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Abstract: Load-bearing elements composed of glass, as known, are often 

susceptible to buckling collapse mechanisms. This intrinsic characteristic 

(and thus potential limitation for design) typically derives from the use of 

relatively small thicknesses to cover large spans and surfaces, thus resulting 

in a multitude of columns, beams, or plates that are characterized by high 
slenderness. In the literature, accordingly, several and design propositions 

support of the definition of efficient calculation models to capture the 

typical buckling response of glass elements variably shaped, sized, 

restrained and loaded. In this study, the attention is focused on the buckling 

analysis of glass columns and on the assessment of uncertainties due to 

input random parameters. With the support of finite element numerical 

models, a total of 800 glass columns are investigated, by accounting for 

stochastic variations in the geometry (size and thickness), modulus of 

elasticity and density of glass, maximum amplitude of the imposed initial 

imperfection, material type. Based on the Monte Carlo simulation method, 

the final result takes the form of 2400 simulations, where the post-

processing analysis is spent on the derivation of empirical formulations for 
the correlation of the relevant buckling capacity indicators. From the 

global out-of-plane bending analysis, the input random parameters are 

observed to affect severely both long and short columns with different 

flexural stiffness. Besides, a stable linear correlation is found for some 

influencing indicators. The attention is thus focused on the sensitivity 

analysis of critical buckling load, ultimate failure configuration, 

deflection at collapse, buckling reduction coefficient. 

 

Keyword: Glass Columns, Column Buckling, Parametric Analysis, Finite 

Element (FE) Numerical Models, Monte Carlo Simulation (MCS) Method, 

Stochastic Modelling 

 

Introduction  

Structural glass elements are notoriously associated 

to severe susceptibility to possible buckling failure 

mechanisms. As such, in the last few decades, a 

multitude of studies have been dedicated to monolithic 

or laminated glass members with a variable combination 

of restraints and loading conditions. Various efforts can 

be found in the literature in the form of experimental, 

numerical and/or analytical analysis of glass beams in 

lateral-torsional buckling (Belis et al., 2013; Bedon et al., 

2015; Valarinho et al., 2016; Santo et al., 2020), glass 

members under flexural-torsional buckling (Amadio and 

Bedon, 2013; Bedon and Amadio, 2014; Huang et al., 

2020), plates under in-plane compression and/or shear 

(Luible and Crisinel, 2005; Bedon and Amadio, 2012), etc.  
Regarding the specific topic of column buckling for 

glass members, (Luible and Crisinel, 2004) first 

addressed this design issue and tried to develop a general 

verification approach. In their parametric study, the 

normalized stability curves for design were calculated 

with the support of numerical models, for various 

configurations of technical interest. Further studies and 

design proposals for monolithic and laminated glass 

columns have been presented in (Amadio et al., 2011; 

Bedon and Amadio, 2015). Extensive buckling 

experiments on various glass columns-both monolithic and 

laminated-are discussed in (Foraboschi, 2009; Pešek et al., 
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2016; Liu et al., 2017). Glass columns with more 

geometrical complexity are also investigated in the 

literature, including also T- or X-shaped columns 

(Aiello et al., 2011) hollow-box columns (Kalamar et al., 

2016), tubular columns (Kamarudin et al., 2018) or 
bundled columns (Oikonomopoulou et al., 2017). A 

recent alternative formulation for the equivalent 

thickness of laminated glass members in compression 

has been presented in (D’Ambrosio and Galuppi, 2020).  

In most of the cited studies, the buckling analysis of 

glass members is carried out with the support of 

experimental tests, non-linear analytical models and 

additional Finite Element (FE) numerical models that 

could facilitate a more detailed interpretation of test 

results, as well as a wider extension of the examined 

configurations. In most of the cases, however, these 

calculations are carried out on the base of nominal input 

parameters, such as material properties, dimensions, etc. 

In this regard, a more detailed analysis has been carried 

out with a focus on the actual thickness of glass, given 

that even small variations can be responsible of severe 

stiffness and slenderness modifications, thus susceptivity 

to premature buckling collapse mechanism. 

Luible and Crisinel (2004), for example, 

considered for their parametric calculation a thickness 

equal to the 97.61% part of the nominal glass 

thickness (thus corresponding to the 5% percentile of 

the normal distribution obtained from their previous 

experimental thickness measurements). This is also in 

line with (Kalamar et al., 2016), where several 

thickness measurements are presented with the 

support of a laser scanning system. 

Besides, the actual role of uncertainties due to 

random input parameters for the buckling 

performance of glass members still lacks for general 

applications and considerations. Literature studies 

dedicated to the compression buckling of various 

constructional elements and based on the stochastic 

analysis, are mostly related to specific issues and 

conventional materials for constructions, like the 

buckling performance of cylindrical shells with 

variable imperfections (Chryssanthopoulos and Poggi, 

1995), or laminated composite plates with cutout 

(Onkar et al., 2007) and others. 

As known, the Monte Carlo Simulation (MCS) 

approach represents an alternative and efficient 

technique to the stochastic analysis method and has been 

successfully taken into account for the compressive 

buckling analysis of various constructional systems. 

Literature examples can be found for lattice columns 

with stochastic imperfections (Miller and Hedgepeth, 

1979), steel columns (Strating and Vos, 1973; 

Gonzalez Estrada et al., 2018), thin-walled steel I-

section beams/columns with random imperfections 

(Schillinger et al., 2010), steel stiffened panels for oil 

tankers (Gaspar et al., 2012) and even cross-laminated 

timber panels (Oh et al., 2015). Le et al. (2019) 

predicted the critical buckling load of steel columns, 

based on hybrid Artificial Intelligence (AI) 

approaches and AI-derived models, whose robustness 

was verified with the MCS method. 

