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Abstract: Atherosclerosis is a serious worldwide health problem. The 

pathogenesis of this disease is complex and includes a multilevel interaction 

of such processes as inflammation, endothelial dysfunction, mitochondrial 

dysfunction, and multiple modifications of lipid particles. With the increase 

in life expectancy, mankind is more and more often faced with the 

unpleasant consequences of atherosclerosis. Atherosclerosis is a precursor 

to serious health concerns, including cardiovascular disease, leading to 

disability and even death. Thrombosis is one of the possible complications 

of atherosclerosis. The cause of atherothrombosis is the rupture of an 

atherosclerotic plaque and subsequent aggregation of platelets. In this place, 

a blood clot forms, which in a short time completely blocks the blood flow 

through the vessel. Sometimes pieces of plaque break off and travel through 

the arteries with the blood flow. If such a blood clot, which is a piece of 

plaque, gets stuck in a vessel and blocks blood flow, for example, in a heart 

muscle, it can cause angina pectoris and myocardial infarction. In this 

review, we have collected a detailed description of the processes of 

atherogenesis from the very beginning to the immediate formation of a 

thrombus. To collect the relevant data, we searched the PubMed database, 

paying special attention to the systematic reviews and in vivo studies. All 

researches considering cardiovascular diseases have to be ethically 

performed, which implies patient consent and animal studies ethics. 
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Introduction 

There are several stages of atherosclerosis 
pathogenesis. Studies conducted in both humans and 
animals demonstrate that fatty streaks act as the first 
indicator of atherosclerosis. As a rule, primary lesions 
occur due to the focal growth of lipoproteins in the intimate 
layer of the arteries (Rafieian-Kopaei et al., 2014). 

Proteins, phospholipids, and lipids, including 

cholesterol and triglycerides, combine to form 

lipoprotein particles. Among these, LDL, with its high 

cholesterol content, is a crucial factor in atherosclerosis 

(Feingold, 2015). 

Due to its ability to enter the endothelium or cling 
to the components of the extracellular matrix (like 
proteoglycan, for example), lipoprotein can pile up in 

the intima of blood vessels (Linton et al., 2019; 
Summerhill et al., 2019). 

An imbalance between the various components of the 
matrix may occur at the site of the lesion. For example, if 

there is a relative elevation in heparan sulfate molecules in 
three key groups of proteoglycans compared to keratan 
sulfate and chondroitin sulfate, this is capable of causing 
lipoprotein adhesion, which will further lead to inhibition of 
the process of quitting intima and, as a consequence, to their 
speeded-up accumulation (Tran-Lundmark et al., 2008). 

In the early development of atheroma, plaques tend 

to expand outward from the vessel, indicating a 

predisposition for atherosclerotic vessels to widen. Once 

the plaque encompasses over 40% of the inner elastic 

layer of the vessel, the arterial passage is considered 

restricted (Rafieian-Kopaei et al., 2014). At the end of 

the life of the plaques, a restrictive obstacle to blood 

flow emerges. 

The results of numerous studies suggest that 

atherosclerosis is the outcome of intimal damage 



Anastasia Vladimirovna Poznyak et al. / OnLine Journal of Biological Sciences 2024, 24 (3): 382.394 

DOI: 10.3844/ojbsci.2024.382.394 

 

383 

involving specific cellular reactions, including 

monocytes, SMC, and lymphocytes. 

The early soft lesion is identified by the existence of foam 

cells, extracellular fat deposits, and a minimal number of 

platelets. Progressing further, SMCs undergo multiplication, 

culminating in increased bleeding into the plaque in the final 

stages (Xu et al., 2019). The brief summary of 

atherosclerosis development is represented in Fig. 1. 

LDL-С Trapping  

The development of atherosclerosis begins with the 

trapping of lipoprotein in the site of the lesion 

(Rafieian-Kopaei et al., 2014; Khatana et al., 2020). 

Distinct modifications to LDL particles, notably 

oxidation, play a pivotal role in their absorption. The 

oxidation process enhances the affinity of LDL for CD36 

and SR-A, scavenger receptors responsible for facilitating 

the macrophage uptake of oxidized LDLs. 

