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Abstract: In this work, we have studied Susceptible-Infected-Recovered 
(SIR) model with vital dynamics and constant population, which is used as 
a mathematical models in many physically significant fields of applied 
science. The Homotopy Perturbation Method (HPM) and Runge-Kutta 
method (RK) have been used for solving the SIR model with vital dynamics 
and constant population. The convergence of HPM has been studied. Also, 
we have tested the HPM on solving different implementations which are 
show the efficiency and accuracy of the method. The approximated 
solutions of HPM for the tested problems are agree well with the numerical 
solutions of Runge-Kutta method.  
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Introduction 

The most important mathematical models for 
physical phenomena is the differential equation. Motion 
of objects, Fluid and heat flow, bending and cracking of 
materials, vibrations, chemical reactions and nuclear 
reactions are all modeled by systems of Differential 
Equations (DEs). Moreover, Numerous mathematical 
models in science and engineering are expressed in 
terms of unknown quantities and their derivatives. 
Many applications of DEs, particularly Ordinary 
Differential Equations (ODEs) of different orders, can 
be found in the mathematical modeling of real life 
problems (Mechee et al., 2014). 

The Homotopy Perturbation Method (HPM), which are 
a well-known, is efficient technique to find the approximate 
solutions for ordinary and Partial Differential Equations 
(PDEs) which describe different fields of science, physical 
phenomena, engineering, mechanics and so on. HPM was 
proposed by He (1999) for solving linear and nonlinear 
Des and Integral Equations (IEs). HPM has many 
advantages for solving numerous classes of scientific 
and engineering experiments which are lead to ODEs, 
PDEs and IEs. HPM gives the approximated solutions of 
these problems as a series. The approximated solutions 
using this method mostly are convergent. It is worth to 
note that the major advantage of He's homotopy 
perturbation method is that the perturbation equation can 
be freely constructed in many ways and approximation 
can also be freely selected. Many researchers used HPM 
to approximate the solutions of DEs and IEs (Yildirim, 
2010; Jalaal et al., 2010; Ma et al., 2008). Many 

researchers published some papers on solving some 
classes DEs using HPM. For example, Chun and 
Sakthivel (2010) used HPM for solving a linear and 
nonlinear secondorder two-point boundary value 
problems while Gülkaç (2010) solved the Black-Scholes 
equation for a simple European option in this method to 
obtain a new efficient recurrent relation to solve Black-
Scholes equation. Moreover, numerous researches used 
HPM for solving nonlinear DEs, Vahidi et al. (2011) 
solved nonlinear DEs, which yields the Maclaurin series 
of the exact solution, Chang and Liou (2006) developed 
a third-order explicit approximation to find the roots of 
the dispersion relation for water waves that propagate 
over dissipative media, Zhou and Wu (2012) solved the 
nonlinear PB equation describing spherical and planar 
colloidal particles immersed in an arbitrary valence and 
mixed electrolyte solution, Özis and Akç (2011) solved 
certain non-linear, non-smooth oscillators, Yazdi (2013) 
solved nonlinear vibration analysis of functionally 
graded plate while He and Huan (2004) applied HPM for 
solving nonlinear oscillators with discontinuities, 
nonlinear Duffing equation and some nonlinear ODEs. 
For class of linear PDEs, Al-Saif and Abood (2011) 
solved the Korteweg-de Vries (KdV) equation and 
convergence study of HPM, Babolian et al. (2009) used 
HPM to solve time-dependent DEs, Aswhad and Jaddoa 
(2016) solved advection Problem, vibrating beam equation 
linear and nonlinear PDEs and the system of nonlinear 
PDEs and Babolian et al. (2009) used the homotopy 
perturbation method to solve time-dependent differential. 
Also, many researchers used HPM for solving the class of 
non-linear PDEs, Yazdi (2013) provided approximated 
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solution for free nonlinear vibration of thin rectangular 
laminated FGM plates, Liao (2004) solved nonlinear 
PDEs, Yildirim (2009) was used to implement the nonlinear 
Korteweg-de Vries equation. Taghipour (2010) solved 
parabolic equations and Periodic equation linear and 
nonlinear PDEs. Janalizadeh et al. (2008) obtained the 
solution of a second-order non-linear wave equation, 
Fereidoon et al. (2011) utilized to derive approximate 
explicit analytical solution for the nonlinear foam drainage 
equation, Momani and Odibat (2007) modified the 
algorithm which provides approximate solutions in the form 
of convergent series with easily computable components, 
Babolian et al. (2009) solved time-dependent DEs while He 
(2000), solved non-linear problems using the homotopy 
technique. However, for the system of differential 
equations, Bataineh et al. (2009) solved systems of second-
order Boundary Value Problems (BVPs), Javidi (2009) 
solved SIR model, Wang and Song (2007) studied the 
solution of a human Immune Virus Model (HIV) infection 
of CD4+T cells which are also called as leukocytes or T 
helper cells, Rafei et al. (2007) obtained the solution of 
the system of nonlinear ODEs governing on the problem, 
Noor et al. (2013) solved the system of linear equations. 
Noor and Mohyud-Din (2008) obtained the solution of 
linear and non-linear sixth-order boundary value 
problems and system of differential equations. Also, 
Javidi (2009) solved system of Linear Fredholm Integral 
Equations (LFIEs). Yusufoglu (2009) solved a linear 
Fredholm type integro-differential equations with 
separable kernel. Javidi (2009) solved non-linear 
Fredholm IEs, Saberi-Nadja and Tamamgar (2008) used 
modified HPM for solving the system linear and 
nonlinear of Volterra integral equations, Kumar et al. 
(2011) solved generalized Abel integral equation. Lastly, 
for the DEs of fractional type, Odibat and Momani 
(2008) solved nonlinear DEs of fractional order, Jafari et al. 
(2010) solved nonlinear problems of fractional Riccati 
differential equation and Yildirim and Agirseven (2009) 
solved the space-time fractional advection-dispersion 
equation. Recently, we have studied the general SIR 
model which is a system of DEs which are used as a 
mathematical model in physically significant field of 
applied science. We have introduced the homotopy 
perturbation method for solving generalized SIR model. 
Also, we have tested the HPM on the solving of different 
implementations which are show the efficiency and 
accuracy of the proposed method. The approximated 
solutions are agree wellwith analytical solutions for the 
tested problems. It has been highlighted that the use of 
HPM is more suitable to approximate the solutions of DEs 
with considering the general coefficient functions. 