Also (Ly et al., 2019), in this regard, quantified the 

effect of random material properties on the critical 

buckling load of circular columns made of steel. Their 

parametric study, supported by FE models, included up 

to 500 numerical simulations. In their paper, it is 

correctly observed that several models are available in 

the literature for the buckling analysis of columns under 

axial compression. However, most of them are 

deterministic and presume that material uncertainty has 

no effect on the expected critical buckling load of a 

given member in compression. 

The above concepts can be extended also to glass 

members in general, where the typically small 

thickness of relatively flexible and slender elements is 

a first influencing parameter that enforces their 

typically high susceptibility to possible buckling 

phenomena. Besides, many other input parameters 

should be taken into account. 

Existing Design Method for Glass Columns 

Buckling failure and loss of stability represent, as 

known, a frequent condition of premature collapse for 

structural glass elements, due to the typical high slenderness 

of these innovative load-carrying structural elements. 

The number of studies and research activities 

dedicated to stability and typical buckling behaviour of 

glass columns, beams, panels under various boundary 

and loading conditions confirms the large interest in this 

topic and the current lack of knowledge on it. Although a 

substantial amount of experimental research, 

development of analytical models and sophisticated 

numerical simulations has been carried out in the past 

years, further studies are required. 

The buckling behaviour of structural glass elements, 

especially in the case of laminated glass cross-sections 

composed of two (or more) glass sheets interacting 

together by means of thermoplastic films able to 

transfer shear loads between them-depending on the 

connection stiffness-is in fact not easy predictable, due 

to a series of mechanical and geometrical aspects to 

assess and quantify, see (Blaauwendraad, 2007) and 

many other analytical, numerical or experimental 

studies, as also recalled above. 
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Let’s assume, as a reference, the monolithic glass 

member in Fig. 1. The cross-section has B × t 

dimensions and the column spans over L. Glass material 

has a linear elastic behaviour, with E = 70 GPa the 

Modulus of Elasticity (MoE) and n = 0.23 the Poisson’ 
ratio. The member is affected by an initial, sine-shaped 

global imperfection with maximum amplitude u0. Under 

pure tensile considerations, the nominal cross-section is 

able to offer a total characteristic strength that is equal to: 

 

;R g kN Af  (1) 

 

with, fg;k the characteristic tensile bending resistance for 
the glass type in use. The reference nominal values are 

listed in Table 1 for Annealed (AN), or prestressed Heat-

Strengthened (HS) and Fully Tempered (FT) types.  

The compressive strength of glass, on the other side, 

is generally many times higher than the tensile value 

(approximately 400-600 MPa, (Fink, 2000) and thus 

results in a common buckling failure that is mostly 

governed by tensile stress peaks (Luible and Crisinel, 

2004; Amadio et al., 2011). 
Based on Table 1, the major design issue for glass 

can be thus expected in the well-known, high natural 

variability of prestress and strength parameters for such a 
vulnerable constructional material. Several studies of 

literature (Nurhuda et al., 2010; Lamela et al., 2014; 

Veer et al., 2018; Pisano and Carfagni, 2017; Mognato et 

al., 2017; Kinsella et al., 2018) have been dedicated to 

the measurement and assessment of these 

nondeterministic and size-dependent material 

parameters, hence resulting in specific recommendations 

and limitation for structural design.  

In terms of column buckling design, the effect of 

different of variable tensile bending strength values for 

glass on the actual load bearing capacity has been for 
example analyzed in (Luible and Crisinel, 2004; 

Amadio et al., 2011), for a selection of configurations. 

The final effect of any natural surface strength variability 

manifests in a premature breakage of glass. The issue 

can be addressed with standardized calculation tools and 

safety coefficients derived from the experimental 

material characterization. 

According to (Bedon and Amadio, 2015) and Fig. 1, 

a standardized buckling design approach can take the 

form of an empirical approach that relates the 

geometrical and mechanical features of a general glass 

column to verify to the expected design buckling 
resistance. Such an approach is inspired by 

conventional design methods that are in use load 

bearing columns composed of traditional 

constructional materials. This is also the case of the 

Italian technical guideline CNR-DT 210/2013 in 

support of design of glass structures, where it assumed 

that the buckling verification is satisfied when: 

,Ed b RdN N  (2) 

 

and the design compressive load NEd must be assessed 

towards the design buckling resistance of the column. 

This resistance is usually affected by a multitude of 

mechanical and geometrical parameters and can be 

calculated as: 

 

, ;b Rd g dN Af  (3) 

 

with A = B × t and fg;d the design tensile bending 

resistance for the glass type in use (CNR-DT 210/2013, 

2013). A key role in Equation (3) and in the overall 
buckling design approach is then assigned to the well-

known buckling reduction factor , where: 

 

2 2

1




   

 (4) 

 

and: 

 

  20.5 1 imp o        
 

 (5) 

 

where the imperfection coefficients 0 = 0.6 and imp = 

0.71 have been calibrated on the base of extended 

parametric numerical analyses and (where possible) 

literature experimental results. The susceptibility to 

possible column buckling failure mechanisms increases as 

far as the normalized slenderness increases: 

 

; ;g k st

E

cr

Af

N
   (6) 

 

where, fg;k;st is the proposed characteristic glass strength 

for buckling (CNR-DT 210/2013, 2013). Worth to be 

noted that the highest is the tensile bending strength of 

glass (thus the expected buckling capacity) and the 

highest is the slenderness in Equation (6), thus the 

susceptibility to premature failure (with a low  factor 

from Equation 4). 