Normally, there is a harmony between the level of LDL 

in plasma and the internal concentration of LDL in arterial 

walls. An elevation in plasma lipid levels causes a 

noteworthy accumulation of these particles in the intima 

(Steffen et al., 2021). This occurs because of an increase in 

extracellular proteoglycans, which possess a strong attraction 

for LD (Little et al., 2002; Williams and Tabas, 1995). Since 

there is a direct correlation between the concentration of 

serum LDL and the number of lipoproteins retained in the 

lesion, its level in the blood is considered an indicator of 

atherogenesis (Boren et al., 2020). In the initial phases of 

atherosclerosis, lipids gather within the extracellular matrix, 

creating a lipid-proteoglycan-rich structure enveloped by 

VSMCs. There, towards the media, biglycan, proteoglycan 

of the extracellular matrix, contributes to the binding, 

accumulation, and storage of LDL-C. At this stage, the inner 

part of the subendothelial layer, just below endothelial cells, 

is still poor in VSMCs and biglycan and is free from 

lipoprotein deposition (Hurt-Camejo and Camejo, 2018).  
It is now assumed, that one of the key initial events in 

atherogenesis is endothelial injury. This can happen in the 

endothelium surrounding the lumen of the mother vessel in 

the endothelium of vasa vasorum, or both. There are two 

main theories about the role of the endothelial dysfunction. 

According to one of them, called response-to-retention, in 

response to predisposing stimuli (mechanical strain and 

cytokines), the initial event is the retention of lipoproteins 

bound to the ECM in the intima (Sedding et al., 2018). 

Lipoproteins enter the arterial wall through dysfunctional 

endothelium that surrounds the lumen of the vessel and this 

process is followed by the entry of monocytes and other 

inflammatory cells. The second one, the response-to-injury 

hypothesis, states that an initial injury (mechanical injury 

or toxins) leads to endothelial dysfunction and the passage 

of inflammatory cells, especially macrophages, and T-cells, 

into the arterial wall, followed by the proliferation of 

VSMCs (Mundi et al., 2018). 

 
 
Fig. 1: Atherosclerosis development. Atherosclerotic plaque 

evolves through various stages, starting with the 

formation of fatty streaks and progressing to plaque 

rupture and thrombus formation. The process of fatty 

streak formation involves four steps: (1) Trapping of 

LDL-C; (2) Activation of endothelial cells; (3) Activation 

of leukocytes and (4) Formation of foam cells 

 

The trapping of low-density lipoproteins leads to an 

elevation of LDL concentration in the intima, as well as an 

increase in the duration of their stay in the lesion. Both of 

these factors result in spontaneous oxidation and cellular 

oxidation of trapped particles (Kattoor et al., 2019).  

Endothelial Cells Activation  

Cytokines and oxidized lipids are extremely 

important for endothelial cell activation. In the initial 

phases of atherosclerosis, monocytes and T-

lymphocytes invade the vessel's intima (Wu et al., 

2017; Chistiakov et al., 2015a-b). 

Simultaneously, in LDL oxidation, adhesion, and 

absorption molecules play significant roles. Monocyte 

differentiation into macrophages, essential for foam cell 

formation, involves the uptake of modified lipids like 

Oxidized LDL (Ox-LDL) (Seo et al., 2015). This process 

depends on receptor expression, purifying enzyme 

secretion, and various cytokines. Ox-LDL activates T-cells, 

acting as an antigen and secreting cytokines that activate 

macrophages and induce changes in endothelium and 

SMC (Gao et al., 2021; Sobenin et al., 2014). 

Small, LDLs can pass through the endothelial 

barrier and attach to proteoglycans via apolipoprotein 

B100 to stay in the subendothelial space. This LDL 

undergoes oxidation (ox-LDL) and triggers various 

pro-inflammatory conditions through a receptor called 

Lectin-like Oxidized LDL receptor-1 (LOX-1). The 

increased expression of Intercellular Adhesion 

Molecule-1 (ICAM-1) and Vascular-Cell Adhesion 

Molecule-1 (VCAM-1) caused by ox-LDL promotes the 

adhesion of monocytes and inflammatory cells to the 

endothelium. Oxidized LDL particles induce the release 

of Monocyte Chemotactic Protein-1 (MCP-1) and 

Monocyte Colony-Stimulating Factor (M-CSF) from 
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endothelial cells and smooth muscle cells, both acting as 

attractants for monocytes. Ox-LDL also leads to an 

increase in Reactive Oxygen Species (ROS) and a 

decrease in nitric oxide production. Monocytes mature 

into macrophages and express Scavenger Receptors 

(SRs), Cluster of Differentiation 36 (CD36), LOX-1 and 

Toll-Like Receptors (TLRs). The interaction between 

ox-LDL and CD36 prompts monocyte maturation, 

macrophage activation, and macrophage retention, while 

macrophage SRs enhance the uptake of ox-LDL and the 

formation of foam cells. The accumulation of ox-LDL 

promotes apoptosis in foam cells and initiates 

inflammatory progression. Ox-LDLs also stimulate 

SMCs to increase the expression of growth factors like 

Platelet-Derived Growth Factor (PDGF) for migration 

and basic Fibroblast Growth Factor (bFGF) for 

proliferation. The proliferation of SMCs contributes to 

the thickening of atherosclerotic plaques and the 

formation of a necrotic core. The interaction between 

ox-LDL and CD36 in resting platelets results in platelet 

aggregation and activation. Activated platelets express 

LOX-1, which promotes adhesion to endothelial cells and 

enhances the release of endothelin-1. This impairs 

endothelial function, reduces production of NO, and 

increases prostaglandin synthesis. 