Preliminary 

Homotopy Perturbation Method (HPM) 

In this section, we present a brief description of the 
HPM, to illustrate the basic ideas of the HPM, we consider 

the following DE (Neamaty and Darzi, 2010; Chun and 
Sakthivel, 2010; Batiha, 2015;  Abbasbandy, 2006): 
 

( ) ( ) 0,A u f τ τ− = ∈Ω  (1) 

 
with boundary conditions: 
 

, 0,
u

B u τ

τ

∂ 
= ∈∂Ω 

∂ 
 (2) 

 
where, t is independent variable, u is dependent variable, 
A is general differential operator, B is a boundary 
operator,  f (t) is a known analytic function and  ∂Ω is the 
boundary of the domain Ω. The operator A can be generally 
divied into two parts of L and N where L is linear part, 
while N is the nonlinear part in the DE, Therefore Equation 
(1) can be rewritten as follows (He, 1999): 
 

( ) ( ) ( ) 0L u N u f τ+ − =  (3) 

 
By using homotopy technique, one can construct a 

homotopy: 
 

( ) [ ], : 0,1V p Rτ Ω× ֏  

 
which satisfies: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )0
, 1 0H v p p L v L u p L v N v f τ = − − +  + −  =    (4) 

 
or: 
 

( ) ( ) ( ) ( ) ( )( )0 0
, 0H v p L v L u pL u p N v f τ= − + +  −  =   (5) 

 
where, p ∈ [0,1], τ ∈ Ω and p is called homotopy 
parameter, H is homotopy function and u

o
 is an initial 

approximation for the solution of Equation (1) which 
satisfies the boundary conditions obviously. Using 
Equation (4) or (5), we have the following equation: 
 

( ) ( ) ( )0,0 0H v L v L u= − =  (6) 

 
and: 
 

( ) ( ) ( ) ( ),1 0H v L v N v f τ= + − =  (7) 

 
Assume that the solution of (4) or (5) can be 

expressed as a series in p as follows: 
 

2 3

0 1 2 3

0

i

i

i

V v pv p v p v p v
∞

=

= + + + + =∑⋯  (8) 

 
set p→1 in the approximated solution of (1). 
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Table 1: List of dependent variables and parameters of the 

SIR model 

Dependent variables 

and parameters Meaning 

Dependent variables 

S(t) Susceptibles 

L(t) Infectives 

R(t) Recovered with immunity 

Parameters 

µ Average death rate 

β Contact rate 

1

λ
 Average infectious period 

 
Consequently: 

 

( ) 0 2 3
1

0

lim
i

p
i

u V v v v vτ

∞

→
=

= = + + + =∑⋯  (9) 

 
Susceptible-Infected-Recovered Model (SIR) 

We will consider the following system of SIR 
model of ODEs: 
 

( )
( ) ( ) ( ) ,

dS t
S t L t S t

dt
µ µ β= − −  (10) 

 
( )

( ) ( ) ( ) ( ) ,
dL t

L t S t L t
dt

β λ µ= − +  (11) 

 
( )

( ) ( ) ,
dR t

L t R t
dt

λ µ= −  (12) 

 
with the initial conditions: 
 
( ) ( ) ( )0 1, 0 2, 0 3.S a L a R a= = =  (13) 

 
where, a1, a2 and a3 are given constants. The dependent 
variables and the parameters of the SIR model are given 
in Table 1. 