Moreover, the Euler’s critical buckling load: 

 
2

2

yE

cr

El
N

L


  (7) 

 

With: 
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y

Bt
I   (8) 



Mohammad Momeni and Chiara Bedon / International Journal of Structural Glass and Advanced Materials Research 2020, Volume 4: 254.275 

DOI: 10.3844/sgamrsp.2020.254.275 

 

257 

 
 
Fig. 1: Reference glass column with monolithic B × t resisting 

section and span L (pinned ends) 
 
Table 1: Nominal characteristic values for the tensile bending 

strength of glass (CNR-DT 210/2013, 2013) 

 Glass type 

 ---------------------------------------------------- 
 AN HS FT 

fg;k (MPa) 45 70 120 

 

Notoriously represents partial information only for 

buckling design considerations. On the other side, 

Equation (7) is one of the first design parameters that are 

required in the overall calculation process. 

The above design formulation represents an efficient 

generalized approach for monolithic glass members that 

have been adapted to laminated glass sections (Bedon and 

Amadio, 2015) and later to glass members and plates 

under variable loading/boundary conditions, with the 

used o equivalent thickness formulations. In doing so, 

the failure tensile resistance of glass for buckling, fg;k;st, 

has been set to the characteristic tensile bending value 

fg;k (Table 1), thus accounting for various glass types and 

disregarding any kind of possible residual capacity after 

the first tensile crack detection. 

Within such a standardized approach, it is reasonably 

expected that many influencing parameters (but 
especially the actual tensile strength of glass) could 

affect the overall buckling performance and thus the 

corresponding input parameters for safe design. On the 

other side, the same approach allows to account for a 

single formulation for various glass types and shapes and 

it is hence efficient for design. The research study from 

(Feldmann and Langosch, 2010), in this regard, 

includes a set of buckling experiments on glass 

elements under in-plane compression and the 

derivation of a partial safety factor for buckling that 

has been calculated by taking into account the 75% 
confidence probability and the 5% fractile for the 

characteristic value (0.1% fractile for design value) 

(EN, 1990:2002) (Annex D). Separate safety factor 

coefficients have been then recommended for HS or 

FT glass members in compression. 

Disregarding the material type (and thus the possible 

variability in the actual prestress and strength), many 

other combinations of influencing parameters could lead 

to premature buckling failure. In the experimental 

analysis carried out by (Belis et al., 2011), both the 

shape and size of the initial curvature has been measured 

for various glass beam specimens (312 in total), proving 
that a sinusoidal shape can properly describe the initial 

curvature of beam-like glass elements. The characteristic 

value of initial imperfection, to account for design 

calculations, has been thus recommended in mid-span 

amplitude of L/400. The same imperfection amplitude is 

taken into account for the design approach proposed in 

the CNR-DT 210/2013 document.  

Research Methods 

This research study, compared to past literature 

efforts, focuses on the analysis of the effects on the 

buckling performance of glass members in compression 

due to random input parameters. Based on Fig. 1 and the 

above mathematical model for the standardized buckling 

verification, major numerical efforts are spent on the side 

of the member stiffness and susceptibility to possible 

premature collapse mechanisms. Accordingly, the 

parametric analysis is carried out on a set of glass 

columns in agreement with Fig. 1, but inclusive of 

variable geometry (thickness and span), MoE (E), glass 

type (AN, HS, FT) and global imperfection for the initial 

sine-shaped bow (u0). Material density  is also included 

in the set of random parameters, to assess the potential 

effects on slender members. 

In doing so, the Monte Carlo Simulation (MCS) 

method is used as efficient technique for probabilistic 
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analysis. MCS is a computational algorithm that relies 

on repeated random sampling to address risk and 

uncertainties associated with random input parameters 

for quantitative analyses and decision making. Also, 

MCS is one of the simplest and relatively most 
accurate methods which provides a feasible way to 

determine the probability of failure, where the limit 

state function is more complicated (i.e., FE 

modelling), as also discussed in (Naess et al., 2009; 

Hadianfard et al., 2018; Johari and Momeni, 2015; 

Johari et al., 2015) and many other literature studies. 

All the reference input properties are hence 

summarized in Table 2, while Table 3 describes the basic 

parameters for the MCS (based on truncated normal 

Probability Density Function (PDF)). The basic material 

properties are taken from CNR-DT 210/2013. From 
Table 3, the interval for each parameter is defined as: 
 

 

 

,

3 , 3

Interval Min Max

Mean Std Mean Std



    
 (9) 

 
where, Std is the standard deviation given by: 
 

0.1

3

Mean
Std   (10) 

 
According to Fig. 2, through the post-processing 

analysis of parametric results, the attention is focused on 

the effects of input parameters on:  
 

 Global load-bearing performance 

 Critical buckling load E

crN  

 Failure load Nu 

 Buckling reduction coefficient  

 Slenderness  

 Failure configuration (failure load Nu and maximum 

deflection umax) and empirical models are derived in 

support of design 
 

Numerical Investigation 

Solving Approach 

The FE numerical analysis is carried out in the LS-

DYNA computer software, on a wide set of geometrical 

properties, so as to cover an appropriate range of 
slenderness ratios for the examined load-bearing members. 

As a reference, the “pinned” support condition in Fig. 1 

is taken into account, while linearly increasing the 

imposed axial compressive loads on each glass column. 

Non-linear incremental analyses are carried out to assess 

the compressive response of glass columns. 