Platelet Adhesion to the Dysfunctional Endothelium 

Arterial wall inflammation alters the normal 

functioning of the endothelium and launches the platelet 

and leukocyte recruitment at the initial phase of 

atherosclerotic lesion formation. According to modern 

understanding, the recruitment and adhesion of platelets 

can launch and support the chronic inflammatory processes 

that contribute to atherosclerotic lesion formation.  

The activation of platelets and their accumulation at 

the arterial wall is further increased by the impairment 

of NO, PGI2, and endothelium-derived platelet 

inhibitors production (Busse et al., 1993) as well as by 

expression of proinflammatory mediators on 

dysfunctional endothelium at early stages of 

atherogenesis (Zibara et al., 2000). 

P-selectin plays a role in the temporary adhesion of 

platelets to the endothelium (Frenette et al., 1995) 

whereas PECAM contributes to the stable adhesion 

(Rosenblum et al., 1996). Furthermore, endothelial cells 

express various adhesion and platelet-activating 

molecules on their surface, including chemokines, 

selectins (P-, E-selectin), and Cellular Adhesion Molecules 

(VCAM, ICAM, PECAM) (Wagner and Frenette, 2008). 

Platelets can adhere even to the inflamed endothelium 

without of endothelial disruption (Massberg and 

Messmer, 1998). This adhesion is mediated by platelet 

aIIbb3 and GPIba, as well as endothelial ICAM-1 and 

avb3 integrin interactions (Massberg et al., 2005). The 

role of molecular bridges in aIIbb3-mediated adhesion is 

played by fibronectin, VWF, and fibrinogen (Bombeli et al., 

1998). Endothelium-bound Fractalkine (CX3CL1) has 

been shown to activate adherent platelets in vitro 

(Schulz et al., 2007). 

Leukocytes Activation  

The initiation of leukocyte recruitment, whether in 

infectious or non-infectious diseases, begins with the 

activation of inflammatory tissue. This activation is an 

inherent reaction of the immune system to varied stimuli, 

encompassing tissue injury, cellular demise, pathogens, or 

toxic substances. 

In early atherosclerosis, immune cells breach the 

endothelium, expressing adhesion molecules and 

chemokines (Doukas and Pober, 1990). Pro-inflammatory 

cytokines activate this process, involving TNF-α. 

Attraction molecules guide leukocyte migration 

(Mussbacher et al., 2019). Excessive MCP-1 expression 

induces monocyte migration, prevalent in atherosclerosis 

stages (Aiello et al., 1999). Ox-LDL regulates adhesion 

molecules and MCP-1 expression (Sawada et al., 2020). 

During heightened inflammation, cells in the tissue 

recognize preserved Pathogen-Associated Molecular 

Patterns (PAMPs) and internal stress signals called 

Damage-Associated Molecular Patterns (DAMPs). These 

signals prompt the release of pro-inflammatory cytokines 

and chemokines. Endothelial Cells (ECs) respond by 

upregulating adhesion molecules and chemokines. This 

process involves rapid translocation of preformed 

molecules (type I activation) and slower, longer-lasting 

activation (type II). The expressed chemokines, including 

CCL2 and CXCL1, attract leukocytes through 

chemotaxis. Tissue-resident leukocytes, especially 

macrophages, release chemotactic molecules like CCL3. 

Activated platelets deposit chemokines like CCL5 and 

CXCL4 on ECs, enhancing leukocyte chemotaxis to 

inflammatory sites. Specificity in chemotactic molecules 

and their receptors recruits distinct leukocyte subsets. 

Foam Cell Formation  

After introduction into the intima, mononuclear 

phagocytes differentiate into macrophages.  

Phagocytes contribute to averting atherosclerosis by 

ingesting lipids from the extracellular space. Certain 

macrophages that accumulate lipids can exit the artery 

wall and release lipids. If the influx of lipids into the artery 

wall surpasses their efflux (via phagocytes or other 

pathways), it can lead to lipid build-up and an increased 

likelihood of atheroma formation (Moore et al., 2013). 

