the

internet the Android local database syncs with server

database given the application is installed on the device.

All devices are recognized through a unique device id

similar to the MAC address of PC and other computing

devices. Through the given device id, we can get the

information about installed application like the

application ID. After getting application id, one can

easily view all the permissions utilized by particular

application and can also insert entries in a database.

In the database, four initial entries do appear Device

id, Application id, Permission Label and State. State

demonstrates that permission accepted or denied by the

user. The value of the state is 0 or 1. Zero means Denied

and One means Allowed appropriate permission.

Figure 4 shows the working of getting the permission

data whether the user has denied or allowed the

permission request of the application. When any

application is installed by the user in their device, the

application might ask for the set of permissions to access

the device components like camera, microphone, storage

or user’s data like location, contacts, SMS etc. The

applications have different types of permissions with

different functionalities. In this algorithm I’m trying to

get the data from the user’s device to the server which is

the choice of the user about to allow or deny the request

of the permission.

In the server database the information which is to be

stored is DeviceID, AppID, PermissionLabel, A = allow

and D = deny. The local database information will be

stored likewise. Depending on the device’s internet

connectivity if the device is connected to the internet it

will store the data in both the databases at the same

instance, otherwise it will store the data in the local

database and will update the server when the internet

will be connected.

When the user allows the permission, the allow

variable (A) will be incremented by 1 and the whole

record with full information like AppID, DeviceID,

PermissionLabel, A = 1 and D = 0. When the user allows

the permission, the deny variable (D) will be 0. Same

will be vice versa when the user denies the permission

(A = 0, D = 1). Once the choices are made by the user, it

will check for the internet connectivity and if connected,

the data will also be stored in the server database,

otherwise only in the local database and will update in

the server on establishing the connection.

Algorithms and Results of the Proposed System

There are two different algorithms that have been

used in the proposed system. These algorithms are used

to fetch the data from user’s device and displays it. The

algorithms and the results are as follows:

Algorithm 1: Get Data from user’s Device

Now, the application permission data from the user

device has been fetched using the above algorithm. For

displaying how many users have allowed or how many

has denied, the data will be displayed from the server

with the different algorithm.

So, here we can see an example of the database and

how data is stored. The database comprises of five

columns. First is device id, which will store the all users

device id. Second is App id, which will store the app id

of install applications by the users and third is

Permission, It stores permission asked by the installed

app. The 3rd and 4th column is Allow and Deny. It will

store the operation performed by the user on particular

app permissions.

There a two ways or scenarios in which the database

in the server gets updated.

During first time installation and running of the

software, based on the customer preferences on the

permission request, the device ID, App ID and different

permissions and its status would be added as a new line

item in the database.

During second time or repeated installation and

running of the software, only the status of each

permission request would be updated as per the user

choice. A new line entry for the same device ID won’t be

created to avoid duplicate entries that can impact the

total count statistics adversely.

Ankur Rameshbhai Khunt and P. Prabu / Journal of Computer Science 2018, 14 (3): 324.333

DOI: 10.3844/jcssp.2018.324.333

329

Fig. 4: How to get data from user’s device

In this example the chatApp has been installed on six

devices. The chatApp has many permissions but here we

mention only two namely “READ_CONTACT” and

“BLUETOOTH” permissions. 1st, 2nd and 4th users

allow “READ_CONTACTS” permission and 3rd user

denies that permission. 5th user allows “BLUETOOTH”

permission and 6th user denies that permission. This

example shows how server database stores all data.

In Fig. 6, the data to be provided to the user from

the server is been described. In this algorithm,

globally allowed and denied permissions statistics for

the application is provided to the user at the time of

application download. The user can leverage on this

information to make the right decision in addressing

each permission request. Now let us understand the

working of the algorithm.

Install

application

If user allow If user deny Ask set of

permissions

A+ = 1 D+ = 1

Get device Id,

get App Id,
permission,

A=n,
D=n

If internet is not If internet is working Check if
internet is

working

Store data in

local DB

Store data in local
DB as well as
server DB

Device ID,

App ID,

permission,
A=n,

D=n

Google

services

Device ID,
App ID,

permission,
A=n,

D=n

Check

internet is

working

Store data in

server DB No Yes

Ankur Rameshbhai Khunt and P. Prabu / Journal of Computer Science 2018, 14 (3): 324.333

DOI: 10.3844/jcssp.2018.324.333

330

Fig. 5: Graph of Table 1

When a user initiates an application installation

process from any App store, the OS initially checks

whether the app is already installed in the device or

not. If not, then it will immediately stop the process.

