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Abstract: Construction of a probability function for a given random data is 

the main theme of several branches of human knowledge, where it is an 

active area of study. In spite of great developments, the solution needs 

extensive effort and the results contain epistemic uncertainty. In this study, 

making use of the logical reasoning and concise mathematical logics, a 

method called the change of state philosophy, which is digested in the Persian 

curves, is derived. The Persian curves that have the necessary and sufficient 

condition for a probability function, are explicitly derived, via the ordinates of 

four specific points on the random data. The proposed Persian curves are free 

of epistemic uncertainty and their flexibility provide the possibility for the 

insertion of the expert’s will. The work is validated via concise logical 

formulation and comparison of the results with those of the others.  
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Introduction 

The likelihood value of a change in a system, is 
conventionally defined as probability. A phenomenon is 
conceived as a change in the system. Diversity in the 
phenomena concluded in the diversity of probability 
distributions for their statistical analysis. The Probability 
function is present in problems containing uncertainty 
and have a long history in mathematics and engineering 
which dates back to the 17th century (David, 1962). 
From that time on a well-established probability theory 
have been developed, in all areas of human knowledge. 
A statistical distribution function of wide variability is 
proposed by (Weibull, 1951), which became very 
popular probability mathematical distribution for its 
relative flexibility in modelling lifetime data. But it does 
not provide a reasonable parametric fit for modelling 
phenomena with non-monotone data. Because of its 
importance, the probability analysis is applied in 
different fields of study (David, 1962; Williamson, 1989; 
Gouda, 2005; Huang, 2009; Amusan, 2010; Butler, 
2011; Cui, 2011; Andrews, 2012; Adamski, 2014; Hao, 
2014; Heinemann and Ohm, 2014; Adefisoye, 2015; 
Alghamdi, 2015; Ali, 2016; Perrone, 2018). In spite of 
great advance in this field, the work is not complete. 
This can be observed from the ongoing investigations in 
this days. For example, novel functional representation 
for the Probability Density Functions (PDF) of random 
variables was constructed and efficient and accurate 

algorithms for computing the (PDF) of their sums, 
products and quotients were developed by (Satkauskas, 
2017). Or (Boehm, 2019) evaluated the performance of 
expected shortfall estimation with normal, student-t and 
skewed distributions. The conclusion is restricted to 
financial returns and forecasting expected shortfalls. 
Conventionally, for statistical analysis of a phenomenon, 
a distribution will be selected, with logically no approved 
relation between the phenomenon and the selected 
function. Therefore the probability functions in the 
literature, introduce epistemic uncertainty to the work. 
The era is not finished, because the conventional 
probability has a weak logical basis. The main aim of the 
presented work is to propose a certain probability 
function, based on sound mathematical foundation. 
Toward the aim, in the first two decades of 21st century, 
our research team, conducted an extensive research for 
analysis of phenomena which are partly published in 
references (Amirian and Ranjbaran, 2019; Baharvand and 
Ranjbaran, 2020a-b; Ranjbaran et al., 2011; 2013; 2020a-b; 
Ranjbaran and Rousta, 2013; Ranjbaran and Ranjbaran, 
2014; 2016; 2017a-b; 2018; Hoseini et al., 2018; 
Ranjbaran, 2010; 2014). More detailed information may 
be obtained in (Ranjbaran et al., 2020b). Via logical 
reasoning and concise mathematics their research 
concluded in the so called change of state philosophy. 
The change of state philosophy is digested into the 
Persian curves. In view of the vocabulary of the statistics 
the Persian curves are the probability distribution which 
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are exact entities that should be used in place of the 
conventional likelihood value. Detail of formulation is 
presented in the next section. 

Basic Formulation  

In this section, the basic formulation for the change of 
state philosophy via a sound logical basis, is developed. 
The traditional formulations in the academic universe are 

divided into the stiffness method and the flexibility 
method. The so called stiffness method, is based on the 
change of a system capacity, called the stiffness, which 
reduces to zero during the change of state. While the 
flexibility method makes use of the flexibility, i.e., inverse 
of stiffness, which goes toward the infinity during the 

change of state. Near the end of the phenomenon, the 
stiffness become very small and the flexibility become 
very large and hence introduce error into the work. On the 
other hand the change of state philosophy uses the 
equalities, (kSS  fSF = 1) and (kS  fS = 1), as shown in Fig. 
1, which are free of epistemic uncertainty. The equalities 

is then expressed as equality of (kSS  fS) and (kS  fSF) in 
Equation (1), in which (kSS = kS-kC) is the survived-
stiffness, (fSF = fS + fC) is the survived-flexibility, (kS) is 
the system-stiffness, (fS) is the system flexibility, (kC) is 
the change-stiffness and (fC) is the change-flexibility: 
 