Macrophages take up and store modified LDL 

through scavenger receptors, transforming into foam 

cells. These receptors are located on the exterior of 

macrophages, endothelial cells, fibroblasts, and smooth 
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muscle cells. The manifestation of these receptors rises 

as monocytes transform into macrophages, driven by 

cytokines and oxidized lipids. Furthermore, the 

macrophage colony-stimulating factor enhances their 

expression (Aiello et al., 1999; Poznyak et al., 2020). 

Within the plaque, macrophages acquire lipoproteins 

from their surrounding environment. This uptake can 

happen through scavenger receptors known as Pattern 

Recognition Receptors (PRRs) located on the surface of 

macrophages. Several types of these scavenger receptors 

exist, including Scavenger Receptor A1 (SR-A1), 

MARCO, CD36, SR-B1 and LOX1. These receptors are 

responsible for taking up oxidized forms of LDL (ox-

LDL), which are produced due to increased oxidative 

stress in the artery wall. It's important to note that these 

scavenger receptors, functioning as PRRs, serve a broader 

purpose beyond lipid uptake. For instance, SR-A1 has 

been associated with regulating macrophage proliferation 

within the lesion, thus influencing macrophage numbers. 

CD36 has been linked to inflammasome activation, 

macrophage polarization, and the promotion of apoptosis 

and inflammatory gene expression. Additionally, LDL 

can be engulfed by macrophages via pinocytosis at high 

lipid concentrations and lipolytic enzymes present in the 

intima can generate modified forms of LDL, which are 

taken up by macrophages through scavenger receptor-

independent pathways. Under normal circumstances, 

lipids taken up by macrophages are typically processed 

and effluxed from the cells, preventing the formation of 

foam cells as described earlier. However, in cases of 

dyslipidemia, excessive lipid uptake by macrophages due 

to limited negative feedback leads to defective cholesterol 

trafficking, impaired lipid efflux, and the formation of foam 

cells laden with lipids. This, in turn, affects macrophage 

phenotype and compromises immune functions. 

Notably, during the formation of foam cells, lipid 

droplets in macrophages form not in the membrane of ER, 

but in the lysosomes. Usually, the cells of intima lose 

contact with each other and store lipids in lysosomes 

rather than in ER, turning into foam cells filled with lipid 

droplets formed from lysosomes. The widespread way of 

lipid granule formation is the transformation of lipids 

from smooth ER into lipid droplets. It is an important 

issue, which is discussed in the review by Mirоnоv et al. 

(2020); Mironov and Beznoussenko (2022).  

The surface ligand of Ox-LDL, which provokes its 

uptake by macrophage scavenger receptors, is 

phospholipids in the structure of Ox-LDL, oxidizing in 

the second place and establishing aldehydes capable of 

attacking lysine residues of APOB.  

When the concentration of foam cells on artery walls 

becomes excessive, it triggers the formation of fatty 

streaks (Afonso and Spickett, 2019).  

Some foam cells in less damaged areas undergo 

apoptosis, contributing to a lipid-rich necrotic core in 

severe atherosclerotic plaques. Monocytes, unlike other 

foam-producing cells, can generate harmful substances, 

causing significant damage to the endothelium, strong 

LDL oxidation, and substantial metabolic changes 

(Rafieian-Kopaei et al., 2014; Martinet et al., 2019). 

Atheroma Formation  

SMCs in atherosclerotic plaques, originally 

identified by contractile proteins, have been found to 

lose typical SMC markers in recent studies, often 

referred to as SMC-derived cells. 

The migration of SMCs from the media to the 

intima, as well as their proliferation, is regulated by 

various growth factors produced by macrophages, 

Endothelial Cells (ECs), and T-cells. SMCs also 

possess Scavenger Receptors (SRs) on their cell 

surface and can take up modified LDL to form foam 

cells. Cytokines can modulate this process by 

influencing the expression of SRs either independently 

or in synergy with growth factors. Additionally, IL-1β 

disrupts the feedback regulation of LDL receptor 

mediated by cholesterol in these cells, leading to 

increased expression of this receptor. 

Misra et al. (2018) found that some medial SMCs 

move into the intima, proliferate, and become fibrous cap 

SMCs. Cap SMCs generate descendants that enter the 

core, downregulate markers, and promote lesion growth. 

Alencar et al. (2020). discovered that two-thirds of SMC-

derived cells express LGALS3 or pass through an 

intermediate stage. Cap SMCs skip this stage, indicating 

their origin from medial SMCs without transitioning 

through highly transformed phenotypes in the plaque's 

center. Vascular tissue sustains damage when 

neighboring SMC and endothelial cells release peptides 

like IL-1 and TNF, prompting SMC migration to the 

vessel wall's luminal side (Lim, 2019). 