Otherwise, during the installation process it will get

the App ID and Device ID for that particular device

and store it in the local database. After that it will

fetch the count of Allowed (A) and Denied (D) based

on the App ID and Device ID for the particular

permission from the server to the device. This

permission statistics data from the server helps the

user in deciding which permission request he should

honor or not as per the public opinion. Based on the

choices made for each permission request, a line

record would be created for each permission request

with its status in the local device.

Algorithm 2: Fetch Data from Server to User’s

Device

Now after fetching the data from the server, it will

check whether the App ID is there in the local database

or not. If not, then data will be fetched from the server

with information like Device ID, App ID, Permission,

A = n, D = n (n = number of counts). But if found,

then it will compare the permission and its global

status count. If there is no difference then, it will stop

as it contains all the data updated as in the server. In

case, there are any changes in the two databases, it

will update the local database with specific records

with the data fetched from the server and will store

the final content of data in the local database.

Table 1: Example of how data store in server

Device ID App ID Permission (A) (D)

A3s0s253 com.chatApp READ_CONTACT 1 0

Dcjek09d com.chatApp READ_CONTACT 1 0

KLD987s com.chatApp READ_CONTACT 0 1

Hjdm67w com.chatApp READ_CONTACT 1 0

JHk8udh com.chatApp BLUETOOTH 1 0

Dchjd7dj com.chatApp BLUETOOTH 0 1

Table 2: Example of how data store in local database

Device ID App ID Permission (A) (D)

Abcde1 com.chatApp READ_CONTACT 3 1

Abcde1 com.chatApp BLUETOOTH 1 1

The following database table shows the information

transferred from the server.

Now, when the user opens the application after

installation, it will ask for certain permissions to the

user. As shown in Fig. 2 it will show a dialog box with

two options namely Allow and Deny for any particular

permission like using Camera, accessing Contacts etc. It

will additionally show the count of how many people

allowed the permission for that particular application and

how many denied for the same.

In Fig. 7 example server data is shown in Table 1, In

that table total three users allowed “READ_CONTACT”

permission and one user denied. For “BLUETOOTH”

permission, one user allowed and 1 user denied that

permission. Same count summary of appropriate

permissions is shown in Table 2.

Ankur Rameshbhai Khunt and P. Prabu / Journal of Computer Science 2018, 14 (3): 324.333

DOI: 10.3844/jcssp.2018.324.333

331

Fig. 6: How to fetch data from server to user’s device

Fig. 7: Graph of Table 2

Install App from

Google Playstore

Check
application

installed or not

No

Yes

Get App Id,

Device Id

Get count of A & D

based on permission
of particular App Id

& device Id

Yes No
App Id is exist
in local db Stop

Store data in

local database
Verify count of allow
and deny check if it is

matching or not

No Yes

Update records of
specific App Id

Device id
App id,

permission,
A=n,
 D=n

Com.chatApp

READ_CONTACT

Com.chatApp

BLUETOOTH

(A) (D)

4

3

2

1

0

Ankur Rameshbhai Khunt and P. Prabu / Journal of Computer Science 2018, 14 (3): 324.333

DOI: 10.3844/jcssp.2018.324.333

332

Results and Discussion

As we see in algorithm 1 the individual data of each

user is fetched. The permission name along with its

status are extracted for each user. This data has been

processed by algorithm 2 to generate the consolidated

report. This report consists of each permission name and

the number of users who have either accepted or denied

the demand permission (Fig. 2).

This number of acceptances and rejections are very

useful for a any new user to decide whether to allow

or deny the permission for the application. If more

number of users have denied the permission, then the

new user will know that it may not be safe to allow

the permission.

Conclusion

A wide range of applications incorporate permission

excursive to the application’s utility. These permissions

allow access to assets which are delicate in nature. This

may result in the spillover of user data or utilized by

the third party identified by the application. The user is

unaware of this and agrees to the permissions because

the user is not warned about these threats in any

possible ways. So the proposed system permits the user

to see that in reality how many people have genuinely

agreed to this permission and how many have not. This

increases the security of information and permits the

user to choose which information he/she needs to share.