   & ?SS S S SF C Ck k f f k f   (1) 

 
Equation (1) is rearranged to obtain the (kSS) and (kC), 

in terms of the other parameters, in Equation (2):  
 

S S S
SS S R S

S C S C

C
C S SS S R S

S C
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f f f f

f
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f f


    

 

     
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 (2) 

in which the phenomenon functions (collection of the 

failure function (FR) and the survive function (SR)) are 

defined in Equation (3): 

 

   0 1 1 0C S
R R

S C S C

f f
F S

f f f f
   

 
 (3) 

 

The proposed form of phenomenon functions in 

Equation (3) are defined in terms of the (fS) and the (fC), 

which are unknown to this end. The investigation for 

explicit definition of these functions is continued as 

follows via construction of the so called state functions. 

Development of a functional in terms of two 

functions is not possible. Then the phenomenon 

functions are customized for (kS = fS = 1) in order to 

define the destination function (D), the origin function 

(O) and the state Ratio (R) (which are collectively called 

the state functions) in Equation (4): 

 

1S S R R Ck f F D S O f R      (4) 

 

Consequently the (D&O) are defined in terms of the 

(R) in Equation (5): 

 

1

1 1

R D
D O R

R R O
  

 
 (5) 

 

The state functions may be considered as the solution 

of the boundary value problems as expressed in Equation 

(6) and shown in Fig. 2, where (min) denotes minimum 

and (max) denotes maximum: 
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Fig. 1: Change of state philosophy basic equation 
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The state ratio, with the far end in the infinity (Fig. 2), is 

not a good working parameter. Moreover, this ratio is 

itself a function, so it is not wise to be used as an 

independent variable. Therefore, the state variable   [0 

1] with a zero value ( = 0) at the origin and a unit value 

( = 1) at the destination is innovatively defined. In term 

of the state variable, the boundary value problems in 

Equation (6) is rewritten as in Equation (7): 
 

min 0 @ 0 max 1 @ 0

max 1 @ 1 min 0 @ 1
D O

 

 

    
  

    
 (7) 

 
Investigation for construction of solution for boundary 

value problems in Equation (7), led the authors to make use 

of their experience in structural mechanics, finite element 

method, mathematics and their extensive research. The 

results are the state functions as defined in Equation (8) and 

shown in Fig. 3, (Ranjbaran et al., 2020b): 
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Fig. 2: State Functions versus the state Ratio (R) 
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Fig. 3: State functions versus the () 

Via the definition of the survived stiffness (kSS) and 

the survived flexibility (fSF), the authors detected a fact 

that, the (fC) is directly proportional to the (kS)! This 

detection is called “the Persian Principle of Change 

(PPC)”. In view of this principle the (fC) is defined in 

Equation (9): 

 

1C S C S C Sf R k f k R f k D O    (9) 

 

Substitution of Equation (9) into Equation (3) 

concluded in the general definition for the phenomenon 

functions in Equation (10): 

 
2

2 2

S
R R

S S

k D O
F S

O k D O k D
 

 
 (10) 

 

The (kS) is not explicitly known and so it is not a 

feasible working parameter. Therefore Equation (10) is 

rewritten in a unified form as in Equation (11), in terms 

of the positive control parameters (aM) and (b), 

(Ranjbaran et al., 2020b). Selection of two control 

parameters provided the flexibility for translation and 

rotation of the phenomenon functions in the (11) 

generic working box and let the experts to enforce their 

expertise to the work. The control parameters are to be 

determined from calibration of reliable data: 

 
b b

M
R Rb b b b

M M

a D O
F S

O a D O a D
 

 
 (11) 

 

To this end the proposed formulation is 

mathematically in an abstract form, so it is a universal 

one in the sense that it is independent of geometrical and 

material properties and the changing agent. Therefore, it 

applies to all natural phenomena!  

As observed, the proposed formulation, were derived 

based on logical reasoning and concise mathematical 

logics. There was no need for construction and solution 

of differential and/or integral equations, which is the 

paramount basis of the conventional human knowledge. 

Therefore, the proposed formulation is free of epistemic 

uncertainty (lack of knowledge). For a given 

phenomenon, the lifetime is truncated at a workable 

interval (  [O, T]) and is mapped onto the state 

variable (  [0, 1]) in Equation (12), where (O) is the 

origin and (T) is the end of lifetime: 
 

       1 O T O T O                (12) 

 
In terms of the lifetime, here, the (FR) is renamed as 

Persian-Failure-curve (PF) and the (SR) is renamed as 

Persian-Survive-curve (PS) and the two collectively 

called the Persian-curves (PC). In comply with 

vocabulary of human knowledge, the (PS) is the unified 
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equation for the capacity and reliability and the (PF) is 

the unified equation for the probability and fragility. The 

feasible (capacity and reliability) and (probability and 

fragility) data are managed in decreasing and increasing 

order respectively. For a reliable data, (PS) for increasing 

data and (PF) for decreasing data, is defined as the (PC) 

in Equation (13), in which (PO) is the ordinate of the start 

point (O) and (PT) is the ordinate of the end point (T): 