In this state, the migration of smooth muscle cells and 

the synthesized extracellular matrix form a fibrous cap. 

The fibrous cap consists of collagen-rich fibrous tissues, 

SMC, macrophages, and T-lymphocytes, which together 

create a mature atherosclerotic plaque that protrudes into 

the canal and interferes with normal blood flow in the 

vessels (Basatemur et al., 2019). 

Macrophages and T-lymphocytes are found within the 

boundaries of a developed plaque. Macrophages secrete 

meta-proteinase, which favors the lysis of the extracellular 

matrix; and T-cells produce TNF-α, which helps to avoid 

collagen synthases in SMC (Ohmura et al., 2021). 

These processes lead to the weakening of the plaque-

shaped fibrous cap and can destroy it. The destruction of 

the fibrous cap outputs collagen and lipids into the 

bloodstream, which consequently results in the 

accumulation and adhesion of platelets, as well as in the 

formation of blood clots, which can unexpectedly stop 

blood flow (Periayah et al., 2017). 
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The Process of Formation of the Plaque  

Atherosclerosis development results from an interplay 

of systemic risk factors, disruptions in shear stress, and 

the vascular wall's biological response. Refer to Fig. 2 for 

a visual representation. 

The atherogenic phenotype of the endothelium has 

elevated permeability to circulating low-density lipoprotein 

and their high concentration in the tunica intima 

characterizes the initial phase of plaques formation. It was 

revealed that within the bloodstream, LDL particles can 

undergo a variety of modifications, such as oxidation, 

charge change, desialylation, and others. It is proposed that 

the risk of atherosclerosis development depends not on the 

total content of LDL in the blood but on the level of 

multiply modified LDL. That allows us to suggest that the 

level of multiply modified LDL is a better biomarker of 

atherosclerosis in comparison to the total LDL level. 

Oxidation turns LDL into oxLDL, damaging the 

endothelium and activating inflammation through PPRs 

(Gillotte-Taylor et al., 2001). Cellular and humoral 

elements, along with factors from the environment and 

adventitia, contribute to the disease's progression by 

forming microvasculature within the plaque (Seiler et al., 

2020). The damaged endothelium's activated Expresses 

Cytokines (ECS) chemokines and adhesion molecules, 

attracting monocytes to the atherosclerotic lesion and 

promoting their maturation into proinflammatory 

Macrophages (M1 phenotype) (Pircher et al., 2019). 

Atherosclerotic plaques predominantly form at the 

branch points of arteries or at the inner curvature. These 

regions often have disturbed blood flow and the mechanical 

forces associated with this disturbance often affect the 

endothelium of the arteries. The shear stress usually causes 

anti-atherogenic gene expression and signal transduction 

profile that is lost at sites of disturbed blood flow. 

Moreover, ECs at the sites of impaired blood flow 

demonstrate the morphological changes, the permeability 

to macromolecules such as LDL appeared to be enhanced, 

extracellular matrix tends to accumulate. This causes the 

retention of such particles. Cytokines can modulate EC 

permeability. Thus, IFN-γ and TNF-α lead to the 

reorganization of the actin and tubulin cytoskeletons in ECs, 

thereby opening up gaps between adjacent cells. Activated 

endothelial cells release various chemokines, stimulating the 

recruitment of immune cells from the circulation, especially 

T lymphocytes and monocytes. Moreover, endothelial cells 

express ICAM-1, VCAM-1, and other adhesion proteins, 

which are also essential in immune cell recruitment.  

Macrophages usually control lipoprotein metabolism 
by controlling LDL levels and cholesterol levels to 
support cholesterol homeostasis. Macrophages express 
Scavenger Receptors (SR) on their surface, which bind to 
ox-LDL, making it possible to absorb proteins in the cell 
(Sukhorukov et al., 2020). 

 
 
Fig. 2: Atherosclerotic plaque formation (above) and thrombus 

formation (below) 

 

Macrophages express crucial enzymes like ACAT1, 

essential for cholesterol ester formation. These enzymes 

break down cholesterol esters into FAs and cholesterol. 

ABCA1, ABCG1, and SR-BI facilitate the transport of free 

cholesterol outside the cell. Atherosclerosis alters this, 

leading to cholesterol buildup and reduced expression of 

carriers. Foam cells result from uncontrolled accumulation of 

modified LDL and cholesterol esters in macrophages, 

triggered by inflammation (Dubland and Francis, 2015). 