Additionally, a geometrical imperfection with global 

bow u0 is taken into account for the analysis of a given 

member. The load-deflection curves from the monotonic 

incremental analyses are hence separately collected for each 

column, while monitoring the evolution of tensile stress 

peaks, mid-span displacements and reaction forces for the 

selected monolithic members in out-of-plane bending. 

Based on Tables 2 and 3, a total of 800 FE models is 

thus analyzed for the study herein presented, using MCS. 
For each configuration, 50 FE models are modelled and 

analyzed by considering the uncertainty associated with 

MoE, imperfection and density. The effect of column 

thickness and span is then considered through different 

geometrical configurations. In other words, 800/50 = 16 

different nominal dimensions are taken into account for 

the examined glass columns. For each one of them, 50 

models are then generated based on the variation of 

MoE, imperfection and density. Finally, for each one of 

the 800 glass columns, the effect of material type is 

included in the form of three different nominal strength 
values representative of AN, HS and FT glass (Table 1), 

thus resulting in a total of 2400 FE analyses.  

Since the manual generation and handling of such a 

huge number of FE models and output results in LS-

DYNA would be extremely hard and time consuming, a 

set of LS-PrePost, MATLAB, LS-DYNA and C# coding 

strategies is used in this research study to manage and 

combine the key input data necessary for the automatic 

FE modelling, but also for importing the models into LS-

DYNA and thus extracting and post-processing the cloud 

of required FE results. 

Modelling 

For the reference pin-end boundary condition 

explored in this research paper, the corresponding nodal 

restraint in each glass column is described as in Fig. 3 

(detail example of the top section), where it is possible to 

see that the out-of-plane displacements are constrained 

for the middle line of nodes, while the possible rotations 

and vertical displacements are released (δx = δy = 0, δz ≠ 

0, θx = θz = 0 and θy ≠ 0). Similarly, at the base of each 

column, all the nodes located on the horizontal centerline of 

the nominal section are constrained in the three spatial 

directions and angles, with the exception of the rotation 

around the y-axis (δx = δy = δz = 0, θx = θz = 0 and θy ≠ 0). 

 
Table 2: Reference geometrical properties of the examined 

pinned columns (16 configurations) 

 Width B[mm] Length L[mm] Thickness t[mm] 

Min. 200 500 5 

Max. 200 2000 40 

Interval - 500 2 

 
Table 3: Stochastic properties of input parameters (normal 

PDF) 

Random variable Mean value Std. 

Imperfection L/400 (L/200-L/400)/3 
Density [kg/mm3] 2.5e-6  8.33e-8 
MoE [GPa] 70 2.33 
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 (a) 
 

 

  
 (b) (c) 
 

Fig. 2: Schematic representation of the (a) numerical procedure and (b)-(c) derivation of selected buckling capacity indicators 

 

 
 

Fig. 3: Reference FE model in LS-DYNA (detail of the top restraint) 

 

In the numerical modelling of the selected glass 

columns, the nominal thickness t of 5, 10, 20 and 40 mm 

(Table 2) is divided into ne = 2, 2, 4 and 6 elements, to 

ensure a more accurate bending analysis and reliability of 
results, especially when increasing the thickness value. 

Solid elements with dimension 10×10× te (in mm) are thus 

used to describe each glass column, where te is the size of 

the element in the member thickness. Based on the above ne 

values, te is defined in the range from 2.5 to 6.67 mm for 
nominal thicknesses of 5, 10, 20 and 40 mm respectively. 

0 0
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x y z

x z y

and

and

  

  

  

  
 

All the nodes on this line 

Z 

Y X 

16 column configurations 

(Table 2) 

50 random parameters 

(Table 3) 
3 glass types 

(Table 1) 
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Regarding the characterization of glass, the 

MAT_ELASTIC material model is used for all the FE 

models, with input properties from Table 3, while the 

nominal resistance values from Table 1 are indirectly 

accounted in the post-processing stage. 

Each FE model is preliminary subjected to an 

initial sine-shaped geometrical imperfection as in 

Table 3. Based on literature efforts, its shape is 

basically detected in the first fundamental modal 

shape of a pinned column and thus imported as a 

reference geometrical configuration. Disregarding the 

variability of real imperfection shapes (Belis et al., 

2011) and thus assuming the worst bending effects to 

derive from a conventional imperfection shape, the 

attention is focused on the analysis of bending and 

buckling effects deriving from the imposed maximum 

amplitude u0 of this imperfection that is progressively 

modified as in Table 3.  

Through the typical FE analysis of the so pre-

deformed glass columns, finally, the in-plane 

compressive load N is imposed to the top section of 

each model and modified with a ramp function in the 

time of the simulation, so that it could be gradually 

increased until any kind of buckling collapse 

mechanism. To this aim, according to literature, the 

propagation of tensile stress peaks is continuously 

monitored as a function of the imposed compressive 

load N. The reference analysis is then interrupted at 

the first achievement of a maximum tensile bending 

stress in glass at least equal to the assigned material 

strength (Table 1). The possible occurrence of an 

overall buckling deformation in the large 

displacement field can represent an alternative 

collapse configuration for slender members and it is 

thus additionally taken into account for the analysis of 

the collected parametric FE results. In this manner, 

especially for long span members, it is ensured that 

the derived resistance value at collapse can be 

representative of their maximum capacity. 

