

© 2018 Alexander Yurievich Yurin, Nikita Olegovich Dorodnykh, Olga Anatolievna Nikolaychuk and Maksim Andreevich

Grishenko. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Prototyping Rule-Based Expert Systems with the Aid of

Model Transformations

1,2
Alexander Yurievich Yurin,

1
Nikita Olegovich Dorodnykh,

1
Olga Anatolievna Nikolaychuk and

1
Maksim Andreevich Grishenko

1Matrosov Institute for System Dynamics and Control Theory,

Siberian Branch of the Russian Academy of Sciences (ISDCT SB RAS), Irkutsk, Russia
2Irkutsk National Research Technical University (IrNRTU), Irkutsk, Russia

Article history

Received: 16-10-2017
Revised: 02-02-2018
Accepted: 2-04-2018

Corresponding Author:
Alexander Yurievich Yurin
Matrosov Institute for System
Dynamics and Control Theory,
Siberian Branch of the Russian
Academy of Sciences (ISDCT
SB RAS), Irkutsk, Russia
Email: iskander@icc.ru

Abstract: The problem of improving efficiency of intelligence systems

engineering remains a relevant topic of scientific research. One of the

trends in this area is the use of the principles of cognitive (visual) modelling

and design as well as approaches based on generative programming and

model transformations. This paper aims to describe the implementation and

application of model transformations for prototyping rule-based knowledge

bases and expert systems. The implementation proposed uses the main

principles of the Model Driven Architecture (MDA) (e.g., model types and

creation stages) and considers the features of developing intelligent

systems. Therefore, the current research employs the following tools:

Ontologies for the representation of the computation-independent model;

the author’s original notation, namely, the Rule Visual Modelling Language

(RVML) to create the platform-independent and platform-specific models;

the C Language Integrated Production System (CLIPS) and the Drools Rule

Language (DRL) as the programming languages (as the platforms). The

approach proposed targets non-programmers (domain experts and analytics)

and makes the design process of rule-based expert systems and knowledge

bases more efficient. The paper also presents a detailed description of the

main elements of the approach including models, transformations and a

specialised software (Personal Knowledge Base Designer).

Keywords: Model-Driven Engineering, Expert System, Rules, Ontology,

Prototyping, Model Transformations

Introduction

The problem of improving efficiency of Knowledge

Bases (KB) and expert systems engineering remains a

challenging topic of scientific research and it can be

addressed in different ways: By improving the existing

approaches or creating a specialized software for

automation of the development process (Jackson, 1998;

Giarratano and Riley, 2004; Liebowitz, 1998; Luger,

2008; Sahin et al., 2012).

At the same time there exist several main trends to

improve the efficiency.

Using the software for ontological and cognitive

modeling, CASE-tools (Protégé, OntoStudio, IHMC

CmapTools, XMind, FreeMind, TheBrain, IBM

Rational Rose, StarUML and etc.), which create

graphic models that correspond to the key software

abstractions. However, most of these systems do not

cover all the creation stages of KBs and ESs and do not

provide the completeness of the development process:

From the subject domain model to the program codes.

In some cases, they can only help obtain graphic

images of KB structures. Perhaps, only Protégé is

capable of generating a limited set of KB elements, in

particular, for CLIPS/COOL.

Using KBs editors and ESs shells (Expert System

Designer, Expert System Creator, ARITY Expert

Development Package, CxPERT, Exsys Developer,

DDTRES and etc.), which are programmer-oriented

and allow implementation of a formalized description

of the domain concepts and KB structures in a certain

Programming Language (PL), but have a low

integration capacity with visual modeling systems and

knowledge interpretation modules, in most cases

supporting one specific PL.

Alexander Yurievich Yurin et al. / Journal of Computer Science 2018, 14 (5): 680.698

DOI: 10.3844/jcssp.2018.680.698

681

Using integrated frameworks and unified

approaches that provide the coverage of all phases of

the life cycle of knowledge-based systems and the

integration of the first two trends.

It should be noted that this area offers such solutions

as AT-TECHNOLOGY (Rybina et al., 2016) and such

special methodologies as HeKatE (Nalepa and Ligęza,

2010) and CommonKADS (Schreiber et al., 2000),

however, there is a general tendency to target non-

programmers (Nofal and Fouad, 2015; Ruiz-Mezcua et al.,

2011) and employ conceptual models, including

ontologies and semantic nets (Baumeister and Striffler,

2015; Corsar and Sleeman, 2008; Nofal and Fouad, 2014;

Rajput et al., 2014; Shue et al., 2009; Zagorulko and

Zagorulko, 2013), when creating KBs.

At the same time, it remains relevant to expand the

set of conceptual models used and further minimize

the participation of the programmer in the creation of

ESs and KBs.

One of the trend in these areas is the use of the

principles of cognitive (visual) modelling and design as

well as approaches based on generative programming

(Czarnecki and Eisenecker, 2000; Czarnecki and Helsen,

2006), in particular, the Model-Driven Engineering

(MDE) or the Model Driven Software Development

(MDD) and its variants (modifications).

The MDE/MDD is a software design approach that

uses the information models as the major artifacts,

which, in turn, can be used for obtaining other models

and generating programming codes (Sami et al., 2005).

This approach enables programmers and non-

programmers (depending on the implementation) to

create software on the basis of conceptual models.

Thus, the core ideas of the model-driven approach are:

• A model is a key artifact during the development

process of software (a formal specification of the

function, structure and behavior of a system within a

given context)

• The software development process is a sequence (a

chain) of transformations of models (from more

abstract to less abstract)

To date, the best-known MDE initiatives are the

following:

• The Model-Driven Architecture (MDA), which is a

registered trademark of the Object Management

Group (OMG) (Sami et al., 2005; Djurić et al.,

2005; Frankel, 2003; Kleppe et al., 2003; MDA,

2017; Schmidt, 2006). The main idea of the

approach is to build an abstract meta-model for the

management and exchange of metadata (models)

and set the ways of their transformation into a

software-supported technology (Java, CORBA,

XML, etc.). MDA specifies three default viewpoints

on software: Computation independent, platform

independent and platform specific. The viewpoint is

an abstraction technique for focusing on a particular

set of concerns within a system while suppressing

all irrelevant details. The viewpoint can be

represented via one or more models

• The Eclipse Modeling Framework (EMF) is an

Eclipse-based modeling framework and code

generation facility for building tools and other

applications based on a structured data model (EMF,

2017). The EMF provides the foundation for

interoperability with other EMF-based tools and

applications. The heart of EMF is Ecore. Ecore is a

special language for description of meta-models

(implementation of OMG's Essential Meta-Object

Facility, EMOF). The basic tools to work with meta-

models and skeletal code generation of software

(programming skeletons) are EMF.Core, EMF.Edit,

EMF.Codegen

• The Model-Integrated Computing (MIC) has been

developed for over two decades at ISIS, Vanderbilt

University, for building a wide range of software

systems. MIC focuses on the formal representation,

composition, analysis and manipulation of models

during the design process. It places some models in

the center of the entire system life-cycle, including

specification, design, development, verification,

integration and maintenance (MIC, 2017). MIC

provides three core elements: The technology for the

specification and use of the Domain-Specific

Modeling Languages (DSML); the fully integrated

metaprogrammable MIC tool suite and an open

integration framework to support formal analysis

tools, verification techniques and model

transformations in the development process; the

three-level representation of the system

development process (Application Level, Model-

Integrated Program Synthesis Level, Meta-Level)

In the context of the development of rule-based ESs

we choose the MDA as the primary approach. This is the

most standardized version (initiative) of the MDE, which

uses the UML, one of the most common modeling and

software design languages.

There can be found examples of successful use of the

MDE approach in the development of database

applications (e.g., ECO, for Enterprise Core Objects),

agent-oriented monitoring applications (Gascueña et al.,

2012; 2014), decision support systems (Baumeister and

Striffler, 2015; Shue et al., 2009; Neto et al., 2017),

embedded systems (software components) for the

Internet (Canadas et al., 2009; Cabello et al., 2009;

Distante et al., 2007), including rule-based ESs (Nofal and

Fouad, 2014; Shue et al., 2009; Nofal and Fouad, 2015;

Ruiz-Mezcua et al., 2011; Canadas et al., 2009).

Alexander Yurievich Yurin et al. / Journal of Computer Science 2018, 14 (5): 680.698

DOI: 10.3844/jcssp.2018.680.698

682

This paper aims to describe the implementation and

application of the MDA/MDE approach and model

transformations in prototyping rule-based KBs and ESs.