The initial immune response transitions into an adaptive 

response, involving T and B cells. Adaptive immunity 

detects molecules through BCRs and TCRs. T cells, with 

coreceptors like CD4, CD8, or CD3 linked to TCR, provide 

intracellular signaling upon recognizing an antigen-

presenting cell. Naïve T cells differentiate into various 

T-cell types in plaques or lymphoid organs. Th1, the most 

common T-cell in atherosclerosis, responds to oxLDL 

stimuli, inducing atherosclerosis. Th2, though less 

significant, appears defensive, suppressing Th1 cells. 

ApoE−/−/IL-4−/−mice show a significant decrease in 

plaque size, prompting further exploration of hypothetical 

atherosclerotic Th2. Th17 and NKT cells possess both pro- 

and anti-atherogenic properties, requiring additional 

studies (Wondimu et al., 2010). 

Treg, or regulatory T-cells, exhibit atheroprotective 

behavior by releasing IL-10 and Transforming Growth 

Factor β (TGF-β), contributing to immunomodulation. 

B-cells serve as antigen-presenting cells for T-cells and 

produce antibodies, influencing the immune response. B1 

cells protect against neurodegeneration by inhibiting 

oxLDL absorption by macrophages. Conversely, B2 cells 

worsen atherosclerosis by releasing autoantibodies and 

cytokines, intensifying Th1 cells and macrophage 

activation. Throughout atherogenesis, Th1, Th17, Th2, 

and B-cells increase, while Treg decreases steadily. 
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In atherosclerotic plaques, CD4+ Th1 cells dominate, 

followed by CD8+, Th2, Treg, Th17, and NKT cells to a 

lesser extent. All Treg subtypes, including Foxp3+ Treg 

and Type 1 regulatory t cells (Tr1), demonstrate 

atheroprotective effects by inducing IL-10 and TGF-β, 

contributing to cell-mediated suppression. 

At this moment, if not collapsed, foam cells pile up 

inside the plaque and, together with macrophages, 

increase the inflammatory signaling. This is achieved due 

to the release of chemokines and cytokines, which include 

IL-1, IL-6, TNF-α, and IFN-γ, as well as due to the 

production of reactive oxygen species, growth factor, and 

vascular smooth muscle cell proliferation, thereby 

speeding up the atherosclerosis development (Ramji and 

Davies, 2015). 

In particular, the atheroma plaque consists of the 

following components: (1) Necrotic lipid nucleus formed 

from foam cells that are dead; (2) Circulating 

inflammatory and immune cells; (3) Endothelial and 

SMCs; (4) Detritus and connective tissue elements; (5) As 

well as the fibrous membrane covering the plaque. 

Immunity and inflammation play crucial roles in the 

development and complications of atherosclerosis. 

Biomarkers of inflammation are recognized as 

independent risk factors for cardiovascular events. 

Thrombotic complications in atherosclerosis occur when 

the fibrous cap, surrounding the necrotic nucleus, ruptures 

into the vessel lumen. This disintegration is a result of 

proteolytic enzymes and heightened immune and 

inflammatory activities within the plaque. Consequently, 

it destabilizes the plaque, increasing the risk of rupture 

and thrombosis (Wolf and Ley, 2019). 

Plaque Development 

Invasive coronary angiography is a benchmark for 

assessing coronary artery disease and determining 

treatment strategies, both the development and regression 

of the lesion were generally considered as a change in the 

degree of angiographic lumen stenosis. However, since 

plaque rapture is considered a key ground of most medium 

and high-risk diseases, the pathology of the plaque is the 

main factor in acute events. Thus, the emphasis on 

increasing the degree of lumen stenosis appears to be 

unreasonable (Sun and Xu, 2014).  

Intravascular ultrasound (Gogas et al., 2011) and 

computed tomography angiography (Cao et al., 2019) 

research has revealed that key indicators of CV events and 

plaque rupture include a thin fibrous membrane, the 

volume of the necrotic nucleus and positive remodeling.  

Traditionally, high-risk plaque features were binary or 

categorized based on the absence of 1, 2, or 3 such features. 

Modern CTA studies stress the importance of quantifying 

these features for accurate assessment, given their 

interdependence and impact on prognostic significance for 

ischemia and future events (Baradaran et al., 2017). Among 

them, the volume of the necrotic core, identified by low 

attenuation on CTA, is crucial. An enlarged necrotic 

core weakens the fibrous cap, compromises vasodilatory 

capacity, and raises the risk of rupture, irrespective of the 

lumen stenosis degree (Ohayon et al., 2008). 