A general technique for solving the SIR model with 
vital dynamics and constant population is described in 
the following algorithms: (Beretta and Takeuchi, 1997; 
Shulgin et al., 1998). 

Analysis of HPM for Solving the SIR Model 

with Vital Dynamics and Constant Population 

In this section, we will present a review of the 
HPM for solving SIR model with vital dynamics and 
constant population. 

Algorithm of Solving SIR Model 

Firstly, we start with the initial approximations (13). 
Secondly, we can construct a homotopy for DEs 

system (10)-(12) as follows: 

( )( ) ( )
( ) ( )

( )
( ) ( ) ( )

0
, 1

0

dS t dS t
H S t p p

dt dt

dS t
p S t L t S t

dt
µ µ β

 
= − − 

 

 
+ − + + = 

 

 (14) 

 

( )( ) ( )
( ) ( )

( )
( ) ( ) ( ) ( )

0
, 1

0

dL t dL t
H L t p p

dt dt

dL t
p L t S t L t L t

dt
β λ µ

 
= − − 

 

 
+ − + + = 

 

 (15) 

 

( )( ) ( )
( ) ( )

( )
( ) ( )

0
, 1

0

dR t dR t
H R t p p

dt dt

dR t
p L t R t

dt
λ µ

 
= − − 

 

 
+ − + = 

 

 (16) 

 
Thirdly, suppose that the solutions of the Equations 

(14-16) are in the following forms: 
 
( ) ( ) ( ) ( ) ( )2 3

0 1 2 3
...S t S t pS t p S t p S t= + + + +  (17) 

 
( ) ( ) ( ) ( ) ( )2 3

0 1 2 3
...L t L t pL t p L t p L t= + + + +  (18) 

 
( ) ( ) ( ) ( ) ( )2 3

0 1 2 3
...R t R t pR t p R t p R t= + + + +  (19) 

 
Therefore: 

 

( )( ) ( )
( ) ( )

( )
( )

( ) ( )

0

0

0 0

0 0

, 1

0

ii

i

ii i

i

i i

i i

i i

i i

dS t dS t
H S t p p p

dt dt

dS t
p p S t

dt
p

p L t p S t

µ µ

β

∞

=

∞ ∞

= =

∞ ∞

= =

 
= − − 

 

 
− + 

 + =
 
+ 

 

∑

∑ ∑

∑ ∑

 (20) 

 

( )( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )

0

0

0 0 0

0 0

, 1

0

ii

i

ii i i

i i

i i i

i i

i i

i i

dL t dL t
H L t p p p

dt dt

dL t
p p L t p S t

dt
p

p L t p L t

β

λ µ

∞

=

∞ ∞ ∞

= = =

∞ ∞

= =

 
= − − 

 

 
− + 

 + =
 
+ + 

 

∑

∑ ∑ ∑

∑ ∑

 (21) 

 

( )( ) ( )
( ) ( )

( )
( ) ( )

0

0

0 0 0

, 1

0

ii

i

ii i i

i i

i i i

dR t dR t
H R t p p p

dt dt

dR t
p p p L t p R t

dt
λ µ

∞

=

∞ ∞ ∞

= = =

 
= − − 

 

 
+ − + = 

 

∑

∑ ∑ ∑

 (22) 

 
Fourthly, by collecting terms of the same power of p 

we obtain the following equations: 
 

( ) ( )0 00
: 0
dS t dS t

p
dt dt

− =  (23) 
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( ) ( )0 0
0

dL t dL t

dt dt
− =  (24) 

 
( ) ( )0 0

0
dR t dR t

dt dt
− =  (25) 

 
( ) ( )

( )( ) ( )1 01

0 0
: 0
dS t dS t

p L t S t
dt dt

µ µ β+ − + + =  (26) 

 
( ) ( )

( )( ) ( )1 0

0 0
0

dL t dL t
S t L t

dt dt
λ β µ+ + − + =  (27) 

 
( ) ( )