The implementation proposed uses the main principles

of the MDA/MDE (e.g., model types and creation

stages) and considers the features of developing

intelligent systems, in particular, rule-based ESs and

KBs through specialization and redefinition of certain

models and stages.

In particular, we suggest using the following tools:

• Ontologies and conceptual models in the form of

UML class diagrams (Star UML and IBM Rational

Rose formats) or mind maps (IHMC CmapTools

format) to represent a computation-independent model

(CIM), that distinguishes this work from similar ones,

in particular (Nofal and Fouad, 2014; Shue et al., 2009;

Nofal and Fouad, 2015; Ruiz-Mezcua et al., 2011;

Canadas et al., 2009)

• The original author’s notation - a Rule Visual

Modelling Language (RVML) to improve the

visibility of representations of cause-effect relations

for designing platform-independent and platform-

specific models, that allows us to take into account

the specifics of the logical rules formalism, in contrast

to (Canadas et al., 2009; Cabello et al., 2009)

• C Language Integration Production System (CLIPS)

as a platform model

We also define the rules of model transformation in

accordance with the principles of the MDA/MDE in the

context of designing KBs and ESs. The closest works

(Canadas et al., 2009; Cabello et al., 2009) use the

classical MDE-based scheme for developing applications

without taking into account the features of the

development of knowledge-based systems, in particular,

the need for a conceptualization stage or the selection of

certain formalism for the knowledge representation.

The approach proposed is implemented in the form of

a prototype of the specialized software: Personal

Knowledge Base Designer (PKBD, 2017). This software

supports the main stages of the development process and

it was used in the ESs design to define the causes of

damage and destruction of construction materials. This

software was also used in the educational process at the

Irkutsk National Research Technical University (IrNRTU).

The approach targets non-programmers (domain

experts and analytics) and improves the efficiency of the

design process of rule-based KBs and ESs.

This paper is organized as follows. The next section

presents analysis of the related works; Section 3 contains

the problem statement. Section 4 describes the

modification and application of the MDA/MDE

approach to the automated creation of rule-based KBs

and ESs. Sections 5 and 6 demonstrate the

implementation and applicability of the approach using

an example. Discussion is presented in Section 7 and the

concluding remarks are stated in Conclusion.

Related Works

The following several works have been already

developed in the area of engineering rule-based KBs and

ESs and exploit the principles of the MDA/MDE to a

greater or lesser extent. Analysis of those works showed

that they can be divided into two groups:

1. The first group includes the works that do not

explicitly indicate the use of the MDE methodology and

principles, however, they actually use conceptual models

to describe the subject domain and some transformations

of these models to interpret or generate software codes.

In this case, the specialized transformation languages

are not used and the main results are presented either in

the form of single domain specific applications or

problem-oriented shells.

In particular, Dunstan (2008) presents a method to

automatically generate web-based ESs from XML

descriptions of the knowledge domain. The case study is

university course rules. An XML data definition file is

developed featuring common rules and restrictions

regarding courses. In this work the generator conception

is used and the method is programmer-oriented.

Nofal and Fouad (2014) describe a tool for

developing web-based ESs. The tool utilizes the

Semantic Web technology which enables the knowledge

engineers and domain experts to define knowledge

without having to know anything about programming

languages and Artificial Intelligence (AI). The facts of

the knowledge can be annotated using the semantic

concepts and relations found in WordNet ontology and

interpreted in the tool.

Shue et al. (2009) use the ontology to model the

domain knowledge and decision rules to represent

operational knowledge. The system described integrates

Protege, as a domain KB and the Java Expert System

Shell (JESS), as an operational KB, into one complete

ES. The case study is corporate financial rating. In this

work the generator conception is implemented, so the

main results are the JESS and Java program codes. The

special transformation languages are not used.

Ruiz-Mezcua et al. (2011) created an ES
development tool for non AI experts. This tool proposed
allows development of the ESs on the basis of
knowledge representation models. The models are
described in the form of trees and interpreted in the tool.
The special transformation languages are not used.

An approach for the ESs construction on the basis of

UML is described in (Touzi and Messaoud, 2009). The

approach proposed uses the extension of the CLIPS,

called VCLIPS_UML, which is developed in Java and

allows one to automatically generate the corresponding

Alexander Yurievich Yurin et al. / Journal of Computer Science 2018, 14 (5): 680.698

DOI: 10.3844/jcssp.2018.680.698

683

scripts in accordance with the CLIPS language. This

approach is oriented to non-programmers.

Kadhim et al. (2013) introduced a tool for

constructing rule-based ESs called Diagnosis Domain

Tool for Rule-based Expert System (DDTRES), which

tool provides a variety of functions to facilitate the

development of ESs for practical problems in different

diagnosis domains. This system is developed and

implemented using the visual PROLOG programming

language. Since the tool proposed is a problem-oriented

shell, the structure of the domain model is already

defined and is filled with the use of data mining methods.

2. The second group contains the works that

explicitly use the MDE principles in the context of the

EMF or MDA initiatives.

For instance, Canadas et al. (2009) present an MDE

for the development of rule-based applications for the

Web. Their approach uses ontology to describe the

subject domain. In this case, the Conceptual Modeling

Language (CML) (instead of UML) is used to describe

the ontology (as the Computation-Independent (CIM)

and Platform Independent Models (PIM)) as a rule

modeling formalism. The implementation was made as a

part of the Eclipse Modeling Project (using the Eclipse

Modeling Framework); accordingly, model transformations

(model-to-model and model-to-code) are described with the

aid of the ATLAS Transformation Language (ATL).

The CIM and PIM are not separated and the selection

of a possible formalism for knowledge representation is

not offered. Ontology and rules are transformed into

JESS, which supports the development and deployment

of rule-based systems tightly coupled to Java

applications. Furthermore, a Web-based architecture is

generated from the CML model, enhanced by the

interaction and presentation features.

The Web application code is based on the MVC

architectural pattern and the Java Server Faces (JSF)

framework, producing a set of JavaBeans classes and

Java Server Pages (JSP). Further use of the results

assumes that the user has programming skills.

Chaur (2004) offers an approach to create rule-based
systems based on the concept of the EMF. In particular,
the ECore meta-metamodel is used to describe a Rule
Meta-Model which defines a conceptual model for
representation of domain expert’s knowledge in the form
of JESS rules, but a clear description of CIM, PIM and a
Platform-Specific Model (PSM) is lacking. In general,
the principle of the generator for the JESS platform
(oriented to programmers) is implemented.

Cabello et al. (2009) suggest an implementation of
the MDA for the PRISMA platform. This tool allows
generation of diagnostic ESs (as PRISMA architectural
models) on the basis of conceptual models describing
various aspects of software: The feature model, the
decision tree, the domain conceptual model, the
application domain conceptual model and etc. In this

case, the first two models are considered as CIM and the
rest as PIM. No specialized languages are used to
implement the model transformations. The main results
are the generated program codes for C# and .NET.

The model transformation is one of the main

principles of the MDE/MDE approach and can be

considered from different points of view. In particular,

(Kleppe et al., 2003; Czarnecki and Helsen, 2006)

identified two types of transformations:

• Model-to-Model (M2M)

• Model-to-Text (M2T) and Text-to-Model (T2M)

At the same time, the M2T transformation

corresponds to the concept of ‘pretty printing’ in the

program transformation and the Model-to-Code (M2C)

can be considered as a special case of M2T.

Two types of transformations are identified in

(Mens and Gorp, 2006) in accordance with the modeling

languages used to describe the source and target models:

• The endogenous transformation is a transformation

between models that uses one modeling language

• The exogenous transformation is a transformation

between models that uses different modeling languages

The model transformations can also be classified by

the transformation direction (Mens and Gorp, 2006):

• A vertical transformation is a transformation where

the source and target models reside at different

abstraction levels

• A horizontal transformation is a transformation

where the source and target models reside at the

same abstraction level

The transformations should satisfy the following

main requirements (Czarnecki and Helsen, 2006;

Gardner et al., 2003; Sendall and Kozaczynski, 2003):

• Completeness: It should allow one to represent any

necessary transformation in accordance with the

defined models

• Formality: It should allow automatic execution

• Flexibility: It should not depend on a specific

subject domain

At present, there exist several research areas related

to the implementation of model transformations:

• Using graph grammars (graph rewriting)

(Rozenberg, 1999) (e.g., VIsual Automated model

TRAnsformations (VIATRA2) (Varro and Balogh,

2007), Graph REwriting And Transformation

(GReAT) (Balasubramanian et al., 2007), Henshin

(Arendt et al., 2010), etc.)