Discussion of Numerical Results 

Boundaries 

The random parameters from Tables 2 and 3 were 

selected in a preliminary stage of the study, so as to 

cover a wide range of potential scenarios of technical 

interest, even in presence of a relatively small number 

of total simulations. In this regard, Fig. 4 shows the 

overall examined configurations for the 800 column 

geometries/mechanical properties, both in terms of 

MoE distribution (Fig. 4a) and compressive 

performance, i.e., in the form of the E

crN /NR ratio for 

all the analyzed members (Fig. 4b). Similarly, Fig. 5 

shows the distribution of examined slenderness ratios 

 (Equation 6). The random input values, as shown, 

are grouped by glass type (AN, HS and FT) and 

typically include very short members ( <3) but also 

glass columns with a relatively high sensitivity to out-

of-plane deformations ( >10). 

Finally, in Fig. 6, the variation of the theoretical 

critical buckling load E

crN  (Equation 7) is proposed as 

a function of the measured slenderness ratio  

(Equation 6) for all the examined configurations. 

Again, the comparative dots are grouped in terms of 

glass type and confirm the wide distribution of 

explored scenarios. 

Load-Bearing Performance 

The typical load-bearing response of glass columns 

is investigated in terms of imposed compressive load 

N and measured mid-span deflection or tensile stress 

peak in the glass section. For all the examined glass 

columns, the failure configuration is numerically 

detected as the first attainment of a maximum tensile 

stress in bending at least equal to the nominal 

resistance of AN, HS or FT glass respectively, thus 

45, 70 and 120 MPa (Table 1). In this study, any kind 

of variability in the material resistance is disregarded 

(Kinsella et al., 2018), while imposing random 

mechanical and geometrical parameters to the set of 

800 members (3 glass types). 

Selected examples are proposed in Figs. 7a and 7b 

respectively, for a given AN member (with nominal 

dimensions L = var  B = 200  t = 5 mm). The first 

influencing parameter that is expected to affect the 

overall out-of-plane bending performance is certainly 

the slenderness of each column (i.e., Equation 6), as 

also shown in Fig. 7. Besides, the assumption of 

random input properties for 16 different glass columns is 

typically observed to result in a multitude of possible 

configurations and thus in a number of additional 

influencing parameters that should be separately assessed 

for each one of the selected columns. 

In this regard, some additional examples are proposed 

in Figs. 8a and 8b, for a given member (with nominal 

dimensions L = 500× B = 200× t = 5 mm) composed of 

AN, HS or FT glass respectively (random input 

properties agreeing with Tables 2 and 3). The numerical 

comparative plots of Fig. 8 are interrupted at the first 

achievement of a maximum tensile bending stress 

equal to the assigned characteristic strength value. 

Moving from the AN to the FT column, as shown, the 
overall bending performance remarkably increases as 

a direct effect of the resistance increase (≈2.6 the 

nominal strength magnification factor from Table 1). 

As also expected, moreover, the effect of input 
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random parameters (especially the MoE value and the 

imperfection amplitude) can be clearly perceived from 

the first stage of the load-deflection compressive 

response, hence resulting in possible severe variations 

in terms of ultimate compressive load Nu at collapse.  

In Figs. 9 and 10, similar results are presented for the 

same geometrical system, but assuming that the 

members in compression are composed of AN or FT 

glass. In this case, the whole cloud of FE data is 

proposed for each column (50 model derivations). 

 

  
 (a) (b) 

 

Fig. 4: Distribution of the examined (a) MoE values and (b) E

crN /NR ratios, as a function of the amplitude u0/L (input parameters 

from Tables 2 and 3) 

 

 
 
Fig. 5: Distribution of the examined slenderness values  for AN, HS and FT glass columns, as a function of the initial imperfection 

amplitude u0/L (input parameters from Tables 2 and 3) 
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Fig. 6: Distribution and variation of the critical buckling load E

crN  (Equation 7), as a function of the column slenderness  (Equation 

6), for the 800 examined AN, HS or FT glass columns (input parameters from Tables 2 and 3). 
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Fig. 7: (a) Load-deflection and (b) load-stress response of two selected AN glass columns (with nominal dimensions L = var  B = 

200 t = 5 mm) 
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 (a) 

 

 
 (b) 

 
Fig. 8: (a) Load-deflection and (b) load-stress response of two selected glass columns (with nominal dimensions L = 500× B = 200× t 

= 5 mm) composed of AN, HS or FT glass 
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 (b) 
 
Fig. 9: (a) Load-deflection and (b) load-stress response of 50 selected AN glass columns (with nominal dimensions L = 500 B = 

200 t = 5 mm) 

 

 
 (a) 
 

 
 (b) 
 
Fig. 10: Distribution of MoE, density and imperfection variation (% scatter), compared to input nominal values, for all the examined 

columns (800  glass type) 
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While each analysis is still separately interrupted at 

the first achievement of a tensile stress peak at least 

equal to the reference material strength in Table 1, it can 

be perceived that the overall collected FE plots are rather 

scattered in the initial flexural stiffness, maximum 
capacity and failure configuration, as a major effect of 

the stochastic distribution of input data in Tables 2 and 

3. More in detail, from the whole parametric study it is 

also observed that: 

 

 MoE variations directly affect the bending stiffness of 
the glass members object of analysis and thus their 

sensitivity to out-of-plane deformations. Due to MoE 

variations only, the percentage scatter for the calculated 

flexural stiffness values (and thus critical buckling load 
E

crN  of the same member) is found in the range of 

±15% compared to the nominal MoE (Fig. 10) 

 The amplitude of the initial global bow, u0, is a 

further well-known, relevant influencing parameter, 

given that it can manifest in a premature loss of 

stability for the whole glass member object of study. 