( ) ( )1 0

0 0
0

dR t dR t
L t R t

dt dt
λ µ+ − + =  (28) 

 
( )

( ) ( ) ( ) ( ) ( )( )22

1 0 1 1 0
: 0
dS t

p S t L t S t L t S t
dt

µ β+ + + =  (29) 

 
( )

( ) ( ) ( ) ( ) ( ) ( )( )2

1 0 1 1 0
0

dL t
L t L t S t L t S t

dt
λ µ β+ + − + =  (30) 

 
( )

( ) ( )2

1 1
0

dR t
L t R t

dt
λ µ− + =  (31) 

 
Hence, in general for m = 3, 4, 5,... we have: 

 

( )
( ) ( ) ( )

1

1 1

0

: 0

m
mm

m j n j

j

dS t
p S t L t S t

dt
µ β

−

− − −

=

 
+ + = 

 
∑  (32) 

 

( )
( ) ( ) ( ) ( )

1

1 1

0

0

m
m

m j n j
j

dL t
L t L t S t

dt
λ µ β

−

−
− −

=

 
+ + − = 

 
∑  (33) 

 
( )

( ) ( )1 1
0

m

m m

dR t
L t R t

dt
λ µ

− −

− + =  (34) 

 
Finally, by using the Equations (23-34) with some 

simplifications, we get the following sequence of the 
solutions: 
 

( ) ( ) ( )0 0 0
1, 2, 3S t a L t a R t a= = =  (35) 

 

( )
( )

( )( ) ( )

( )

0

1 0 0

1 2 1

dS t
S t L t S t dt

dt

a a a t

µ µ β

β µ µ

 
=− − + + 

 

= − − +

∫  (36) 

 

( )
( )

( )( ) ( )

( )

0

1 0 0

2 1

dL t
L t S t L t dt

dt

a a t

λ β µ

β λ µ

 
=− + − + 

 

= − −

∫  (37) 

( )
( )

( ) ( ) ( )0

1 0 0
2 3

dR t
R t L t R t dt a a t

dt
λ µ λ µ

 
=− − + = − 

 
∫  (38) 

 

( ) ( ) ( ) ( ) ( ) ( )( )( )2 1 0 1 1 0

2 2 2 2

2

2 2

1 2 1 2 1 21

2 1 2 1 2

S t S t L t S t L t S t dt

a a a a a a
t

a a a a

µ β

β β βλ

βµ µ µ β µ

= − + +

 + −
=   + + − − 

∫
 (39) 

 

( )
( ) ( )

( ) ( ) ( ) ( )( )
1

2

0 1 1 0

2 2 2

2

2 2

1 1 2 2 1 3 11
2

2 2

L t

L t dt
L t S t L t S t

a a a a a
a t

λ µ

β

β β βλ βµ

βµ λ λµ µ

 + 
 =−
 − + 

 − − −
=   + + + + 

∫
 (40) 

 

( ) ( ) ( )( )

( )

2 1 1

2 2 21
1 2 2 2 2 3

2

R t L t R t dt

a a a a a t

λ µ

βλ λ λµ µ

=− − +

= − − +

∫
 (41) 

 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

0 2

3 2

1 1 0 2

3 3 3 2 2 3 3

2 2 2 2 2 2

2 2 2 2

2 2 2

3 2

1 1 1
1 2 2 1 2 1

6 3 6

1 2 1
1 2 1 2 2 1

3 3 6

2 1 1
1 2 1 2 1 2

3 2 6

1 5 1
1 2 1 2 2

2 6 6

1 2
1 1 / 3 2 2

6 3

L t S t
S t S t dt

L t S t L t S t

a a a a a a

a a a a a a

a a a a a a

a a a a a

a a a

µ β

β β β

β λ µ β β λ

µ β β µ βλ

µ βλ µ β β µ

µ βλµ µ β

  
  = − +

  + +  

− + −

+ + −

= − − −

− − +

− + + +

∫

3

31

6

t

µ

 
 
 
 
 
 
 
 
 
 
 
 
  
 

 (42) 

 

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )
2

3

0 2 1 1 0 2

3 3 2 3 2 3 2 2

2 2 2 2 2

3

2 2 2

2 3 2 2 3

1 2 1 2 1 2 3 1

6 1 2 1 2 4 1 2 3 11
2

6 3 1 9 1 7 1 2

3 4 3 3

L t

L t dt
L t S t L t S t L t S t

a a a a a a

a a a a a a
a t

a a a a

λ µ

β

β β β β λ

β µ β λ β µ β µ

βλ βλµ βµ β µ

βλµ βµ λ λ µ λµ µ

 + −
 = −
 + + 

 − + −
 
− + + + 

=  
+ + + − 

 − − − − − − 

∫

 (43) 