Alexander Yurievich Yurin et al. / Journal of Computer Science 2018, 14 (5): 680.698

DOI: 10.3844/jcssp.2018.680.698

684

• Using special languages and standards of model

transformation (e.g., Query/View/Transformation

(QVT) (QVT, 2017), ATL (Jouault et al., 2008),

Epsilon (2017), etc.)

• Using declarative and procedural programming

languages (Berman et al., 2010)

• Using languages for transforming XML documents

(e.g., eXtensible Stylesheet Language Transformations

(XSLT) (XSLT, 2017), etc.)

In the context of the MDA approach, it is

recommended to use the standard for the M2M

transformation called the QVT (Operational, Relational

and Core languages). However, a significant drawback

of QVT (like all model transformation languages) is the

high qualification requirements for a user (developer). In

particular, the user should:

• Know the syntax of the specific model

transformation language

• Be able to describe transformation rules with the aid

of the transformation language

• Know the meta-modelling languages (e.g., MOF,

Ecore, KM3, etc.) to define the source and target

languages (to support the model transformation

process)

• Know and be able to use other languages in addition

to the main model transformation languages, for

example, the Object Constraint Language (OCL)

Therefore, we decided to make an ‘ad-hoc’ solution

and use a direct-manipulation approach (Czarnecki and

Helsen, 2006) for description of transformations and a

general-purpose programming language (Object Pascal) to

provide the internal representation and transformations of

the models in the prototype (framework) of the software

tool that implements the approach proposed.

The Problem Statement

Analysis of the existing technologies for the
development of ESs and KBs (Jackson, 1998;
Giarratano and Riley, 2004; Liebowitz, 1998; Luger,
2008; Djurić et al., 2005; Canadas et al., 2009) revealed
that they primarily target users with knowledge of
software engineering.

Therefore, to apply these technologies, the developer
should have programming skills and know at least one
programming language for KBs. Similarly, if a
programmer develops KBs, then he/she has to study the
subject domain model and formalize basic concepts and
relations. It is a rare occasion for the same person to
have necessary programming skills and be an expert in
the subject area.

As a result, we propose to adapt (modify) and apply

the MDA approach to the automated creation of rule-

based KBs and ESs, including automatic generation of

program codes and specifications on the basis of the

subject domain models represented in the form of

graphics primitives. This type of automation would help

minimize the participation of the programmer in the

software development process.

We formalize an MDA as follows:

, , , , ,

, ,

CIM to PIM PIM to PSM

PSM to CODE

L CIM PIM PSM PDM

MDA F F

F

− − − −

− −

=

where, L are visual modeling languages, L={UML};

CIM, PIM, PSM, PDM are corresponding models; FCIM-

to-PIM:CIM → PIM, FPIM-to-PSM:PIM → PSM, FPSM-to-

CODE:PSM → CODE are model transformation rules.

Thus, the main purpose of this paper is to adapt (to

specialize) the MDA methodology in the context of the

development of rule-based expert systems and

knowledge bases, i.e. to define an MDE
RB_ES

:

_ _ _

_ _

_

_ _

_

, , ,

, ,

, ,

RB ES RB ES RB ES

RB ES RB ES

RB ES

RB ES RB ES

CIM to PIM PIM to PSM

RB ES

PSM to CODE

L CIM PIM

PSM PDM
MDA

F F

F

− − − −

− −

=

Thus, it is necessary to define the elements of the

MDA
RB_ES

, including models and rules for the

transformation of models in the context of designing

rule-based ESs and KBs and implement them in the form

of a special tool.

Prototyping Rule-Based Expert Systems

with the Aid of Model Transformations

According to MDA (Sami et al., 2005; Frankel, 2003;
Kleppe et al., 2003; MDA, 2017), the designed software,
which includes a description of the basic concepts, the
relations between them and methods for processing
them, is represented in the form of information models
defining the composition, structure and behaviour.
Therefore, the process of software development is a
gradual transition from abstract information models (i.e.,
models that do not contain the details of the implementation
on a specific technological platform; such models are called
logical) to specific information models (i.e., models that
contain the details of the implementation on a specific
technological platform; such models are called physical)
with the subsequent generation (synthesis) of the program
codes of a KB and an ES.

Main Stages

The development process of KBs and ESs is

presented by a sequence of stages providing the creation

and transformation of information models.

Alexander Yurievich Yurin et al. / Journal of Computer Science 2018, 14 (5): 680.698

DOI: 10.3844/jcssp.2018.680.698

685

Stage 1: Building a Model of a Subject Domain

The main concepts and relations. At this stage, the

user creates a Computation-Independent Model (CIM).

This model can be implemented in the form of ontology

or an UML-model (in particular, as a class diagram). In

addition to the concepts and relations of ‘is-part-of’ and

‘is-a’, the relation ‘depends-on’ is introduced; this

relation provides a description of cause-and-effect

relations. In the case of UML class diagrams, these types

of relations are defined by the mechanism of stereotypes.

A description of the main architectural elements of the

ES (such as the ‘input form’; the ‘output form’ etc.,

which are derived from the ‘border class’; the ‘inference

engine’, which is derived from the ‘control’; the

‘knowledge-base’) is also produced at this stage.

The efficiency of this stage can be improved by

reusing the existing conceptual models created using

various ontological and cognitive editors, such as CASE-

tools (e.g., Protégé, CmapTools, IBM Rational Rose

Enterprise) (Dorodnykh and Yurin, 2015). Most of the

software that supports the MDA approach (e.g., Bold for

Delphi) does not realize this stage and only enables

development of the software starting at the next stage. In

this case, the conceptual model of a subject domain

(even presented in the form of ontology (Djurić et al.,

2005)) is considered as a Platform-Independent Model

(PIM) that describes the main concepts and business

logic (that is acceptable for databases). In the case of

developing intelligent systems, this stage is necessary

and corresponds to the stage of the conceptualization of

knowledge. This stage allows transition from a general

conceptual model of a subject domain to a knowledge

representation model (with logical rules).

Stage 2: Building Platform-Independent Models

(PIMs)

The models of this stage describe logical rules that

stem from the automated transformation of a CIM with

the subsequent specification of the results of the

automated transformation. In the process of the CIM

transformation, the concepts are transformed into the fact

templates and rule elements (such as the conditions and

actions) and the cause-and-effect relations are

transformed into logical rules. In fact, the automated

formalization of a subject domain model is carried out.

Visual modelling is one of the main aspects of the
MDA approach. MDA traditionally uses a Unified
Modelling Language (UML) for building models. It
should be noted that applying the MDA approach to
develop specific software requires the use of UML
extensions (Miguel et al., 2002) that allow one to take
into consideration some features of a subject domain
(e.g., telecommunication or health.), architectures (e.g.,
real-time access and reliability) and programming
languages and formalisms (e.g., Prolog). Because a

UML is not intended for illustrative and unambiguous
representation of cause-and-effect relations (logical
rules), we use the author’s original notation of the ‘Rule
Visual Modelling Language’ (RVML) to represent
logical rules) and furthermore, to serve as a UML.

Designing an ES during the development of a KB
involves the design of the ES’s structure and the user
interface. Thus, elements of the approach known as
‘Ontology Driven Architecture’ (ODA, the section within
MDA) are used (Djurić et al., 2005; Gašević et al., 2009).
This approach is intended to develop the theory and tools
for building software based on the ontological
transformation. Hence, after the creation of rules the user
is prompted to choose the ‘initial’ rule, which helps
construct the chains of the logical inference. The analysis
of the obtained chains allows one to design the
architecture of an ES (i.e., a set of software components
that provide the input, output and processing of
information). The architecture is presented in the form of
a UML class diagram.

Stage 3: Building Platform-Specific Models (PSMs)

That take into account the features of a certain

knowledge representation language (e.g., CLIPS), such

as priorities of rules and ‘by default’ values of slots.

Stage 4: Generating the Code of a KB and an ES

At this stage, the interpretation of the UML-class
diagram (that describes the software architecture) and
RVML diagrams is performed. The main results of the
interpretation are the program codes and specifications
for an interpreter. In the process of interpretation and
code generation, the Platform Description Model
(PDM) and rules for the transformation of models are
used. In this case, a PDM describes the syntax and
semantics of the programming languages for which
program code is generated.

Stage 5: Testing

At this stage, the program codes obtained are tested

in a special software (in the interpreter).

It should be noted that the end user (an expert or a

system analytic) only designs a CIM, a PIM and part of a

PSM. All the transformations of the models and the

generation of program codes (with the possibility of

modifications) are implemented with a specialized

software that includes a PDM.

The described sequence of stages almost coincides

with a ‘standard’ MDA approach, but the stage

content is redefined on the basis of designs of the

rule-based ESs and KBs.

Next, we focus on the models under study.

