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Abstract: Problem statement: The faults in digital circuit can be classified broadly as single stuck-at-
faults, multiple stuck-ay-faults, stuck-open faults, stuck-on faults, path delay faults, transient faults. 
Extensive research had been carried out in the field of testing of digital circuits to limit the number of 
input vectors. The cardinality of the test vectors proposed by many authors was quite high for large 
number of input variables. In this study a testable circuit with a small test set for detection and 
diagnosis of OR-bridging type fault in Reed-Muller canonical Exclusive-OR Sum of Products logic 
circuits, independent of the function for a given number of inputs had been proposed. Approach: A 
network structure comprising a set of Exclusive-OR gates and gates and a couple of auxiliary outputs 
were considered. The circuit as well as the test vectors were simulated by MATLAB coding. The fault-
free and OR-bridging faults involving any two lines of control and data lines were then simulated. The 
outputs were represented in a compact decimal form for ease of tabulation. Two quantitative indices 
for comparison of results had also been discussed. Simulation and analysis for various random 
functions had been presented. Results: From the test results it was found that the identifiability for the 
set of random functions tested was more than 90% with just n + 5 test vectors compared to 2n test 
vectors required for conventional testing. It was also observed that even though the overall 
distinguishabililty factor was in the range of 45-80%, the individual set distinguishability was more 
than 90%. Conclusion: The proposed scheme had reduced the possibility of unidentifiable faults for 
the specified type of function. The location was also diagnosed through the output set. The analysis 
and diagnosis had been done through compact tabulation and two quantification indices. 
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INTRODUCTION 

 
 Any arbitrary logic function, in general, can be 
expressed in Reed-Muller Canonical (RMC) form as: 
  
F = (a0 ⊕ a1x1* ⊕ a2 x2* ⊕…⊕ an xn* ⊕ an+1 x1* x2* 
⊕…⊕ am x1* x2*…xn*) 
 
where, xn* can be xn or its complement, an is either 0 or 
1 and m = 2n-1. However, there can be variations in 
such form. Of these, the Exclusive-OR Sum-of-
Products (ESOP) form with the least number of product 
terms and hence needing least number of AND gates, is 
very much suitable for hardware implementation. 
 Single non feedback OR Bridging faults involving 
two lines at a time of the control and data inputs only 
are considered. Zhongliang (2002) demonstrated that 

single stuck-at fault detection can be achieved with only 
n +5 test vectors. In this study, it is shown that bridging 
fault detection and diagnosis can also be achieved with 
the same n+5 test vectors through MATLAB 
simulations for a few specific functions. Two 
quantitative indices, called identifiability factor and 
distiguishability factor are considered for comparison of 
the testability nature of given circuits. The 
identifiability factor is defined as the ratio of the 
number of faults correctly identified by the test set to 
the total number of possible faults of the type 
considered. The existence of faults can be recognized 
from the set of outputs measured which will be 
different from the fault-free circuit.  
 The distinguishability factor pertains to the 
identical set of outputs among different faults but the 
output set of each being very much different from the 
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non-faulty case. The existence of even a large 
percentage of indistinguishability may not mean the 
circuit is not reliable, since it is still possible to identify 
the faulty condition of the circuit and take appropriate 
remedial action. The set of binary values for an output 
is converted into its decimal equivalent for convenience 
in comparison and ease of tabulation. 
 
Literature survey: A classical method of generating 
test patterns for very large and complex logic functions 
is Linear Feedback Shift Register (LFSR) based 
pseudo-exhaustive or pseudo-random type Kalay et al. 
(2000). However, this does not work well with ESOP 
form as shown by Drechshler et al. (1997). A Positive 
Polarity Reed-Muller network for detection of stuck-at 
faults with a universal test of size n+4, n being the 
number of data inputs, was proposed by Reddy (1972). 
Though quite good for self-testing, the method is 
economical only for the specified form, which 
obviously has more number of product terms than the 
other forms in most cases. Multiple stuck-at fault 
detection for ESOP circuits was carried out by Pradhan 
(1978). However since the cardinality is 2n+6+ ∑nCe, e 
= 0 to j, the order of ESOP expression, the test set is not 
universal and also is too large to be practical for large 
input functions.  
 Stuck-at and bridging faults with a universal test 
set for Positive Polarity Reed-Muller network has also 
been reported Bhattacharya et al. (1985). Multiple fault 
detecting GRM realizations was propounded by Sasao 
(1997). It was shown that 2n+s+3 test vectors, where s 
is the number of product terms in the logic function are 
required for single stuck-at fault detections in 
Generalized Reed-Muller/ESOP circuits while 2n+s 
vectors are required for detection of and/or bridging 
faults in such circuits Zhongliang (2003). Here too, the 
test set is not universal as it depends on s, the number 
of product terms of the function. Kalay et al. (2000) 
described an ESOP implementation with a universal test 
set of size n+6 for single faults. A robust and universal 
sequence has been proposed for stuck-open type of faults 
in GRM/ESOP cmos implementations Rahaman et al., 
(2004). Zhongliang (2002) demonstrated that the single 
stuck-at fault detection can be achieved with only n+5 
test vectors. Two methods, each with a small 
modification in this scheme in ESOP RMC circuits had 
been proposed by Neelakantan and Jeyakumar (2006a) 
for analysis and diagnosis of single stuck-at faults. This 
study is an extension of the work done by Neelakantan 
and Jeyakumar (2006b) for the analysis and diagnosis 
of OR-bridging faults in any of the pairs of data and 
control lines of the ESOP RMC circuits. 