For the selected random parameters, a relatively 

high variation is calculated in peak values of ±80% 

the nominal ones (Fig. 10a) 

 The effects of both MoE and u0 parameters are 

strictly connected to the slenderness  of the 

examined members. In this research study and 

specifically for relatively short glass members 

(expected to collapse for mainly compressive issues, 

rather than buckling-related phenomena), very high 

sensitivity can be observed to the assigned input 

parameters (i.e., Fig. 9), in the same way of 

long/slender members (i.e., Fig. 11) 

 Finally, the possible variation in the material density 

 could represent a relevant parameter for 

compressive buckling assessment purposes. Typical 
input values are shown in Fig. 10b. Compared to the 

other random parameters, however,  is observed to 

have minimum effects, that can be slightly perceived 

for glass columns with high slenderness  

 

In this regard, the post-processing stage of the 

collected FE results can be further maximized as far as 

they are used for the definition of potential empirical 

models that could capture any kind of correlation.  

Critical and Failure Loads 

The critical load E

crN  for columns represents, as 

known, a poor parameter only for the assessment of 

the actual buckling capacity and response of a given 

member. A multitude of parameters, including 

geometrical and mechanical aspects, are responsible 

of the final capacity and thus of the buckling failure, 

Nu, for the examined members. Even more sensitivity 

of their actual capacity can be expected under random 

input parameters, as also previously observed from 

Figs. 9 and 11. 

To provide a more detailed interpretation of buckling 
measurements (especially in the case of background 

experimental measurements), the Southwell plot 

approach (Southwell, 1932) can be efficiently taken into 

account. This method assumes that from the 

experimental (or even numerical) measurements (plotted 

in the form u/N versus u, with u the maximum out-of-

plane displacement due to the increasing applied 

compressive load N), the slope of fitting curves can be 

rationally determined for the examined load bearing 

members. The advantage of the approach (as far as the 

examined load bearing members behave elastically) is 
the possible minimization (or even avoidance) of cost-

consuming and destructive laboratory experiments. 

Successful applications can be found (for glass/buckling-

related applications) in (Belis et al., 2013) and many 

others. The first indication provided by Southwell plots 

is in fact the critical load of a member, given by the 

slope of the linear fitting curve which at best 

approximates the u-(u/N) plot of available results. At the 

same time, the interception between this linear fitting 

curve and the y-axis gives an indication of the initial lack 

of straightness of the tested specimens and in particular 

the maximum amplitude u0 of possible geometrical 
imperfections or boundary and load eccentricities. 

In this study, given the lack of experimental studies 

and the final goal of the analysis, the attention is focused 

on the quantification of uncertainties due to random 

input parameters for the buckling performance 

assessment of glass columns. The final results turns out 

in fact in potential sensitivity of the traditional design 

parameters and coefficients that are used to support safe 

design calculations. 

The collected results in Fig. 12, for example, are 

selected to present an overview of random parameters 
effects on both the critical and failure load of grouped 

column geometries (with 50 simulations for each 

nominal geometry  glass type, based on Tables 2 and 

3). In Fig. 11a, more in detail, the attention is focused on 

the variation of E

crN  (Equation 7) with the slenderness  

(Equation 6). The trend of collected values is generally 

found to be perfectly linear, based on the selected 

interval of random variables in Tables 2 and 3, as well as 

on the theoretical basis of the calculated E

crN  and  

values. The same dots are then grouped by glass type 

that basically affects the slenderness value only (due to 

resistance variations in Equation 6). 

In Fig. 12b, selected FE results are indeed proposed 

in terms of ultimate load at failure, Nu, for groups of AN, 

HS or FT glass columns with similar nominal geometry 

and random input parameters from Tables 2 and 3. 
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Given that the collected Nu results strictly depend 

on the section features and material properties, but 

also on the amplitude of the imposed geometrical 

imperfection, from Fig. 12b it is possible to notice 

that the grouped FE data are still shifted in 

slenderness  as a function of the assigned material 
type (AN, HS or FT). However, a more pronounced 

scatter can be observed in their linear trend, compared 

to Fig. 12a, as a direct combination of effects due to 

the stochastic analysis. 

Linear Regression at Failure  

Part of the study is then focused on the analysis of 

failure condition for the examined columns, as a function 

of random input parameters. As such, parametric 

values are discussed in terms of maximum mid-span 

deflection (umax) and ultimate compressive load Nu. 

corresponding to the first achievement of the 

limit/allowable tensile stress in glass The repetition of 

the same approach for all the glass columns can support 

the definition of a series of charts or empirical models of 
practical use. Typical examples are shown in Fig. 13 for 

all the examined 2400 column configurations and thus 

grouped in Figs. 13a to 13c by glass type (800 members 

composed of AN, HS or FT glass). 

The collected FE data, moreover, are proposed in a 

bi-logarithmic system, so as to facilitate the analytical 

correlation of the available data. Worth of interest, in this 

sense, is the trend of the linear regression curves that are 

proposed in each graph, in order to capture the mean 

trend of the corresponding cloud of numerical data.