Models

The description of the models and their transformations

are important for the MDA/MDE approach.

Alexander Yurievich Yurin et al. / Journal of Computer Science 2018, 14 (5): 680.698

DOI: 10.3844/jcssp.2018.680.698

686

The Computation-Independent Model

The computation-independent model (CIM) can be
presented in the form of ontology (Fig. 1) that includes
the subject domain ontology (e.g., the reliability of
technical systems) and the ontology of rule-based ESs,
which includes the description of the main architectural
elements that are necessary for the implementation of the
approach proposed. In turn, the subject domain ontology
includes the concepts (i.e., the classes and instances) and
the relations between them including the basic data
types; the classes and properties.

The Platform-Independent and Platform-Specific

Models.

A PIM is described with two models and can be

represented as follows:

_ _ _

,

RB ES RB KB RB ES
PIM UML UML=

where, UML

RB_KB
 is a model of a KB and UML

RB_ES
 is a

model of an ES architecture.

Representation and Modelling of the ES

Architecture

The UML class diagrams with additional classes

(e.g., ‘Input From Class’, ‘Output From Class’) that

extend the standard classes of ‘Border Class’, ‘Entity’

and ‘Control’ are used for the representation and

modelling of the ES architecture.

The following equations give the main concepts of

UML
RB_ES

:

<UML_RB_ES> = <Class>+

<Class> = <Border Class> | <Entity> | <Control>

<Border Class> = <Input Form Class> | <Output

Form Class>

<Input Form Class> = Facts input form

<Output Form Class> = Results form | Explanation

form

<Control> = DROOLS interpreter| CLIPS interpreter.

Representation and Modelling of Logical Rules

The RVML-notation (RVML, 2017) (which is based

on the UML) is used for the platform-independent

modelling of logical rules (Fig. 2). This notation allows

description of the cause-and-effect relations and

abstraction from the features of programming languages

for rule-based KBs.

In addition, the specification of certain elements of

the notation (such as the Priority (P) and the Certainty

Factor (CF)) provides the means to create a PSM,

especially for a CLIPS.

Fig. 1: The structure of a computation-independent model for prototyping rule-based expert systems

‘Explanation’ ‘Result’ ‘And
’ assoc

assoc

assoc

assoc
assoc

Condition operator

Condition

‘Or’

‘Not’

assoc assoc
Certainty factor

Form type
‘Input’

attr
attr

assoc

assoc
Name Form name

GUI KB attr assoc Rule
Element

Form ID
attr

assoc assoc attr
attr

assoc
assoc

Action

assoc

‘Modify’

attr

Action operator

Name

Importance

Ontology of rule-based ESs A decision-making strategy

assoc assoc

assoc

assoc

assoc

assoc assoc

‘Add’ ‘Delete’ Literal

CIM

assoc

assoc

‘CLIPS’

‘DROOLS’

Concept
assoc

assoc assoc assoc

assoc

assoc

assoc

assoc

Object

Subject domain ontology

Basic data type

Collection Data type assoc

Property
assoc Class

Name
attr

attr

attr attr

attr assoc

Name

assoc
assoc assoc

assoc

Constraint
Relation ‘is-a’

assoc assoc Value

‘Depends-on’ ‘Part-of’

Rule engine

Alexander Yurievich Yurin et al. / Journal of Computer Science 2018, 14 (5): 680.698

DOI: 10.3844/jcssp.2018.680.698

687

Fig. 2: An example of the basic elements of the RVML

Fig. 3: The structure of a platform-independent model for prototyping rule-based expert systems

The structure of a PIM in the form of a concept card

is presented in Fig. 3.

The Platform Model

The C Language Integrated Production System (CLIPS)

was selected as a platform model. The following equations

give the main elements of the CLIPS in the EBNF):

<CLIPS> = <template>*, <fact>*, <rule>*.

<template> = (deftemplate <template-name>

[<optional-comments>] [<slot-definition>*]).

<slot-definition> = <simple-slot-definition> |

<composite-slot-definition>.

<simple-slot-definition> = (slot <slot-name>

<template-attributes>).

<template-attributes> = <attribute-default-value> |

<restriction-attribute>

<restriction-attribute> = <type-attribute>

<type-attribute> = (type <type-specification>)

<type-specification> = float | integer | symbol | string

| external-address | fact-address | instance-name |

instance-address

Template-name CF

<slot name> <sign> <value>

The certainty factor of the fact (antecedent) Rule condition

(antecedent)

Rule name
CF

P

The certainty factor of the rule

The priority of the rule

Central element of
a rule (‘Core’)

The rule name

The template name of the fact (consequent)

Action operator: Add (+), delete (−);
modify (without any operator)

The certainty factor of the fact (consequent) Rule action

(consequent)

Template-name

<slot name> = <value>

attr
attr

attr
attr

Constraint

Value

Name Slot
assoc

Data type

Fact
Certainty factor

assoc

assoc assoc

assoc

Rule

assoc

Template

attr

assoc

assoc

Condition

Action
attr attr

RVML

Name
PIM Name

attr

Importance

assoc

UML

assoc assoc

‘Input’

assoc assoc

assoc

Class Entity Border Class

assoc
assoc

assoc assoc

Control

‘DROOLS’ ‘CLIPS’

‘Result’

‘Explanation’

Alexander Yurievich Yurin et al. / Journal of Computer Science 2018, 14 (5): 680.698

DOI: 10.3844/jcssp.2018.680.698

688

<fact> = (deffacts <facts-list-name> [<optional-

comments>] [<fact>*])

<rule> = (defrule <rule-name> <comment>] [<rule-

property- definition>]

 <antecedent>; rule LHS

 =>

 <consequent>; rule RHS).

Transformation of the Models

Thus, it is necessary to implement a sequence of

exogenous vertical transformations:

• The M2M-transformation for _RB ES

CIM to PIM
F

− −

• The M2M-transformation for _RB ES

PIM to PSM
F

− −

• The M2C-transformation for _RB ES

PSM to CODE
F

− −

The following is a fragment of the transformation

rules in the EBNF:

<Transformation> = <Transformation rule>

{<Transformation rule>}.

<Transformation rule> = Rule <name> {<Source

model element>, <Result>}.

<Source model element> = <ONT_D element> |

<ONT_RB_ES element> | <UML_RB_ES element> |

<UML_RB_KB element>.

<Result> = <UML_RB_ES element>|<UML_RB_KB

element>|<CLIPS element>|<GUI element>.

where <ONT_D element>, <ONT_RB_ES element>,

<UML_RB_ES element>, <UML_RB_KB element>,

<CLIPS element>, <GUI element> are the elements of

the domain ontology, the ontology of rule-based ESs, the

UML-models of rule-based ESs, the rules (RVML)

(Miguel et al., 2002), the CLIPS-models and the models

of a Graphic User Interface (GUI), respectively.

Then, we use the following transformation rule

templates:

_RB ES

CIM to PIM
F

− −

= {Rule ONT_D-TO-UML_RB_KB; Rule

ONT_RB_ES-TO-UML_RB_ES},
_RB ES

PIM to PSM
F

− −

= {Rule UML_RB_KB-TO-

UML_RB_KB*}, _RB ES

PSM to CODE
F

− −

= {Rule UML_RB_KB*-

TO-CLIPS; Rule UML_RB_ES-TO-GUI}:

Rule ONT_D-TO-UML_RB_KB{<ONT_D element>,

<UML_RB_KB element>}.

Rule ONT_RB_ES-TO-UML_RB_ES {<ONT_RB_ES

element>, <UML_RB_ES element>}.

Rule UML_RB_KB*-TO-CLIPS {<UML_RB_KB*

element>, <CLIPS element>}.

Rule UML_RB_ES-TO-GUI{<UML_RB_ES

element>, <GUI element>}.

These are the transformation rules we employ:

• ONT_D-TO-UML_RB_KB:

Rule Class-Template {<Class>,

<Template_UML_RB_KB>}.

Rule Object-Fact {<Object>,

<Fact_UML_RB_KB>}.

Rule is-a-Slot {<Relation>:<Relation type>:<is-a>,

<Slot>}.

Rule Class-Property-Slot {<Relation>:<Relation

type>:<is-part-of>, <Slot>}.

Rule Cause-Rule {<Relation>:<Relation

type>:<depends-on>, <Rule_UML_RB_KB>}.

Rule Property-Slot {<Property>, <Slot>}.

Rule Value {<Property value>, <Slot value>}.

• ONT_RB_ES-TO-UML_RB_ES:

Rule Form-UML {<Form>, <Border Class>}.

Rule Knowledge_base-UML_RB_ES{<Knowledge

base>, <Entity>}.