MATERIALS AND METHODS 
 

Network structure: The network structure of the 
scheme is the same as that proposed by Zhongliang 
(2002) and Wu et al. (1996) is shown in Fig. 1. It 
comprises literal complementing XOR block, an AND 
block, an XOR function tree block, which implements 
the required logic function as also two additional 
outputs O1 and O2 obtained through a separate AND 
and an OR gate. The actual data inputs to the system are 
x1, x2 …. xn. Additionally, the scheme requires four 
control inputs c1 to c4. The literal-complementing block 
produces the complements of the literals used in the 
function. Only those literals appearing in 
complemented form require an XOR gate in this block.  
 The literals of each product term are combined 
through an AND gate and hence the number of AND 
gates required is the same as the number of product 
terms in the logic function. Further, each of the AND 
gates of this block has an additional input from one of 
the control lines depending on the number of gates used 
in the XOR tree block producing the final function F. 
Finally, all the data and control inputs are applied to a 
separate AND gate and an OR gate, producing auxiliary 
outputs O1 and O2, to aid in the detection of faults 
which cannot be differentiated by the main function 
output F alone. 
 The required control lines are determined as 
follows using Fig. 2. Draw the XOR gate tree for the 
required product terms of the given function. Assign the 
numerals 1, 2 and 3 respectively to the two inputs and 
the output of the final XOR gate producing the function 
output F. Consider each XOR gate connected to the 
inputs of the final XOR gate considered. Assign the 
outputs of these XOR gates with the same numbers as 
the inputs of the final XOR gate. If the output of the 
XOR gate considered is 1, then assign 2 and 3 to its 
inputs. Else if the output is numbered 2, assign 3 and 1 
to its inputs. Now consider the next earlier input stage 
and assign the numerals in the similar manner 
according to the output points connected. 

 

 
 
Fig. 1: Generalized network structure 
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Fig. 2: Control input determination 
 

 
 
Fig. 3:  Generalized test set 
 

 
 
Fig. 4: Circuit for F= x1 ⊕ x2x3  ⊕ x1’x2x3 

  
Fig. 5:  Test vectors for the specific function F = x1 

⊕ x2x3  ⊕ x1’x2x3 
 
Test vectors: The test set has (n+5) vectors; each of the 
vectors is (n+4) long, ‘n’ being the number of data 
inputs. The first four columns of the matrix represent 
the control inputs c1 to c4 while the remaining n 
columns that of the data inputs are x1 to xn. The 
generalized test set is shown in Fig. 3.  
 The network and the set of test vectors for the 
specific function F = x1 ⊕ x2x3 ⊕ x1’x2x3 are shown in 
Fig. 4 and 5 respectively. 

 
Algorithm: 

 
Step 1: Set up the circuit as in Fig. 4. 
Step 2: Determine and connect the control lines c1 to 

c4 as explained. 
Step 3: Apply the test vectors as given in Fig. 5, one 

by one. 
Step 4: For each test vector, determine the three 

outputs F, O1 and O2. 
Step 5: Obtain the decimal equivalents of each of the 

above binary output sets.  
Step 6: Simulate the specified type of fault at any pair 

of the control/data inputs. 
Step 7: Repeat steps 1 to 4. 
Step 8: Compare the set of outputs with the 

predetermined fault-free condition outputs 
Step 9: If the two output sets match exactly, it implies 

that a fault, if present, is not identifiable or 
detectable; else, the fault is a detectable one. 

Step 10: Repeat steps 5 to 8 for the specified type of 
fault at the other control and data inputs. 

 
RESULTS 

 
 The following examples were considered and 
simulated with MATLAB coding and the results are 
tabulated in Table 1: 
 
F1 = x1 ⊕x2x3 ⊕x1’x2x3 
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Table 1: Simulation results for a few logic functions 
 No. of  Total 
 data possible  Identifiability Distinguishability 
Function inputs faults factor (%) factor (%) 
F1 3 42 92.86 47.62 
F2 4 56 100.00 69.64 
F3 5 72 98.61 52.78 
F4 6 90 98.89 61.11 
F5 7 110 100.00 56.36 
F6 8 132 97.73 79.55 
F7 9 156 100.00 61.54 
F8 10 182 100.00 58.24 
F9 11 210 100.00 55.24 
F10 12 240 100.00 50.83 
 
F2 = x1x2 ⊕x2’x3 ⊕x3’x4 ⊕ x1x2x3 
F3 = x1’ ⊕x2x3’x4 ⊕x3x4’ ⊕x2’x3 ⊕x1x4x5 
F4 = x1x2’⊕x2x3x4'⊕x4x5'x6 