 

( ) ( ) ( )( )3 2 2

2 2 2 2

2 3 3

2 2 3

1 1
1 2 2 1

6 6

1 2 1 1
1 2 1 2 2 2

3 3 6 6

1 1 1
2 2 3

2 2 6

R t L t R t dt

a a a a

a a a a a a t

a a a

λ µ

β λ β λ

βλ µ βλ βλµ λ

λ µ λµ µ

= − − +

 
− − 

 
 

= − + + 
 
 + + − 
 

∫

 (44) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )4 3 0 3 1 2 2 1 3 0

4 5 2 3 5 3 4 4 3 2 4

3 2 4 3 4 3 3 3 3 2

2 2 4 2 3 2 2 2 2 3 2 3 2 2

1 1 1 1
1 2 1 2 1 2 1 2

40 40 40 20

1 1 1 3
1 2 1 2 1 2 1 2

10 40 20 40

1 1 1 1
1 2 1 2 1 2 1 2

20 40 20 40

1

20

S t S t L t S t L t S t L t S t L t S t dt

a a a a a a a a

a a a a a a a a

a a a a a a a a

µ β

β β β µ β λ

β µ β µ β λµ β µ

β µ β λ β λµ β µ

= − + + + +

− + −

− − − −

+ + + +

=

+

∫

5

2 3 2 3 2 2 2 2 2 3 2

2 2 3 3 2 2 2 2 2

2 3

2 2 2 3 4 4

2 2

1 1 1
1 2 1 2 1 2 1 2

10 40 20

1 1 1 1
1 2 1 2 1 2 1 2

40 40 40 20

1
1 2

40

5 1 1 1
1 2 1 2 1

6 6 24 24

5 5
1 2

8 12

t

a a a a a a a a

a a a a a a a a

a a

a a a a a

a a

β λµ β µ β λ µ β λµ

β µ β µ β µ β λµ

β µ

β µ β µ µ µ

µ β λ

 
 
 
 
 
 
 
 