Rule Interpreter-UML_RB_ES{<Interpreter>,

<Control>}.

• UML_RB_KB*-TO-CLIPS:

Rule Template-CLIPS {<Template_UML_RB_KB*>,

<template>}.

Rule Fact-CLIPS {<Fact_UML_RB_KB*>, <fact>}.

Rule Rule-CLIPS {<Rule_UML_RB_KB*>, <rule>}.

Rule Slot-CLIPS {<Slot_UML_RB_KB*>, <slot-

value>}.

Rule Value-CLIPS {<Slot_value_UML_RB_KB*>}.

• UML_RB_ES-TO-GUI:

Rule Border_Class-GUI {<Border Class>, <GUI

Border Class>}.

Rule Entity-GUI {<Entity>, <GUI Entity>}.

Rule Entity-GUI {<Control>, <GUI Control>},

where <GUI Border Class>, <GUI Entity>, <GUI

Control> are the elements of the user interface for

classes with the corresponding stereotypes.

The elements of the models can be represented in a

(Table 1).

The model transformation rules are implemented

with an imperative programming language.

Alexander Yurievich Yurin et al. / Journal of Computer Science 2018, 14 (5): 680.698

DOI: 10.3844/jcssp.2018.680.698

689

Table 1: A fragment of a table of mapping of models’ elements (CIM to PIM and PIM to CLIPS and DRL)

CIM elements PIM elements CLIPS elements DRL elements

Class (name, description) TemplateFact (name, description) (deftemplate name “description” declare name
 … …
) end
Property Slot (description, value) (slot name) name

Property value Slot value (default value)
Property type Slot type (type datatype) : datatype
Relationship Rule (nodal element) (defrule name rule "name" salience 0
 (…) => when …
 (…) then …
) end

Implementation

The approach proposed was implemented in the form

of a research prototype of software known as the

Personal Knowledge Base Designer (PKBD, 2017).

This software includes main modules with the

following purposes:

• Designing and modelling; these modules are

intended to create an application model and include

a model editor, a model checker and modules for

importing and exporting models

• Code generation; this module generates the program

codes, including specifications for the interpreter

and CLIPS codes

• Interpretation and control; these modules provide

execution, including the interpretation and access to

model elements and the interaction between the data

level and the graphical user interface

The software provides full support for stages 1 and 2 of

the proposed approach and partial support for stages 3-5.

Consider an example of application of the proposed

approach for the development of a KB and an ES for the

definition of the causes of damage and destruction of

construction materials in petrochemistry.

The main cause of damage and destruction of a

construction is degradation processes. The processes of

degradation (Berman and Nikolaichuk, 2007) are the

objective physical-chemical processes conditioned by

both different technological processes and structural,

manufacturing and maintaining irregularities which

cause damages and destruction of materials and parts,

failures of mechanical and petrochemical systems (or

apparatus) and emergencies. Each process of degradation

is characterized by a mechanism and kinetics. A

mechanism of degradation is a set of properties of the

technological object and effecting factors. A kinetics is a

set of micro-and (or) macroscopic phenomena resulting

from accumulating elementary movement acts. A

description of kinetics includes: Events; event

parameters; functional relations (if it is possible) for the

definition of event parameters at a specified moment of

time. In the field of safety the degradation processes are

called hazardous processes.

According to the approach proposed, in order to

develop a KB and an ES for definition of the causes of

damage and destruction of construction materials, it is

necessary to design conceptual models of the basic

concepts of the subject domain that will be a CIM:

Stage 1

Building a CIM using a model of the dynamics of

technical states (Berman and Nikolaichuk, 2007) by the

experts. The main result of this stage is the subject

domain concepts and relations.

In particular, a fragment of a CIM (Fig. 4) describes a

mechanism of a degradation process (exist-mech), events

(exist-event), a construction material (material), a

technological environment, etc. At the same time, the

«association» relation denotes the existence of relations

between concepts that can be interpreted as cause-and-

effect relationships.

Stages 2 and 3

Building a PIM includes the definition of cause-and-

effect relationships in the form of logical rules. In

addition, the ES architecture is created on the basis of the

transformation of a CIM. Depending on the element type

of the CIM, the concepts are transformed to templates

for facts and rules (Fig. 5) for further modifications by

the user with consequent destining specific rules (Fig. 6).

In addition to the PIM for a KB, a PIM for the ES is

formed. The PIM for the ES includes a description of the

main GUI forms and this model is created on the basis of

a rule chain analysis. In particular, the following rules

(forming the PIM for a KB) were obtained:

1. IF the water is under pressure of 3-4 MPa AND the

temperature is approximately 300°С AND there are

chlorine ions AND there is dissolved oxygen THEN

the technological environment is active

2. IF we have low-alloy steel THEN the construction

material is sensitive

3. IF the construction material is sensitive AND the

technological environment is active with properties

Alexander Yurievich Yurin et al. / Journal of Computer Science 2018, 14 (5): 680.698

DOI: 10.3844/jcssp.2018.680.698

690

alternation AND incident object is a pipe into pipe

AND a constant mechanical stress with high cycle

frequency exists THEN the event is corrosion AND

the mechanism is local corrosion (Cf = 0,6) AND

the mechanism is corrosion cracking (Cf = 0,9)

4. … .

Fig. 4: A fragment of a CIM in the form of a UML class diagram (IBM Rational Rose)

Fig. 5: An example of a template for a rule (RVML) (Dorodnykh and Yurin, 2015)

Fig. 6: An example of a specific rule (RVML) (Dorodnykh and Yurin, 2015)

Alexander Yurievich Yurin et al. / Journal of Computer Science 2018, 14 (5): 680.698

DOI: 10.3844/jcssp.2018.680.698

691

These rules form a chain of logical inference that

does not require any additional information (i.e., this

chain uses the contents of the working memory and the

initial data entered by the user). The PIM for the ES (the

architecture) corresponding to this chain includes the

following software components:

• The initial data input form that provides the input

information on the technological environment, the

stresses, the investigated object and the material

• The inference machine (this element is a part of the

ES and is hidden from the user)

• The output form that provides the publication of the

results of the logical inference

• The output form that provides an interpretation of

the results obtained (it shows activated rules and

modified, added and deleted facts)

Stage 4

Generating a code and specifications, including:

• The CLIPS code

Specifications of the ES for the interpreter, which

provides the generation of the user interface for the

creation, reading, updating and deleting (CRUD) of the

KB elements (Fig. 7) and the interaction between

software components.

Fig. 7: An example of a PKBD GUI (Dorodnykh and Yurin, 2015)

Fig. 8: An example of a GUI: Initial facts preview

Alexander Yurievich Yurin et al. / Journal of Computer Science 2018, 14 (5): 680.698

DOI: 10.3844/jcssp.2018.680.698

692

Fig. 9: An example of a GUI: Rules activated preview

Stage 5

Testing a KB and an ES is carried out by an expert by
means of logical inferences (Fig. 8 and 9). It is possible
to return to one of the previous stages in accordance with
the results of the testing.

Efficacy Evaluation

The results obtained (the approach and the software)
were verified on the basis of the Irkutsk National
Research Technical University (IrNRTU). The case
study involved 60 students, who graduated from the
Popov Cybernetics Institute, where they completed
training in CASE-tools, Means of Information
Technologies and Programming Technologies. As a
result, the students know the basic concepts of software
design, UML, knowledge management and expert systems.

The main objectives of the case study were: (1) to
assess the complexity of the development of knowledge
bases of expert systems using our approach and the
software developed (UML-modeling + PKBD). Denote
this approach as A1; (2) to compare A1 with the complexity
of the KBs development under different conditions:

• Without UML-modeling, but with the use of the

software for knowledge base design, in particular,
ClipsWin (2017) – a free and simple CLIPS editor
for Windows (this is just a pure programmer’s
approach, denote this approach as A2)

• UML-modeling + other software for knowledge
base design, in particular, ClipsWin (denote this
approach as A3)

• IBM Rational Rose (2017) is chosen as a UML-
modeling tool which is widely used when creating
non-specialized software

There are 20 variants (tasks) for the design of static

expert systems for solving problems of diagnosing or

prognosis in different subject areas. Some constraints

were imposed on the characteristics of subject area

models and knowledge bases (on the tasks), in particular:

• The number of subject area entities: 5-10

• The number of properties of subject area entities: 3

• The number of connections between subject area

entities: 5-10

• The number of cause-effect relations (generalized

rules): 3-4

• The number of instances of cause-effect relations

(possible concrete rules): 10-15

Using the constraints provides multiple repetitions of
the tasks and their time compactness.

The time criterion is used (the time required to
perform certain stages of development of expert systems)
to assess the complexity.