The progression or regression of a plaque, rather than 

the percentage of lumen stenosis, is crucial for assessing 

rupture risk. For instance, an increase in necrotic core 

volume, positive remodeling, and fibrous membrane 

thinning (regardless of lumen changes) signifies plaque 

progression (Stefanadis et al., 2017). Conversely, a 

reduction in necrotic core volume, coupled with increased 

fibrous cap thickness and calcification (despite moderate 

lumen stenosis from negative remodeling), indicates 

plaque regression (Costopoulos et al., 2017). 

Plaque Rupture 

The specific mechanism behind plaque rupture 

remains unknown; however, it involves several factors 

such as thinning of the fibrous cap, increased levels of 

inflammatory cytokines and proteases, degradation of the 

extracellular matrix, decreased collagen synthesis, and the 

presence of injured or apoptotic cells within the necrotic 

core. All cell types involved in the development of 

atherosclerotic plaque are also implicated in plaque 

rupture and subsequent thrombosis. Molecular mediators 

associated with atherosclerosis can alter collagen 

metabolism, leading to thinning or weakening of the 

fibrous cap. Particularly, IFN-γ has been found to 

significantly inhibit the expression of genes encoding 

procollagens in smooth muscle cells, establishing a 

significant link between inflammation and impaired 

collagen synthesis in atherosclerotic lesions. 

Inflammatory cells within the plaque release various 

molecular signals, including cytokines, growth factors, 

tissue factors, IFN-γ, Matrix Metalloproteinases 

(MMPs), and Reactive Oxygen Species (ROS). 

Macrophage-derived foam cells secrete cytokines, 

while lymphocytes secrete CD-40L, among others. 

Accumulation of free cholesterol within the plaque can 

induce apoptosis of macrophage-derived foam cells, as 

well as apoptotic cell death of SMCs and T-cells within 

the lesions. The release of cellular contents from apoptotic 

cells initiates the formation of the necrotic core, which is 

composed of lipid-rich material surrounded by fibrous tissue. 

Excess extracellular cholesterol can form cytotoxic 

crystals, progressing atherosclerotic plaques into 

complicated atheromas, potentially causing coronary 

artery branch occlusion. 

The persistent inflammatory response ultimately 

contributes to the destabilization of atherosclerotic 

plaques through the actions of proinflammatory 

cytokines. Studies have indicated that proinflammatory 
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cytokines, such as IFN-γ, IL-18, GDF-15, and TWEAK, 

can destabilize plaques, while TGF-β promotes 

stabilization. Cytokines like IFN-γ, TNF-α, and IL-1β 

promote apoptosis of macrophages and foam cells, 

leading to enlargement of the lipid core. Additionally, 

these cytokines induce apoptosis of smooth muscle cells, 

resulting in the thinning of the fibrous cap. Moreover, pro-

inflammatory cytokines inhibit the synthesis of 

components within the extracellular matrix involved in 

plaque stabilization, particularly those produced by 

smooth muscle cells. For instance, IFN-γ inhibits collagen 

synthesis by smooth muscle cells. 

Macrophages infiltrate the thinned fibrous cap and 

release a multitude of inflammatory cytokines and 

proteases, including Matrix Metallo Proteinases (MMPs). 

These enzymes degrade the stabilizing matrix, thereby 

playing a crucial role in weakening and ultimately 

rupturing the atherosclerotic plaque. It has been reported 

that necrosis of the vulnerable plaque results from a 

combination of macrophage death and impaired 

phagocytic clearance of apoptotic cells. This process 

accelerates or triggers plaque disruption by releasing 

inflammatory cytokines and matrix proteases. 

Additionally, the mechanical stress exerted by the necrotic 

core on the overlying cap may contribute to plaque rupture. 

For a significant duration, there was a misconception 

that the most severe coronary events resulted from mildly 

stenotic plaques. However, research on severe ST-

segment Elevation MI (STEMI) cases revealed that the 

average constriction of the lesion lumen diameter, 

excluding the thrombus, exceeds 60% (Zhang et al., 

2018). In post-sudden death investigations, 70% of 

ruptured plaques exhibited more than 75% vascular 

cross-section narrowing. Inconsistencies in studies led to 

the exclusion of non-small lesions in those with sequential 

coronary angiograms (Narula et al., 2013). These studies 

consistently reveal plaque progression as a stage between 

non-obstructive subclinical atherosclerosis and acute 

coronary events. 

In the prospective study of severe coronary syndrome 

patients, high-risk non-culprit lesions, initially mild at 

angiography, doubled in size between baseline (32±21%) 

and the event (65±16%; p<0.001) (Xie et al., 2014). 

Temporary plaque increases quadrupled event likelihood. 

In the dynamic registry of the national heart, lung, and 

blood institute, average diameter stenosis increased from 

baseline (42±21-84±14%) during subsequent events. 