 

   b b b b

C O T M MP P O P a D O a D    (13) 

 

Moreover, in comply with the common practice in 

stochastic analysis, the Probability Density Function 

(PDF) (here called the Persian-Distribution-curve (PZ)), 

is defined as the derivative of the phenomenon functions 

with respect to the state variable (), in Equation (14), in 

which (  1

RF ,  1

RS  and D(1)) are the derivatives of (FR, SR 

and D) with respect to the () respectively: 
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 (14) 

 

For a reliable decreasing data as shown in Fig. 4, the 

sign parameter is set equal to minus 1 (A = -1) and for a 

reliable increasing data as shown in Fig. 5, the sign 

parameter is set equal to plus 1 (A = +1). Then the positive 

control parameters (aM) and (b) are obtained, in terms of the 

coordinates of the Key-Points (KPS), in Equation (15): 
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 
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 (15) 

 

The key points are defined as the Origin point (O), 

the Middle point (M), the Truncation point (T) and the 

Next point (N) (a point between the other three), defined 

in Equation (16) and shown in Fig. 4 and 5, for 

decreasing data and increasing data respectively. Note 

that, points (O) and (T) are used for mapping in Equation 

(12) and Points (N) and (M) are used for determination 

of (aM) and (b) in Equation (15): 

 

       0.00, , 0.50, 1.00,O N N M TO P N P M P T P  (16) 

 

Finally via logical reasoning, a unified equation for 

probability of failure (fragility) curve is proposed as 

follows. Extensive investigation of the authors research 

team concluded into the fact that the fragility curve for 

complete failure is defined in Equation (17), where (PSU) 

is unified capacity, (PFU) is unified fragility and (PZU) is 

unified density. As shown, fragility is equal to 1 min 

capacity. Moreover for the horizontal axis the (IM  

[0,3]) is replaced by the relative slenderness (  [0,3]): 
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Where the key point ordinate on unified Persian 

curves are defined in Equation (18): 

 

0.000 0.750 1.500 3.000

0.000 0.250 0.500 1.000

0.000 0.237 0.600 0.900

1.000 0.763 0.400 0.100
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P

P

P


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 (18) 

 

Persian curve is managed as a bridge between the 

abstract mathematical concepts and the real world. 

Therefore it is applied for analysis of data in several 

branches of human knowledge in the following section. 

Here is the end of the proposed logical formulation. Note 

that the question ((kC) & (fC) = ?) in Equation (1) is 

logically answered. 
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Fig. 4: Key points on persian-survive-curve 
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Building Probability Functions 

In view of vocabulary of probability theory in the 

literature, the (PF) is in comply with the Cumulative 

Distribution Function (CDF), the (PS) is in comply with the 

probability of survive (reliability) and the (PZ) is in comply 

with the Probability Density Function (PDF). In comply 

with the common practice in the literature the results are 

compared with those of the others in this section. 

Example 1 

In this example a set of data, that was analyzed in 

(Powley, 2013) PhD dissertation and also in (Keelin and 

Powley, 2011; Keelin, 2016), is selected for analysis 

with the Persian-curve.  

Once the decision analyst asserts that he has 

sufficient quantile-probability data, he strives to find a 

continuous probability distribution that is consistent with 

the data. There are conventional three methods for the 

job. That is the hand driven (CDF), or a member of the 

canon of commonly used probability distributions like 

the exponential, normal, logistic and so on and a mixture 

of the conventional distributions. All these methods in 

one way or the other fail to satisfy all required 

conditions. The main objective in Powley dissertation, is 

to introduce Quantile-Parametrized-Distributions (QPD). 

One can parameterize a QPD using over-determined 

systems of equations by minimizing an appropriate 

norm. This is done by engineering the support of a QPD 

using the following three methods. The first is to set up a 

constrained optimization problem to solve for a QPD’S 

coefficient. The QPD resulting from this method will 

pass through the extreme quantiles, but is not guaranteed 

to pass through the quantile-probability points. The 

second is to control support through truncation. When 

using this method, the coefficients need not be 

recalculated and probabilistic simulation is possible 

through rejection sampling. However, the resulting QPD 

is not guaranteed to pass through the quantile-probability 

points and the chopped off tails may be a poor 

representation of the decision maker’s beliefs. The third 

method is to create a transformed QPD. The probability 

distribution resulting from this method must pass through 

both the extreme and intermediate quantile. In this 

example it is shown that the Persian-curve can be used as 

a replacement for all the aforementioned methods. 