The assessment was carried out in the following
stages (Jackson, 1998):

• Conceptualization (including building the conceptual

model)
• Formalization (including the transformation of the

key concepts and relations to some formal
knowledge representation language)

• Programming (including the transformation of
formalized knowledge into a working program)

The main results of the conceptualization and

formalization stages are the conceptual models of the

subject areas presented in the form of UML class diagrams.

The main results of the implementation stage are

syntactically corrected program codes of the knowledge

bases, checked to ensure their adequacy and consistency.

For each variant (task) three results describing the

time used were obtained, the average of their values is

presented in Table 2 and Fig. 10.

Alexander Yurievich Yurin et al. / Journal of Computer Science 2018, 14 (5): 680.698

DOI: 10.3844/jcssp.2018.680.698

693

Table 2: The results of evaluation of the time used

 UML-modeling Designing A3: IBM
 with the aid of knowledge base A1: IBM A2: rational rose Relative difference, %
Variant IBM Rationa with the aid of rational rose ClipsWin, + ClipsWin -------------------------------

(Task) Rose, min. PKBD, min. + PKBD, min. min. мин. A1 vs. A2 A1 vs. A3

1 10,89 7,2 18,09 41,29 30,4 40,49 56,19

2 8,36 7,1 15,46 32,86 24,5 36,89 52,95

3 8,58 8,3 16,88 36,46 27,88 39,45 53,70
4 9,36 5,83 15,19 26,82 17,46 13,00 43,36

5 11,25 5,52 16,77 64,41 53,16 68,45 73,96

6 10,78 4,6 15,38 43,8 33,02 53,42 64,89
7 6,6 15,82 22,42 68 61,4 63,48 67,03

8 10,95 7,56 18,51 57,23 46,28 60,00 67,66
9 7,37 7,2 14,57 54,71 47,34 69,22 73,37

10 12,58 6,6 19,18 42,7 30,12 36,32 55,08

11 8,69 5,5 14,19 38,01 29,32 51,60 62,67
12 8,36 6 14,36 45,22 36,86 61,04 68,24

13 10,64 7,42 18,06 44,31 33,67 46,36 59,24

14 10,66 10,23 20,89 50,57 39,91 47,66 58,69
15 10,01 7,56 17,57 55,5 45,49 61,38 68,34

16 10,92 8,96 19,88 49,42 38,5 48,36 59,77

17 8,14 8,36 16,5 45,59 37,45 55,94 63,81
18 11,55 18 29,55 47,43 35,88 17,64 37,70

19 11,85 5,2 17,05 43,28 31,43 45,75 60,61

20 9,12 7,44 16,56 40,95 31,83 47,97 59,56

The resulting average value of the relative difference: 48,2 60,3

Fig. 10: The results of evaluation of time used

Let us highlight the features of performing the work

at various stages for different approaches:

A2: The ClipsWin has functional limitations when it

comes to manual editing of codes. This obstacle

stipulated application of the additional text editor,

Programmer's Notepad, at the implementation stage.

 In particular, first, the description of the code in an

external text editor (using the copying and pasting of

80

70

60

50

40

30

20

10

0

T
im

es
 u
sd
e
(m

in
)

A1

1

A2 A3

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Variants (Tasks)

1
8
,0
9

1
5
,4
6

1
6
,8
8

1
5
,1
9

1
3
0
,4

4
1
,2
9

2
4
,5

3
2
,8
6

2
7
,8
8

3
6
,4
6

1
7
,4
6

2
6
,8
2

1
6
,7
7

5
3
,1
6

6
4
,4
1

1
5
,3
8

3
3
,0
2

4
3
,8

2
2
,4
2

6
1
,4

6
8

1
8
,5
1

4
6
,2
8

5
7
,2
3

1
4
,5
7

4
7
,3
4

1
9
,1
8

3
0
,1
2

4
2
,7

1
4
,1
9

2
9
,3
2

3
8
,0
1

1
4
,3
6

3
6
,8
6

4
5
,2
2

1
8
,0
6

3
3
,6
7

4
4
,3
1

2
0
,8
9

3
9
,9
1

5
0
,5
7

1
7
,5
7

4
5
,4
9

5
5
,5

1
9
,8
8

3
8
,5

4
9
,4
2

1
6
,5

3
7
,4
5

4
5
,5
9

2
9
,5
5

3
5
,8
8

4
7
,4
3

1
7
,0
5

3
1
,4
3

4
3
,2
8

1
6
,5
6

3
1
,8
3

4
0
,9
5

5
4
,7
1

Alexander Yurievich Yurin et al. / Journal of Computer Science 2018, 14 (5): 680.698

DOI: 10.3844/jcssp.2018.680.698

694

individual blocks of a code) is carried out and then the

resulting code is imported into ClipsWin, which carries

out the syntax check. In practice, using this scheme, the

creation of knowledge bases took one and a half time less.

A3: This approach provides the greatest time performance

and uses IBM Rational Rose Enterprise for conceptual

modeling of the subject area. The greatest time

performance is caused by the manual transfer of the

obtained conceptual models into (due to the absence of

the function of automatic code generation for the

knowledge base on the basis of conceptual models).

The analysis of the effectiveness of the approach

proposed by the time criteria showed that the

effectiveness of the development of knowledge bases by

the A1 can be increased by 60.3% Vs. A3 and by 48.2%

Vs. A2 on average due to the automatic code generation

based on conceptual models, which in turn allows:

• Increase of the effectiveness of using the results of

the conceptualization and formalization stages in the

form of UML class diagrams, considering them not

as static images, but as a basis for the automatic

formation of the program codes in accordance with

the ideology of a model-driven approach

• Reduction of the risk of design errors by enabling

rapid prototyping knowledge bases and getting their

program codes

• Elimination of programming errors (hand coding

errors) by automatically transferring the elements of

the conceptual models into CLIPS language constructs

Discussion

In accordance with the problem statement, we

proposed an approach for developing ESs and KBs based

on the MDA/MDE principles and redefined its main

elements, in particular: Models (CIM, PIM, PSM, PDM)

and the main stages. Methodologically, this approach is a

combination of:

• The classical methodology for the development of

ESs and KBs (Jackson, 1998; Giarratano and Riley,

2004; Liebowitz, 1998; Luger, 2008), that forms a

chain of steps: Identification, conceptualization,

formalization, implementation and testing

• The MDE-based methodology (Sami et al., 2005;

Djurić et al., 2005; Frankel, 2003; Kleppe et al.,

2003; MDA, 2017; Schmidt, 2006), that forms a

chain of steps: The creation of CIM, PIM, PSM and

code generation (or model interpretation)

This combination is a qualitative difference between

this work and similar ones (Table 3) and it allowed us

to transfer the MDE principles in the field of

knowledge engineering and will provide the use of the

methodology proposed when creating other types of

ESs, for example, case-based (by means of redefining

PIM) or to extend the list of supported programming

languages (by adding new PSMs).

In turn, the software (PKBD), which is implemented

in the form of a shell, can be used by both programmers

and non-programmers to create ESs and the generated

codes of KBs can be used in other applications.

The main area of application of the proposed

approach and software is the rapid prototyping of rule-

based ESs and KBs on the basis of conceptual models.

The approach presented has some limitations: it helps

create rule-based ESs and KBs only and does not enable

the creation of ESs and KBs in the form of embedded

components for intelligent systems. In future, we plan to

eliminate these limitations:

• To provide the generation of program codes of

embedded ESs for applications
• To extend support for programming languages and

formats of conceptual models
• To specify the RVML in order to improve its

expressiveness (for example, to define fuzziness,
etc.) and ability to describe other knowledge
representation formalisms

• To develop the web-oriented version of software
(shell) to support the distributed user interaction
through Internet when creating ESs and KBs

The results of testing of the approach and software

proposed showed their high efficiency caused by the
automatic code generation and the simplicity of the
examples (tasks) with limitations. We expected that
the superiority might be lost when solving more
complex problems.