 
 + + +
 
 
 + − − −
 
 
 −
 

− + −

− +

+

2 2 2 2

2 2 2 2 3 4 2 3 4 3 2

4 4 3 3 4 4 2 2

3 3 2 2 2 3 3 3 3 2 2

3

7 5
2 1 1 2 2 1

24 8

7 1 11 1 3
1 2 2 2 2 1 2 1

24 3 24 24 8

1 1 1 1 1
2 1 2 2 1 2 2

24 24 24 8 8

1 1 1 1 5
1 2 1 2 1 2 1 2 , 2 1

8 8 24 3 6

1

3

a a a a a a

a a a a a a a a

a a a a a a a

a a a a a a a a a a

µ β λ µ βλ µ βλ

β λµ µ β µ β β β

β β µ β β µ βλ µ

β λ β λ β λ µ β µβ

µβ

+ +

+ − − + −

+ − − − −

+ − + + −

+

4

3 2 2 2 2 2 2 3 2

3 2 2 3 3 3 2 2 2 2 2 2

7 5 13 11
2 1 1 2 1 2 1 2 2

8 8 24 24

1 1 13 1 5
2 1 2 1 2 1 2 1 2

12 6 24 24 24

t

a a a a a a a a a

a a a a a a a a a

µ β µ β µ β µ βλ

β λ β λ β µ β λ β λµ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − + + −
 
 
− + + + − 
 

 (45) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )4 3 0 3 1 2 2 1 3 0

2

3 2 2 2 2 3 4

2 2 4 2 3 2 3 2 2 3 2 3

3 4 2 2 4 3 3 2 4

245 9 9
2 1 2 1 2 3 1 2

1 5 5

3 6 3 9
1 2 3 1 2 1 2 1 2 1

5 5 5 5

9 3 9 6 9
1 2 1 2 1 1 2 1

5 5 5 5 5

1
2

24

L t L t L t S t L t S t L t S t L t S t dt

a a a a a a a
a

a a a a a a a a a

a a a a a a a a

a

λ µ β

β λµ β λ µ β λµ β µ

β µ β µ β µ β µ β λµ

β λ β λ β λµ β µ

= − + − + + +

− − −

+ + − − +

− + − + +

= −

∫

2 3 2

2 2 2 2 2 2 2 3 2 2 2 2

3 2 2 3 4 2 3 3

2 3 2 3 3 2 2 2 3 3 5 2 4 5 4 4

3 4 3 2 2

2

9 21 3 9 24
1 1 1 2 1 1

5 5 5 5 5

3 9 9 3 3 6
1 1 1 1 2

5 5 5 5 5 5

12 12 3 3 3
3 1 1 1 1 2 1 2 1

5 5 5 5 5

3 3
1 1 3 1

5 5

a

a a a a a a

a a a a a

a a a a a a a a

a a a

β λ

β λ µ β λµ β λ β λ µ β λµ

βλ µ βλ µ βλµ βµ β µ β λµ

β µ β µ β µ β β β µ

β µ β µ β µ

+ + − − −

− − − + + −

+ − + − + +

− − −

5

3 4 2 2 3 2 2 3

4 4 3 4 2 2 4 3 4 3 3

3 3 2 3 2 3 2 3 3 2

2 3 2 2 2

3 3 3 9 9
1

5 5 5 5 5

1 1 2 9 1 2 1 2 4 1

8 1 2 1 2 18 1 2 5 1 2 8 2 1

4 1 6 1 20 11
2

24

t

a

a a a a a a a a

a a a a a a a a a

a a a
a

βµ β λµ βλ µ βλ µ βλµ

β β β β β λ

β µ β λ β µ β λ β µ

β µ β λ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − + + + + 
 

− + − + +

+ − − + +

− − −
−

2 2 2 2 2 3 2 2

4

2 2 2 3 2 2 2 2 3

2 2 3 2 2 2 2 2

2 2 3 4 3 2 2 3 4

21 1 13 1 2 1 2

11 1 2 13 1 2 2 8 1 18 1 4 1

16 1 24 1 13 1 6 2 8 2 3

4 12 9 4 6 4

a a a a a
t

a a a a a a a a

a a a a a

β λµ β µ β µ β µ

β λµ β µ µβ β λµ β µ βλ

βλ µ βλµ βµ β λµ β µ µ β

βλ µ βλµ βµ λ λ µ λ µ λµ µ

 
 
 
 

− + + 
 + + − + + +
 
 + + + − − −
 
− − − − − − − − 

 (46) 



Mohammed S. Mechee and Ghassan A. Al-Juaifri / American Journal of Applied Sciences 2018, 15 (1): 10.21 

DOI: 10.3844/ajassp.2018.10.21 

 

15 

( ) ( ) ( )( )4 3 3

3 2 4 2 3 4 3 3 2 3 2 2

2 2 3 2 3 2 2 2 2 2 2

2 3 2 2 3 2 2 2 2 2 2

2 2

1 1 1 1
1 2 1 2 1 2 1 2

40 40 40 20

1 1 1 3
1 2 1 2 1 2 1 2

10 40 20 40

1 1 1 1
1 2 1 2 1 2 1 2

20 40 20 40

1 1
1 2 1

20 10

R t L t R t dt

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a

λ µ

β λ β λ β λµ β λ

β λµ β λµ β λ µ β λµ

β λµ β λ β λ µ β λµ

β λ µ

= − − +

− + − +

+ + + +

= − − − −

− −

∫

5

2 2 3 2 2

3 2 2 3 2 2 3

3 3 3 3 2 2 2 2 2

2 2 2

1 1
2 1 2 1 2

40 40

1 1 1 1 1
1 2 2 2 2 2

40 40 40 40 40

1 1 1 5
1 2 2 1 1 2 1 2

24 24 8 24

1 1 1
2 1 1 2 1 2

8 24 8

t

a a a a a

a a a a a a

a a a a a a a a

a a a a a a

β λµ βλ µ βλ µ

βλµ β λµ βλ µ βλ µ βλµ

β λ β λ β λ µ β λ

µβ λ β λµ β λ

 
 
 
 
 
 
 
 
 
 − −
 
 
 − + + + + 
 

+ − −

+ + +

+

3 2 2

4

2 2 2 2 4 3 2 2

3 4

3 3
1 2 1 2

8 8

1 1 1 1 1 1
2 2 2 2 , 2 2

24 24 8 24 6 4

1 1
2 3

6 24

a a a a

t

a a a a a a

a a

µ βλ µ βλ

β λµ βλ µ µ βλ λ λ µ λ µ

λµ µ

 
 
 
 

+ + 
 
 − − − − − −
 
 
 + + 
 

 (47) 

 
Hence, the solutions of the system (10-12) with the 

initial conditions (13) as follows: 

 

( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4
...S t S t S t S t S t S t= + + + + +  (48) 

 

( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4
...L t L t L t L t L t L t= + + + + +  (49) 

 
and: 

 

( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4
...R t R t R t R t R t R t= + + + + +  (50) 

 
Convergence of the Method 

In this section, we have explain the convergence of 
HPM for SIR model 

Definition 3.1 

Convergence of the series. 
Let u1(x), u2(x), u3(x),..., un(x),... be a sequence of 

functions. The series ( )
1 n

n

u x

∞

=
∑ is said to be converge to 

the function u(x) if the sequence ( ){ }
0

n
n

s x

∞

=

of partial 

sums defined by ( ) ( )
1

n

n kk
s x u x

=

=∑ converge to u(x). 