Solution 

A set of inconsistent quantile versus probability data, 

selected from (Keelin and Powley, 2011) is shown in 

Equation (19): 

 

0.05 0.15 0.20 0.50 0.65 0.80 0.85 0.85

0.0 2.50 1.50 4.00 5.00 7.00 6.00 8.00

P


 (19) 

Based on the data in Equation (19), the key points 

and the control parameters are in Equation (20): 

 

       0.0, 0.0 2.0, 0.164 4.0, 0.50 8.0, 0.90

1.25 1M

O N M T

a b 
 (20) 

 

The Persian-Fasa-curve (PFR) and the Persian-

Shiraz-curve (PSR) from Equation (13), the Persian-

Zahedan-curve (PZR) from Equation (14) and the data 

in Equation (19) (QPD) are shown in Fig. 6. Moreover 

an Upper Bound curve (UB) with the key points and 

control parameters in Equation (21) is also shown in 

Fig. 6 for completeness: 

 

       0.0, 0.0 2.0, 0.30 4.0, 0.65 8.0,1.0

1.71 0.91M

O N M T

a b 
 (21) 

 

The dignity of Persian curves is highlighted in this 

example because the proposed functions are equivalent 

to the all efforts done in the cited references. 
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Example 2 

Compare the Persian-Fasa-curve with the lognormal 

probability distribution fitted on the seismic fragility 

data computed with the help of the SPO2FRAG software 

by (Baltzopoulos et al., 2017).  

Solution 

Baltzopoulos et al. (2017), made use of the 

SPO2FRAG software by (Iervolino et al., 2016), to 

determine the required data for construction of the 

fragility curve for a five story reinforced concrete 

building, via more than 500,000 Incremental nonlinear 

Dynamic Analyses (IDA). Their data are used to select 

key points and the control parameters in Equation (22). 

The Baltzopoulos curve (BF), is compared with the 

Persian-Fasa-curve (PFU), the Persian-Shiraz-curve 

(PSU) and the Persian-Zahedan-curve (PZU) from 

Equation (17) in Fig. 7. Excellent agreement of the result 

verified the work: 

 

       0.0, 0.0 0.75, 0.24 1.5, 0.60 3.0, 0.9

2.0 1M

O N M T

a b 
 (22) 

 

Conclusion 

The following conclusions were obtained in the 

present paper. 

Intensive investigation of the author’s research team 

in the past two decades gave birth to the change of state 

philosophy. In this philosophy, a phenomenon is 

modelled as a change of state of the system between 

origin and destination. Origin is the threshold and the 

destination is the end point of the phenomenon. Via 

logical reasoning and mathematical logic the state of the 

system in each point of its lifetime is expressed in terms 

of two functional so called the phenomenon functions. 

The phenomenon functions, which are finally casted in 

the so called Persian curves, were then defined in terms 

of the state functions and two control parameters. The 

control parameters for a phenomenon may, simply and 

accurately, be obtained from the reliable or test data. The 

Persian curves are found to be in comply with the 

definition of probability functions. The proposed 

formulation is verified via comparison with the results of 

the others. The main objective of the paper is proposing 

a general analytical formulation for probability functions 

that can fit a generic dataset. 
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aN: Control parameter at N  
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A = -1: For decreasing data 

A = +1: For increasing data 

b: Control parameter (power) 

CSP: Change of State Philosophy 

D: Destination function 
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E: Initial modulus 

Fy: Yield limit 

fS: System flexibility 

fC: Change flexibility 

FS: Dimensioned flexibility 

fSF: Survived flexibility 

FR: Failure function 

(FR & SR): Phenomenon functions 

fW: Weibull probability density function  

FW: Weibull cumulative distribution function 

: Recovery rate 

kS: System stiffness 

kC: Change stiffness 

kSS: Survived stiffness 

KPF: Key points on Failure curve 

KPS: Key points on Survive curve 

KPS: Key points  

L: Effective length 

LB: Lower bound 

: Lifetime parameter 

2

yFL

r E



 : Relative slenderness ratio 

O: Lifetime origin 

T: Lifetime termination (end) 

M: Middle point 

N: Next point 

O: Origin (start) point 

O: Origin function 

PC: Persian curve (s) 

PO: Origin point ordinate 

PN: Next point ordinate 

PM: Middle point ordinate 

PT: End point ordinate 

PFU: Unified Persian-Failure function 

PSU: Unified Persian-Survive function 

PZU: Unified Persian-distribution function 

PZ: Persian-Distribution function 

PF: Persian-Failure function 

PS: Persian-Survive function 

PC = (PF & PS): Persian curves 

r: Effective radius of gyration 

R: State ratio 

SR: Survive function 

SF = (D & O): State functions 

T: Termination (end) point 

UB: Upper bound 

: State variable 

 