The main differences between the present work and

those considered above are the following (Table 3):

• An explicit use of the MDE approach principles,

including the identification of conceptual models of

varying degrees of abstraction (CIM, PIM, PSM)

and the consequent transformation of these models

(in relation to the first group of works)

• A combination of conceptions of a generator (for the

synthesis of KB codes) and an interpreter (for the

synthesis of PSM specifications)

• A combination of the MDE-based and ES-based

methods for the development of ESs, that allows

further expansion of the set of supported knowledge

formalisms (for example, for case-based ESs)
• Usage of RVML to describe PIM and PSM

• Usage of CLIPS and the Drools Rule Language

(DRL) as platforms

Alexander Yurievich Yurin et al. / Journal of Computer Science 2018, 14 (5): 680.698

DOI: 10.3844/jcssp.2018.680.698

695

Table 3: A brief comparison of some works that describe the creation of KBs and ESs on the basis of a MDE approach (SD – Subject Domain, DCM - Domain
Conceptual Model)

 Dunstan Nofal and Fouad Shue et al. Ruiz-Mezcua et al. Touzi and Messaoud Kadhim et al. Canadas et al. Chaur Cabello et al. Our

Criterion/Work (2008) (2014; 2015) (2009) (2011) (2009) (2013) (2009) (2004) (2009)

Conception of the G I G I G(for KB), I G G G G G(for KB), I

implementation:
G – Generator

I - Interpreter

Conceptual XML WorldNet Ontology Tree UML − Ontology Rule Conceptual Ontology
models used ontology (OWL, models models (OWL),

 XML Protege) UML, Mind
 Maps

CIM − − − − − − Conceptual − Feature OWL, UML,
 Modeling model, Mind Maps

 Language Decision Tree

PIM − − − − − − (CML) − DCM, Appl. UML,
 DCM RVML

PSM − − − − − − Java, JSF − PRISMA RVML
 Web, JESS

Platform HTML, Own JESS, Own CLIPS Prolog JESS, JESS, PRISMA, CLIPS, DRL,
 Perl, Prolog Java Java Java C#, .NET DSL

Methodology Own Own Own Own Own Own MDD-based, 2 MDD-based, 1 MDD-based, MDD-based
 transfor- transfor- multi + ES-based,
 Mations mation transfor- 3 transfor-

 mations mations

Initiative − − − − − − EMF EMF MDA MDA

Universality No, SD: Yes, No, SD: Yes, Shell Yes, Shell No, SD Shell, Yes Yes No, SD: Yes, Shell
 university Shell corporate diag-nostics diagnostics

 courses financial
 rating

Special language − − − − − − + − − −
and standard (Ad-hoc) (Ad-hoc) (Ad-hoc) (Ad-hoc) (Ad-hoc) (Ad-hoc) (ATL) (ECore) (Ad-hoc) (Ad-hoc)
used

Non- − + − + + + − − + +
programmers

Conclusion

The paper describes the specialization and
implementation of the MDA/MDE approach for the
prototyping rule-based ESs and KBs. The specialization
include: The use of ontology as the CIM, the use of the
Rule Visual Modelling Language (RVML) notation to
create the PIM and the PSM and the use of CLIPS and DRL
as the PDM. The problem statement, basic elements of the
modified approach and formalized descriptions of the
models and transformations are considered.

The approach proposed is designed for non-
programmers: Experts and system analytics who can
only develop two information models: A CIM (ontology)
and PIMs (models of a rule-based KB and ES). In this
case, it is possible to automate the PIMs’ creation with
automated analyses of conceptual models (UML class
diagrams) (Dorodnykh and Yurin, 2015). According to
the MDA/MDE approach, other models are either
integrated into the software that implements the
approach or they are created automatically up to the
testing stage. At the testing stage, the user can check the
developed KB for completeness and validity.

The benefits of the approach proposed in comparison
with the standard method of ES development (Jackson,
1998; Giarratano and Riley, 2004; Nofal and Fouad,
2014) are as follows:

• A significant reduction of time for the implementation

stage and the elimination of programming errors
through automatic code generation

• A reduction of time for the identification,

conceptualization and formalization stages due to

the use of an ontology and cognitive graphics

The approach proposed is implemented in the form

of a research prototype of software that is intended for

the rapid development of prototypes of rule-based

KBs and ESs. The main advantages of the personal

knowledge base designer are listed below:

• Built-in editor of models

• Integration with IBM Rational Rose (in terms of

imports of UML-models)

• Generation of CLIPS and DRL code and

specifications for the interpreter

• Usage of models at runtime

The approach and software proposed were used for

the development of the ES for defining the causes of

damage and destruction of construction materials

(Berman et al., 2015) and they were also used in the

educational process at the Irkutsk National Research

Technical University (IrNRTU).

Acknowledgement

The reported study was partially supported by

RFBR (research projects No. 15-07-03088, 15-07-

05641, 16-37-00041).

Author’s Contributions

Alexander Yurievich Yurin: He devised the main
conceptual ideas, designed the research plan, made an
implementation and experiments.

Alexander Yurievich Yurin et al. / Journal of Computer Science 2018, 14 (5): 680.698

DOI: 10.3844/jcssp.2018.680.698

696

Nikita Olegovich Dorodnykh: He made model

transformations and experiments.

Olga Anatolievna Nikolaychuk: She built models

and made a formalization.

Maksim Andreevich Grishenko: He made an

implementation.

Ethics

This article is original and contains unpublished
material. The corresponding author confirms that all of
the other authors have read and approved the manuscript
and there are no ethical issues involved.

References

Arendt, T., E. Biermann, S. Jurack, C. Krause and G.

Taentzer, 2010. Henshin: Advanced Concepts and

Tools for In-Place EMF Model Transformations. In:

Model Driven Engineering Languages and Systems,

Petriu, D.C., N. Rouquette and O. Haugen (Eds.),

Springer, Berlin, Heidelberg,

 SBN-10: 978-3-642-16145-2, pp: 121-135.

Balasubramanian, D., A. Narayanan, C. Buskirk and

G. Karsai, 2007. The graph rewriting and

transformation language: GreAT. Electronic

Commun. EASST, 1: 1-8.

Baumeister, J. and A. Striffler, 2015. Knowledge-driven

systems for episodic decision support. Knowledge-

Based Syst., 88: 45-56.

 DOI: 10.1016/j.knosys.2015.08.008

Berman, A.F. and O.A. Nikolaichuk, 2007. Technical

state space of unique mechanical systems. J.

Machinery Manufacture Reliability, 36: 10-16.

 DOI: 10.3103/S1052618807010025

Berman, A.F., O.A. Nikolaichuk, A.Y. Yurin and

K.A. Kuznetsov, 2015. Support of decision-making

based on a production approach in the performance

of an industrial safety review. Chem. Petrol. Eng.,

50: 730-738. DOI: 10.1007/s10556-015-9970-x

Berman, A.F., O.A. Nikolaychuk and A.Y. Yurin, 2010.

Intelligent planner for control of failures analysis of

unique mechanical systems. Expert Syst. Applic.,

37: 7101-7107. DOI: 10.1016/j.eswa.2010.03.005

Cabello, M.E., I. Ramos, A. Gomez and R. Limon, 2009.

Baseline-oriented modeling: An MDA approach

based on software product lines for the expert

systems development. Proceedings of the 1st Asian

Conference on Intelligent Information and Database

Systems, Apr. 1-3, IEEE Xplore Press, Dong Hoi,

Vietnam, pp: 208-213. DOI: 10.1109/ACIIDS.2009.15

Canadas, J., J. Palma and S. Tunez, 2009. InSCo-Gen: A

MDD Tool for Web Rule-Based Applications. Web

Eng., 5648: 523-526.

 DOI: 10.1007/978-3-642-02818-2_53

Chaur, G.W., 2004. Modeling rule-based systems with

EMF. Eclipse Corner articles.

ClipsWin, 2017. ClipsWin: CLIPS Rule Based

Programming Language.

Corsar, D. and D.H. Sleeman, 2008. Developing

knowledge-based systems using the semantic web.

Proceedings of the International Conference on

Visions of Computer Science: BCS International

Academic Conference, Sept. 22-24, BCS Learning

and Development Ltd. Swindon, UK, pp: 29-40.

Czarnecki, K. and S. Helsen, 2006. Feature-based survey

of model transformation approaches. IBM Syst. J.,

45: 621-645. DOI: 10.1147/sj.453.0621

Czarnecki, K. and U. Eisenecker, 2000. Generative

Programming: Methods, Tools and Applications. 1st

Edn., Addison-Wesley Professional,

 ISBN-10: 0201309777, pp: 864.

Distante, D., P. Pedone, G. Rossi and G. Canfora, 2007.

Model-driven development of web applications with

UWA, MVC and JavaServer Faces. In: Web

Engineering, Baresi, L., P. Fraternali and G.J.

Houben (Eds.), Springer, Berlin, Heidelberg,

 ISBN-10: 978-3-540-73597-7, pp: 457-472.

Djurić, D., D. Gašević and V. Devedžić, 2005. Ontology

modeling and MDA. J. Object Technol., 4: 109-128.

DOI: 10.5381/jot.2005.4.1.a3

Dorodnykh, N.O. and A.Y. Yurin, 2015. Using UML

class diagrams for design of rule-bases. Software

Eng., 4: 3-9.