HPM is convergent method if the series in (9) is 
convergent. The sufficient condition for convergence of 
the HPM for the systems of nonlinear ordinary 

differential equations is the series ( )
1 n

n

u x

∞

=
∑  to be 

converge to u(x). From initial conditions (35), we have 
bounded functions S0(t), L0(t) and R0(t) on the domain of 
t ∈[0, t0]. Consequently, from (36), (37) and (38), we can 
conclude the following: 

( )
( )

( )( ) ( )

( )

0

1 0 0

1 2 1

1

dS t
S t L t S t dt

dt

a a a t

µ µ β

β µ µ

α

 
≤ − + +  

 

≤ − − +

≤

∫

 

 

( )
( )

( )( ) ( )

( )

0

1 0 0

1

2 1 ,

dL t
L t S t L t dt

dt

a a t

λ β µ

β λ µ

β

 
≤ + − +  

 

≤ − −

≤

∫

 

 
and: 

 

( )
( )

( ) ( )

( )

0

1 0 0

1

2 3 ,

dR t
R t L t R t dt

dt

a a t

λ µ

λ µ

γ

 
≤ − +  

 

≤ −

≤

∫

 

 

Hence, The functions S1(t), L1(t) and R1(t) are 
bounded in the domain of t. 

Consequently: 

 

( ) ( ) ( ) ( ) ( ) ( )( )( )2 1 0 1 1 0

2 2 2 2

2

2 2

2

1 2 1 2 1 21

2 1 2 1 2

S t S t L t S t L t S t dt

a a a a a a
t

a a a a

µ β

β β βλ

βµ µ µ β µ

α

≤ + +

 + −
≤   + + − − 

≤

∫
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( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )

2

2 1 0 1 1 0

2 2 2

2

2 2

1 1 2 2 11
2

2 3 1 2

L t L t L t S t L t S t dt

a a a a
a t

a

λ µ β

β β βλ

βµ βµ λ λµ µ

β

≤ + − +

 − −
≤   − + + + + 

≤

∫

 

 
and: 

 

( ) ( ) ( )( )

( )

2 1 1

2 2 2

2

1
1 2 2 2 2 3

2

R t L t R t dt

a a a a a t

λ µ

βλ λ λµ µ

γ

≤ − +

≤ − − +

≤

∫

 

 
However, the functions S2(t),L2(t) and R2(t) are 

bounded in the domain of t, where αi, βi and  γi are 
constant for i = 1,2,.... 

In general, for n = 3,4,..., the the functions Sn(t), Ln(t) 
and Rn(t) are bounded in the domain of t where domain 
of t is [0, t0]. 

Theorem 3.1 (Biazar and Ghazvini, 2009) 

Suppose that X and Y be Banach space and N: X→Y 

is a contraction nonlinear mapping, that is: 
 

( ) ( ), ; ,0 1v v X N v N v v vγ γ∀ ∈ − ≤ − < <ɶ ɶ ɶ  

 
Which according to Banach's fixed point theorem, 

having fixed point fixed point u, that is N(u) = u. The 
sequence generated by HPM will be regarded as: 
 

( )
1

1 1

0

, , 1,2,3,...
n

n n n i

i

V N V V u n

−

− −

=

= = =∑  

and suppose that V0 = v0 = u0 ∈ Br(u) 

where { }* *
( )

r
B u u X u u r= ∈ − < , then we have the 

following statement: 
 
1. 

0

n

n
V u v uγ− ≤ −  

2. ( )
n r

V B u∈  

3. lim
n n

V u
→∞

=  

 
Proof 

By the induction method on n. 
Using Theorem 3.1, the series (48), (49) and (50) 

are convergent to S(t), L(t) and R(t) respectively. 
Then, we have: 
 

( ) ( )lim
n n

S t S t
→∞

=  

 

( ) ( )lim
n n

L t L t
→∞

=  

 
and: 
 

( ) ( )lim
n n

R t R t
→∞

=  

 

Implementations 

In order to assess the accuracy of solving SIR model 
with vital dynamics and constant population using HPM we 
will introduce some models in different parameters and the 
logistic growth of the healthy CD4

T cells to examine the 
dynamics of a model for HIV infection of CD4

T cells. The 
results of the following three problems for numerical 
comparison between the present method and classical 
Runge-Kutta method of order 4 (Faires and Burden, 2003), 
which mentioned in the literature has been presented 
through and Fig. 1 to 3. 