In future, I expect up-gradation of security by

evacuating those permissions which are dismissed by

the greatest number of users. The application will make

a request to the developer to avoid those permissions

which most users have rejected in order to continue in

the application market. This initiative would guarantee

general safety and security of user information and

counteractive action of third party applications utilizing

private information.

Acknowledgment

We thank our colleagues from Christ University,

Bangalore who provided insight and expertise that

greatly assisted the research.

We would also like to show our gratitude to Joy

Paulose, H.O.D of Department of Computer Science,

Christ University, for sharing their pearls of wisdom

with us during this research and we thank 3

“anonymous” reviewers for their so-called insights.

Authors Contributions

Ankur Rameshbhai Khunt: Android extra module

for permission system.

P. Prabu: Allow and deny services.

Ethics

All information provided in this paper is
confidential and unique. This paper has neither been
published nor is under review elsewhere. In this
article, we propose a new method and algorithm for
the Android security. Any implementation or
adaptation of this idea is subjected to the user’s own
result and the idea and result in this paper no way
guarantees safety, security or some pre defied result.

References

Andow, B. and H. Wang, 2015. A distributed android
security framework. Proceedings of the IEEE
International Conference on Smart City, Dec. 19-21,
IEEE Xplore Press, pp: 1045-52.

 DOI: 10.1109/SmartCity.2015.207

Enck, W., D. Octeau, P. McDaniel and S. Chaudhuri, 2012.

A study of android application security. Systems and

Internet Infrastructure Security Laboratory.

Enck, W., M. Ongtang and P. McDaniel, 2009.

Understanding android security. IEEE Security

Privacy Magazine, 7: 50-57.

 DOI: 10.1109/MSP.2009.26

Faruki, P., A. Bharmal, V. Laxmi, V. Ganmoor and M.

Gaur et al., 2015. Android security: A survey of

issues, malware penetration and defenses. IEEE

Commun. Surveys Tutorials, 17: 998-1022.

 DOI: 10.1109/COMST.2014.2386139

Fragkaki, E., L. Bauer, L. Jia and D. Swasey, 2012.

Modeling and enhancing android's permission

system. CyLab at Carnegie Mellon University.

Heuser, S., A. Nadkarni, W. Enck and Ahmad-Reza

Sadeghi, 2014. ASM: A programmable interface

for extending android security. Proceedings of the

23rd USENIX Conference on Security

Symposium, Aug. 20-22, USENIX Association,

San Diego, CA, pp: 1005-19.

Jain, A. and Prachi, 2016. Android security: Permission

based attacks. Proceedings of the 3rd International

Conference on Computing for Sustainable Global

Development, Mar. 16-18, IEEE Xplore Press, New

Delhi, India, pp: 2754-59.

Lee, C., J. Kim, S. Cho, J. Choi and Y. Park, 2013.

Unified security enhancement framework for the

Android operating system. J. Supercomput., 67:

738-756. DOI: 10.1007/s11227-013-0991-y

Luyi, X., P. Xiaorui, W. Rui, K. Yuan and W. XiaoFeng,

2014. Upgrading your android, elevating my

malware: Privilege escalation through mobile OS

updating. Proceedings of the IEEE Symposium on

Security and Privacy, May 18-21, IEEE Xplore

Press, San Jose, CA, USA, pp: 393-408.

 DOI: 10.1109/SP.2014.32

Ankur Rameshbhai Khunt and P. Prabu / Journal of Computer Science 2018, 14 (3): 324.333

DOI: 10.3844/jcssp.2018.324.333

333

Mohini, T., S. Ashish Kumar and G. Nitesh, 2013.

Review on android and Smartphone security. J.

Comput. Inform. Technol. Sci., 1: 12-19.

Rashidi, B. and C. Fung, 2009. A survey of android security

threats and defenses. J. Wireless Mobile Netw.

Ubiquitous Comput. Dependable Applic., 6: 3-35.

Vecchiato, D., M. Vieira and E. Martins, 2016. The

perils of android security configuration. Computer,

49: 15-21. DOI: 10.1109/MC.2016.184