⊕x2x5⊕x2'x5'⊕x3'x2x1⊕x4x6 
F5 = x1’x2x3 ⊕x4x5x6⊕x4'x6'x7⊕x3x5x7 
F6 = x1x2’x3⊕x4'x5x6'⊕x7x8'⊕x2x6x7'⊕x1'x6⊕x3'x4 

⊕x1x5 ⊕x4x5'⊕x5x7⊕x8x3x1⊕x3x5'x8 
F7 = x1x2’x3’⊕x4x5’x6⊕x7’x8x9⊕x1’x4’x9’⊕x2x5'⊕x3x5 
F8 = x1’x2x3’ ⊕x4’x5’x6 ⊕x7x8'x9’ ⊕x10⊕x6’x7⊕x8x10 
F9 = x1 ⊕x2’x3x4' ⊕x5'x6x7’ ⊕x8x9x10⊕x10'x11⊕x1x3x9 
F10 = x1’x2⊕x3x4'x5⊕x6x7’x8x9 

⊕x10x11’x12⊕x1x2x3’⊕x4'x7 

 
DISCUSSION 

 
Numerical illustration:  
Function considered: F = x1 ⊕x2x3 ⊕x1’x2x3  
Fault-free output set {F, O1, O2} = {126, 112, 127}  
 The outputs of OR-bridging faults at lines c1 in 
combination with c2, c3, c4, x1, x2 and x3 with post fault 
values 00 and 11 are tabulated in Table 2 and 3. 
 
Observations: Control inputs: c1 to c4; 
                         Data inputs: x1 - x3 
 
 Total No. of Fault location pair combinations: 
 
(nx+ nc) C2= 7C2=21 
 
Where: 
nx = The number of data inputs  
nc = The number of control inputs 
 
 Number of bridging faults for one pair of lines = 2             
     (Post fault value combinations {0, 0} and {1, 1}). 
  Total number of bridging faults for the three 
variable function used is 21*2=42. 
 For fault free condition, the output set is: 
 
       {F, O1, O2} = {126, 112, 127} 

Table 2:  Decimal Equivalents of OR-bridging fault outputs at  data 
and control inputs with Prefault value 0 for both the lines 

 c1c2 c1c3 c1c4 c1x1 c1x2 c1x3 

F 126 120 6 120 86 86 
O1 112 112 112 0 0 0 
O2 126 126 126 126 126 126 
Table 3:  Decimal equivalents of OR-bridging fault outputs at data and 

control inputs with Prefault value 1 for at least one of the 
inputs 

 c1c2 c1c3 c1c4 c1x1 c1x2 c1x3 

F 38 6 38 38 34 36 
O1 0 0 0 0 0 0 
O2 255 255 255 255 255 255 

 
 When the Post fault outputs are identical as of fault 
free one, then those faults are termed as unidentifiable 
faults. For the example considered, the number of 
unidentifiable faults is 3. 
  ∴the Identifiability Factor is (42-3)/42×100 = 92.86% 
 When the post fault outputs are same for different 
combinations of faults, then those faults are termed as 
Indistinguishable faults. For the given example, the 
output sets that get repeated are as follows: 
 
{86, 0, 126}  2 times 
{38, 0, 255}  3 times 
{0, 0, 127}  3 times 
{86, 0, 127}  4 times 
{120, 0, 127}  2 times 
{126, 114, 255}  3 times 
{126, 116, 255}  3 times 
{126, 120, 255}  2 times 
 
 Thus totally repetition occurs for 22 fault location 
combinations.  
 Hence overall distinguishability factor is: 
 
 (42-22) /42×100 = 47.62% 
 
 However, when the individual cases are considered 
the distinguishability factor can be seen to be 
appreciably high as illustrated in Table 1. 
 Same output set of {86, 0, 127} for the following 
fault combinations: 
 
OR bridging fault with prefault value 0 at c2x2  
OR bridging fault with prefault value 0 at c2x3 
OR bridging fault with prefault value 0 at x1x2 
OR bridging fault with prefault value 0 at x1x3 

 
 The distinguishability for this set is: 
 
        (42-4) /42×100 = 90.48% 
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 Similarly, the output set {38, 0, 255} occurs 3 
times, for which the distinguishability factor is (42-
3)/42×100 = 92.86%.Though the overall 
distinguishability is small, it does not affect the 
detection capability. Further, the distinguishing 
capability for an individual output set can be quite high, 
as illustrated above. 
 Further, the location of fault can also be easily 
diagnosed from the output set. For instance if the output 
set is {86, 0, 127} then the fault condition would be one 
of the four cases discussed above involving c2, c3, x1 
and x2 and hence those lines only need to be checked.  
 

CONCLUSION 
 

 A test set scheme for detection of OR-bridging 
faults for ESOP RMC logic functions have been 
proposed and the simulation results show that the 
proposed scheme reduce the possibility of 
unidentifiable faults for the specified type of function. 
The location can also be diagnosed through the output 
set. The analysis and diagnosis have been done through 
compact tabulation and two quantification indices. All 
possible combinations of the data and control line pairs 
have been considered. 
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