 

 
 (a) 
 

 
 (b) 
 
Fig. 11: (a) Load-deflection and (b) load-stress response of 50 selected FT glass columns (with nominal dimensions L = 500 B = 

200 t = 5 mm) 

20 

 
15 

 
10 

 
5 

 
0 

0 10 20 30 40 50 

Mid-span displacement (mm) 

C
o

m
p

re
ss

iv
e 

lo
ad

 (
k

N
) 

120 

 
90 

 
60 

 
30 

 
0 

M
id

-s
p

an
 s

tr
es

s 
(M

P
a)

 

0 10 20 30 40 50 

Mid-span displacement (mm) 



Mohammad Momeni and Chiara Bedon / International Journal of Structural Glass and Advanced Materials Research 2020, Volume 4: 254.275 

DOI: 10.3844/sgamrsp.2020.254.275 

 

267 

 
 (a) 

 

 
 (b) 

 

Fig. 12: Variation of the (a) critical buckling load E

crN  (Equation 7) or (b) ultimate failure load Nu, as a function of the column slenderness  

(Equation 6), for selected AN, HS or FT glass columns (selected examples with similar nominal geometry and grouped 

 

 
 (a) 

6.5 

 
6 

 
5.5 

 
5 

 
4.5 

N
cr

E
 (

k
N

) 

AN 
 

HS 
 

FT 

2 3 4 5 

 

AN 
 

HS 
 

FT 

2 3 4 5 

 

18 

 
17 

 
16 

 
15 

 
14 

 
13 

N
u
 (

k
N

) 

8 

 
6 

 
4 

 
2 

 
0 

In
(N

u
) 

(k
N

) 

0 2 4 6 8 10 

In (umax) (mm) 

AN 



Mohammad Momeni and Chiara Bedon / International Journal of Structural Glass and Advanced Materials Research 2020, Volume 4: 254.275 

DOI: 10.3844/sgamrsp.2020.254.275 

 

268 

 
 (b) 

 

 
 (c) 
 
Fig. 13: Bi-logarithmic linear regression of ultimate deflection and load for selected glass columns (2400 simulations in total) 

composed of (a) AN, (b) HS (c) FT glass 

 

Besides the random variation of some key input 

parameters for the buckling analysis of glass columns, 

it can be seen a rather constant slope for the three 

linear regression curves in Fig. 13. At a first analysis, 

this effect can result from the use of nominal 

resistance values for different glass types (Table 1), 
but it also confirms that the glass type itself (with 

nominal resistance values spanning from 45 to 120 

MPa) does not largely affect the overall trend of 

predicted failure configurations.  

This is also the case of the practical other input 

random parameters that are derived from Tables 2 and 3. 

The linear regression curves for the comparative FE data 

in Fig. 13 shows in fact a progressive increase of the 

constant parameter (i.e., intercept value of the regression 

curve with the y-axis) for different glass types. This 

value is calculated in the order of 5.38 kN for AN 
members, 5.64 kN for HS and 5.96 kN for FT members. 

Again, the correlation of these values with the nominal 

resistance of the examined glass types (Table 1) shows that: 

 

 A mostly linear and stable variation can be observed 

in terms of failure configuration for the examined 

glass members, in terms of regression curves (slope 
and y-axis intercept) and glass type (nominal tensile 

strength of AN, HS of FT glass). This outcome is 

further emphasized in Fig. 14 

 

Besides, when the same comparative results are 

discussed towards the weakest AN glass type, it is 

observed that: 

 

 For HS glass columns (+55.5% theoretical increase 

of tensile resistance, compared to AN glass), their 

actual buckling capacity at failure can increase in 
the order of +4.9% 
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 In the case of FT glass members (+166.6% of 

tensile resistance, compared to AN glass), the 

capacity at failure is expected to increase (for a 

glass member with similar input parameters) in 

the order of +10.9% 

 

Buckling Reduction Coefficient 

In Fig. 15, a selection of FE data is proposed for 

one of the examined geometries (nominal dimensions 

L = 500 B = 200 t = 5 mm), by changing the 

material type (50 simulations  glass type). The 

failure configuration is first detected as in Fig. 2. 

Moreover, the Euler’s critical load E

crN  is calculated 

from Equation (7), based on the actual input 

mechanical properties for each one of the examined 

columns. Finally, the buckling reduction coefficient  

is numerically derived as: 

 

u

R

N

N
   (11) 

 

where, NR is given in Equation (1). 

The final result of the FE study takes the form of the 

conventional standardized approach for design buckling 

curves, in which the input geometry of the column to 

verify is expressed in terms of normalized slenderness  

(Equation 6) and the actual buckling capacity takes the 

form of the well-known buckling reduction coefficient  

(as obtained, in this study, from a number of 8003 FE 

analyses and Equation 11). In Fig. 16, the sensitivity of 

the so collected data are proposed for a group of glass 

columns, divided by glass type/strength.  

Maximum Mid-Span Displacement 

In conclusion, a further attempt of interpretation of 

parametric relevant FE data are derived from the MCS 

analysis of the available results. Figures 17-19, in this 

regard, show the PDF of the maximum mid-span 

displacement of AN, HS and FT glass columns (umax) 

with nominal dimensions L = 500 B = 200 t = 5 mm, 

as obtained by MCS with 50 simulations. In the figures, the 

PDFs are not smooth curves due to the fact that an higher 

number of simulations should be selected. Based on past 

literature efforts, an acceptable strategy for determining the 

PDF is to carry out reasonable number of simulations and 

fit a suitable PDF to the computed distribution which can 

hence be used for calculating the probability of failure and 

other relevant parameters, like the reliability index. In this 

study, a normal PDF is thus fitted in order to obtain a 

smooth distribution in each investigated case. 

Figure 19, moreover, shows the PDF of maximum 

mid-span displacement for AN, HS and FT glass 

columns. From these figures, the mean of maximum 

mid-span displacement for AN, HS and FT glass 

columns are calculated in 17.062 mm (≈L/30), 24.328 

mm (≈L/20, +42.58%) and 38.388 mm (≈L/13, 

+124.99%), respectively. A linear trend agreeing with 

Fig. 14 can be confirmed also in this case. Similarly, 

from Fig. 19, the Std values of the measured mid-span 

displacement for AN, HS and FT glass columns are 

calculated in 0.509, 0.571 and 1.449 mm, respectively. 