Dunstan, N., 2008. Generating domain-specific web-

based expert systems. Expert Syst. Applic., 35:

686-690. DOI: 10.1016/j.eswa.2007.07.048

EMF, 2017. Eclipse modeling framework.

Epsilon, 2017. http://www.eclipse.org/epsilon

Frankel, D., 2003. Model Driven Architecture: Applying

MDA to Enterprise Computing. 1st Edn., Wiley,

New York, ISBN-10: 0471319201, pp: 352.
Gardner, T., C. Griffin, J. Koehler and R. Hauser, 2003.

A review of OMG MOF 2.0
query/views/transformations submissions and
recommendations towards the final standard.
Proceedings of the MetaModelling for MDA
Workshop, (MMW’ 03), Object Management
Group, pp: 1-20.

Gascueña, J.M., E. Navarro, A. Fernández-Caballero and

R. Martínez-Tomás, 2014. Model-to-model and

model-to-text: looking for the automation of

VigilAgent. Expert Syst., 31: 199-212.

 DOI: 10.1111/exsy.12023

Gascueña, J.M., E. Navarro and A. Fernández-Caballero,

2012. Model-driven engineering techniques for the

development of multi-agent systems. Eng. Applic.

Artificial Intell., 25: 159-173.

 DOI: 10.1016/j.engappai.2011.08.008

Alexander Yurievich Yurin et al. / Journal of Computer Science 2018, 14 (5): 680.698

DOI: 10.3844/jcssp.2018.680.698

697

Gašević, D., D. Djurić and V. Devedžić, 2009. Model

Driven Engineering and Ontology Development.

2nd Edn., Springer-Verlag, New York,

 ISBN-10: 978-3-642-00281-6, pp: 378.

Giarratano, J.C. and G. Riley, 2004. Expert Systems:

Principles and Programming. 4th Edn., Course

Technology, ISBN-10: 0534384471, pp: 288.

IBM Rational Rose, 2017. IBM Rational Rose

Enterprise.

Jackson, P., 1998. Introduction to Expert Systems. 3rd Edn.,

Addison-Wesley Longman Publishing Co., Inc.

Boston, MA, USA, ISBN-10: 0201876868, pp: 542.

Jouault, F., F. Allilaire, J. Bézivin and I. Kurtev, 2008.

ATL: A model transformation tool. Sci. Comput.

Programm., 72: 31-39.

 DOI: 10.1016/j.scico.2007.08.002

Kadhim, M.A., M.A. Alam and H. Kaur, 2013. Design

and implementation of intelligent agent and

diagnosis domain tool for rule-based expert

system. Proceedings of the International

Conference on Machine Intelligence Research and

Advancement, Dec. 21-23, IEEE Xplore Press,

Katra, India, pp: 619-622.

 DOI: 10.1109/ICMIRA.2013.129

Kleppe, A., J. Warmer and W. Bast, 2003. MDA

Explained: The Model Driven Architecture: Practice

and Promise. 1st Edn., Addison-Wesley Longman

Publishing Co., Inc, Boston, MA, USA,

 ISBN-10: 032119442X, pp: 170.

Liebowitz, J., 1998. The Handbook of Applied Expert

Systems. 1st Edn., CRC Press, Boca Raton, FL.,

ISBN-10: 9780849331060, pp: 736.

Luger, G.F., 2008. Artificial Intelligence: Structures and

Strategies for Complex Problem Solving. 6th Edn.,

Addison-Wesley, ISBN-10: 0321545893, pp: 784.

MDA, 2017. OMG’s model driven architecture.

Mens, T. and P.V. Gorp, 2006. A taxonomy of model

transformations. Electronic Notes Theor. Comput.

Sci., 152: 125-142.

 DOI: 10.1016/j.entcs.2005.10.021

MIC, 2017. Model integrated computing.

Miguel, M., J. Jourdan and S. Salicki, 2002. Practical

Experiences in the Application of MDA. In: The

Unified Modeling Language, Jézéquel J.M., H.

Hussmann and S. Cook (Eds.), Springer, Berlin,

Heidelberg,

 SBN-10: 978-3-540-45800-5 pp: 128-139.

Nalepa, G.J. and A. Ligęza, 2010. The HeKatE

methodology, hybrid engineering of intelligent

systems. Int. J. Applied Math. Comput. Sci., 20: 35-53.

DOI: 10.2478/v10006-010-0003-9

Neto, R., P.J. Adeodato and A.C. Salgado, 2017. A

framework for data transformation in credit

behavioral scoring applications based on model

driven development. Expert Syst. Applic., 72:

293-305. DOI: 10.1016/j.eswa.2016.10.059

Nofal, M. and K.M. Fouad, 2014. Developing web-based

semantic expert systems. Int. J. Comput. Sci. Issues,

11: 103-110.

Nofal, M.A. and K.M. Fouad, 2015. Developing web-

based Semantic and fuzzy expert systems using

proposed tool. Int. J. Comput. Applic., 112: 38-45.

DOI: 10.5120/19682-1414

QVT, 2017. Meta Object Facility (MOF) 2.0

query/view/transformation, V 1.3. Object

Management Group.

PKBD, 2017. Personal knowledge base designer.

Rajput, Q., N.S. Khan, A. Larik and S. Haider, 2014.

Ontology based expert-system for suspicious

transactions detection. Comput. Inform. Sci., 7:

103-114. DOI: 10.5539/cis.v7n1p103

Rozenberg, G., 1999. Handbook of Graph Grammars

and Computing by Graph Transformations. 1st Edn.,

World Scientific Publishing Company,

 ISBN-10: 978-981-02-4020-2, pp: 720.

Ruiz-Mezcua, B., A. Garcia-Crespo, J. Lopez-Cuadrado

and I. Gonzalez-Carrasco, 2011. An expert system

development tool for non AI experts. Expert Syst.

Applic., 38: 597-609.

 DOI: 10.1016/j.eswa.2010.07.009

RVML, 2017. Rule Visual Modeling Language

(RVML).

Rybina, G.V., V.M. Rybin, Y.M. Blokhin and S.S.

Parondzhanov, 2016. Intelligent programm support

for dynamic integrated expert systems construction.

Proc. Comput. Sci., 88: 205-210.

 DOI: 10.1016/j.procs.2016.07.426

Sahin, S., M.R. Tolun and R. Hassanpour, 2012. Hybrid

expert systems: A survey of current approaches and

applications. Expert Syst. Applic., 39: 4609-4617.

DOI: 10.1016/j.eswa.2011.08.130

Sami, B., M. Book and V. Gruhn, 2005. Model-Driven

Software Development. 1st Edn., Springer-Verlag

Berlin Heidelberg,

 ISBN-10: 978-3-540-25613-7, pp: 464.

Schmidt, D.C., 2006. Guest editor's introduction: Model-

driven engineering. Computer, 39: 25-31.

 DOI: 10.1109/MC.2006.58

Schreiber, G., H. Akkermans, A. Anjewierden, R. de

Hoog and N. Shadbolt et al., 2000. Knowledge

Engineering and Management: The Common KADS

Methodology. 1st Edn., The MIT Press, Cambridge,

ISBN-10: 0-262-19300-0, pp: 455.

Alexander Yurievich Yurin et al. / Journal of Computer Science 2018, 14 (5): 680.698

DOI: 10.3844/jcssp.2018.680.698

698

Sendall, S. and W. Kozaczynski, 2003. Model

transformation – the heart and soul of model-driven

software development. IEEE Software, 20: 42-45.

DOI: 10.1109/MS.2003.1231150

Shue, L., C. Chen and W. Shiue, 2009. The development of

an ontology-based expert system for corporate

financial rating. Expert Syst. Applic., 36: 2130-2142.

DOI: 10.1016/j.eswa.2007.12.044

Touzi, A. and M.B. Messaoud, 2009. New approach for

conception and implementation of object oriented

expert system using UML. Int. Arab J. Inform.

Technol., 6: 99-106.

Varro, D. and A. Balogh, 2007. The model

transformation language of the VIATRA2

framework. Sci. Comput. Programm., 63: 214-234.

DOI: 10.1016/j.scico.2007.05.004

XSLT, 2017. XSL Transformations (XSLT), version 2.0.

Zagorulko, Y. and G. Zagorulko, 2013. Ontology-based

program shell for building and editing multilingual

thesauri of subject domains. Proceedings of the 12th

International Conference on Intelligent Software

Methodologies, Tools and Techniques, Sept. 22-24,

IEEE Xplore Press, Budapest, Hungary, pp: 99-106.

DOI: 10.1109/SoMeT.2013.6645680