 

    
 (a) (b) 
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(c) 

 
Fig. 1: Comparisons on (a) S(t), (b) L(t) and (c) R(t) resp. versus t for Problem 1 using homotopy perturbation method and Runge-

Kutta method with the initial conditions S0(t) = 20, L0(t) = 5, R0(t) = 5 and the parameters µ = 0.16, β = 0.5, λ = l.5 and t0 = 2 
 

  
 (a) (b) 
 

 
 (c) 
 
Fig. 2: Comparisons on (a) S(t), (b) L(t) and (c) R(t) resp. versus t for Problem 2 using homotopy perturbation method and Runge-

Kutta method with the initial conditions S0(t) = 15, L0(t) = 10, R0(t) = 5 and the parameters µ = 1, β = 0.3, λ = 2,4 and t0 = 5 
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 (a) (b) 

 

 
(c) 

 
Fig. 3: Comparisons on (a) S(t), (b) L(t) and (c) R(t) resp. versus t for Problem 3 using homotopy perturbation method and Runge-

Kutta method with the initial conditions S0(t) = 10, L0(t) = 3, R0(t) = 1 and the parameters µ = 0.072, β = 1.2, λ = 0:5 and t0 

= 10 

 
Problem 1 

Consider the following initial conditions and 
parameters of SIR model, S0(t) = 20, L0(t) = 5, R0(t) = 5, 
µ = 0.16, β = 0.5 and λ = 1.5. 

Substituting these parameters in the Equations (48), 
(49) and (50), we have the general solutions of the 
system (10-12) which are written as follows: 

 

( ) 6 5

4 3

2

1802.309410 150.8775971

1912.396658 237.4203039

+279.0432000 53.04 20

S t t t

t t

t t

= − −

− −

− +

 (51) 

6 5

4 3

2

( ) = 2093.446578 115.925287  

+987.9505310  +531.6334200 +

 107.5890000  +41.70  +5

L t t t

t t

t t

−

 (52) 

 
5 4

3 2

( ) = 427.9890420  +394.5526581  

+52.15508667 + 30.73900000  +6.70  +5

R t t t

t t t

−

 (53) 

 
Problem 2 

Consider the following initial conditions and 
parameters of SIR model, S0(t) = 15, L0(t) = 10, R0(t) = 5, 
µ = 1, β = 0.3 and λ = 2, 4. 
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Substituting these parameters in the Equations (48), 
(49) and (50), we have the general solution of system 
(10-12) which is written as follows: 
 

6 5

4 3

2

( ) = 1234.987630  +802.2399453

607.4347917 1.758333333

+ 142.7500000 59.0  +15

S t t t

t t

t t

− −

−

 (54) 

 
6 5

4 3

2

( ) = 1225.744986 1277.164016  

+877.0750417  +112.5183334

82.45000000  +11.0  +10

L t t t

t t

t t

− −

−

 (55) 

 

( ) 5 4

3 2

350.2476000 168.6186667

67.19333333 3.700000000 19.0  +5

R t t t

t t t

= +

− + +

 (56) 

 
Problem 3 

Consider the following initial conditions and 
parameters of SIR model, S0(t) = 10, L0(t) = 3, R0(t) = 1, 
µ = 0.072, β = 1.2 and λ = 0.5 

Substituting these parameters in the Equations (48), 
(49) and (50), we have the general solution of system 
(10-12) which is written as follows: 
 

( ) 6 5

4 3

2

6038.675734 562.2567630

3524.368751 351.2929183

+ 272.9897280 36.648t +10

S t t t

t t

t

= − −

− −

−

 (57) 

 
6 5

4 3

2

( ) = 6308.801712  +385.976322  

+1984.539802  +822.5434045

+ 129.9323760  +34.284  +3

L t t t

t t

t t

 (58) 

 

( ) 5

4 3

2

285.7057029  

+204.8636178 +21.45092579

+ 8.519592000  +1.428  +1

R t t

t t

t t

= −

 (59) 

 

Discussion and Conclusion 

In this study, a class of the SIR model with vital 
dynamics and constant population has been introduced. 
HPM has been used for solving the SIR model. The 
approximated solutions of implementations have been 
derived using Maple. A Comparison of the results which 
are obtained by homotopy perturbation method with 
Runge-Kutta method, using MATLAB, shows that the 
approximated solutions of HPM are agree well with 
numerical solutions of RK method for the tested 
problems Moreover, the approximated solutions are 
efficient and high accurate. 
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