 

 
 
Fig. 14: Linear trend of regression-based y-axis intercept values (from Fig. 13) as a function of the characteristic resistance of AN, 

HS or FT glass types, as obtained at buckling failure from the analysis of 2400 columns (8003 glass type simulations) 
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Fig. 15: Numerically calculated buckling reduction factor , as a function of the critical buckling load E

crN , as obtained for AN, HS 

or FT glass columns (50 simulations/glass type, with nominal dimensions L = 500 B = 200 t = 5mm) 

 

 
 
Fig. 16: Numerically calculated buckling reduction factor , as a function of the normalized slenderness , as obtained for AN, HS 

or FT glass columns (50 simulations × glass type, with nominal dimensions L = 500× B = 200× t = 5 mm) 

 

 
 
Fig. 17: Probability density functions of the mid-span displacement of AN, HS and FT glass columns (50 simulations  glass type, 

with nominal dimension L = 500× B = 200× t = 5 mm) 
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Fig. 18: Cumulative distribution functions of the mid-span displacement of AN, HS and FT glass columns (50 simulations  glass 

type, with nominal dimension L = 500× B = 200 t = 5 mm) 
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 (c) 
 
Fig. 19: MCS results and fitted normal density function for the mid-span displacement of (a) AN, (b) HS or (c) FT glass columns at 

failure (50 simulations/glass type, with nominal dimension L = 500× B = 200× t = 5 mm) 

 

This last result in terms of Std shows that the value 

increases as the column composition (even with similar 

elastic and geometrical features) moves from AN to FT 

material properties. The largest variation (or Std) belongs 

in fact to FT glass columns with higher tensile resistance, 

which means that the fluctuation of input parameters has a 

more remarkable effect on their overall buckling 

performance and resistance. Looking back at Equation (6), 

the FT glass type for a given member corresponds to higher 
slenderness value, thus limited buckling capacity (and lower 

 factor in Equation 4) that derives from the high flexibility 

and sensitivity to input random parameters. 

As a nutshell, the effect of uncertainties increases as 

the glass column composition changes from AN to FT 

and the behaviour of FT glass columns is more sensitive 

to uncertainties, respect to the other glass types. 

Conclusion 

Structural glass elements that are used for engineering 

applications typically require specific design and 

verification methods that are required to ensure appropriate 

safety levels. Among others, the buckling verification of 
these members is a crucial step, given that thy are 

commonly characterized by high slenderness ratios and can 

be thus highly susceptible to premature collapse 

mechanisms due to stability losses. As such, several studies 

are available in the literature, in support of the development 

or refinement of suitable design approaches. Background 

documents can be found for glass columns, beams, plates 

under ideal or non-ideal loading and boundary conditions. 

Generally, it is recognized that the use of 

experimental methods should be sufficiently extended to 

cover a number of possible uncertainties and variabilities 

in the key input parameters, so as to support a reliable 

calibration of design recommendations and rules. In this 

regard, the finite element numerical approach can offer a 

robust support and minimize the experimental efforts. At 

the same time, the natural remarked variability of glass 

strength is expected to represent the first influencing 

parameter for design. 

In this study, the attention was thus focused on the 

analysis of the buckling performance of glass column. 

Differing from past literature effort, specific attention was 
given to the analysis of uncertainties due to input random 

parameters for the buckling capacity of glass members. 

Based on efficient Finite Element numerical models, a total 

of 2400 glass columns (800 mechanical and geometrical 

configurations  three glass types) were investigated, by 

accounting for stochastic variations in the geometry, size, 

thickness, but also modulus of elasticity of glass and 

maximum amplitude of the imposed initial imperfection, as 

well as glass type/resistance. Empirical formulations were 

presented in support of the collected numerical results, by 

taking advantage of the Monte Carlo simulation approach. 

From the discussed parametric studies, it was 

proved that: 

 

 In terms of global buckling performance, the use of 

input random parameters (geometrical and material 

properties) has comparable effects on slender or 

short columns 

 The use of a linear regression method for buckling 

correlations suggested a stable evolution of the 

failure configuration for all the examined columns, 

even with random input parameters and different 

glass types/nominal strength values 

 The classical calculation approach for the 

buckling reduction coefficient  showed a rather 
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stable linear trend with the theoretical critical 

load E

crN . Major sensitivity to random parameters 

was observed for AN glass, with a progressive 

decrease for HS and FT glass columns 

 For the given set of glass columns, the use of AN 

glass or prestressed HS (+55.5% strength) and FT 

(+166.6% strength) glass types was quantified in 

a theoretical increase of ≈5% (HS) and ≈10% 

(FT) buckling capacity (based on stress peaks 

control). Such a buckling capacity tendency 

towards the glass type is expected to further 

minimizes as far as the actual material resistance 

has some variations from the nominal values 

 Similarly, the analysis of comparative FE results in 

terms of ultimate mid-span deflection at failure 

proved that the sensitivity of buckling capacity 

estimates to random parameters increases as far as the 

glass strength of glass increases (thus is minimum for 

AN columns). The typical high flexibility of these 

members is hence responsible of major sensitivity 

effects that prevail on the improved resistance capacity 

of prestressed glass types 

 It is finally worth to be noted that the whole 

parametric study has been carried out under the 

assumption of ideal restraints for the examined glass 

columns. Additional sensitivity is thus expected in 

presence of partial local flexibility due to soft 

materials that are typical of glass applications 
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