STEMI studies with sequential angiograms described 

plaque development preceding MI (Pontone et al., 2017). 

Mean stenosis diameter in lesions leading to STEMI rose 

from 37±21% over three months pre-event to 59±32% 

during STEMI. A Japanese study with successive 

angiograms for a year showed rapid lumen stenosis 

increase linked to severe coronary events in >70% of 

patients (Kotronias et al., 2021). Patients with gradual 

stenosis elevation in all 4 angiograms developed anginal 

symptoms, while those without changes had 

uncomplicated courses (Shin et al., 2015). Despite similar 

baseline nonobstructive disease and treatment, fast plaque 

development significantly increased the chance of plaque 

rupture and MI (Ose, 2011). 

Atherothrombosis: A Complication of the 

Atherosclerotic Plaque 

Healthy Endothelium is the Crucial Sign of 

Thromboresistance 

The endothelial layer serves as a semi-permeable 

barrier, regulating the diffusion of plasma molecules, 

vascular tone, inflammation, and clot formation. The 

integrity of the endothelial barrier relies on the presence 

of intercellular complexes (such as occludin, claudin, 

connective adhesion molecules 70, cadherin, and slit 

compounds) and integrin receptors (Komarova et al., 

2017; Stefanadis et al., 2017; Soldatov et al., 2018). 

Densely packed compounds maintain intercellular 

binding, influencing the growth and survival of 

endothelial cells, while slit compounds primarily facilitate 

intercellular binding, allowing the passage of water, ions, 

and small molecules (Castro Dias et al., 2019). Integrins, 

acting as receptors for vitronectin and fibronectin, govern 

the adhesion of the endothelial monolayer to the 

extracellular matrix.  

A robust endothelium without atherosclerotic lesions 

exhibits high resistance to thrombosis, preventing the 

formation of blood clots and the occurrence of ischemic 

events (Gimbrone Jr and García-Cardeña, 2016). 

The endothelial layer, in reality, expresses a diverse 

array of molecules possessing antiplatelet, anticoagulant, 

and fibrinolytic properties. 

Platelets, vital for preventing bleeding, play a key role 

in clot formation on damaged blood vessel walls. These 

small, nucleus-free cells circulate in the bloodstream, 

adhering to dysfunctional areas on the vessel lining when 

it's damaged. This adhesion is crucial for blood clot 

formation, especially under conditions like high blood 

shear rates. Platelet receptors interact with von 

Willebrand Factor (vWF) and collagen, activating 

platelets to form a hemostatic plug essential for wound 

healing. In summary, platelets contribute significantly to 

the prevention of excessive bleeding by creating clots at 

damaged sites in blood vessels. 

TF’s Significance in Atherothrombosis 

Open TF-inducing thrombin and further fibrin 

monolayer generation covering the area of open vascular 

damage is the initial trigger in atherosclerotic plaques. 

Subsequently, thrombosis develops with platelet 

dominance, which is rapidly activated and recruited into a 

developing thrombus (Brouns et al., 2020). 
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HIF-1α, an oxygen-sensitive transcription factor, 

crucially responds to local hypoxia by activating the 

transcription of genes like VEGF, fibroblast growth 

factor, cytokines, and Angiopoietins (Angs). Silencing 

HIF-1α in macrophages reduces proinflammatory factor 

production and increases macrophage apoptosis. 

On the other hand, the absence of HIF-1α in antigen-

presenting cells leads to polarization towards Th1 

response and worsens atherosclerosis by promoting the 

production of inflammatory cytokines. 

In endothelial cells, the transcription factor Forkhead 

box p (Foxp1) has been recognized as a crucial regulator 

that suppresses the expression of inflammasome 

components such as NLRP3, caspase 1, and IL-1β.  

Foxp1 modulation in endothelial cells influences 

atherosclerosis progression, as confirmed by Zhang et al. 

(2018) study in transgenic mice. 

 Interestingly, researchers have found that Foxp1 is 

regulated by Krüppel-like factor 2 (Klf2) and both 

proteins are diminished in regions of blood vessels that 

are prone to atherosclerosis due to disturbed blood flow. 

The extracellular TF domain triggers a coagulation 

cascade in flowing blood. Found in foam cells and 

lipid-enriched vascular smooth muscle cells, TF 

interacts with plasma Factor (F) VII/VIIa. The TF: 

FVIIa complex activates FIX and FX, leading to the 

conversion of prothrombin into thrombin. Thrombin then 

transforms fibrinogen into fibrin and activates factor XIII, 

enhancing fibrin cross-linking and stabilizing the 

thrombus with platelets. In this phase, a nonocclusive 

coronary thrombus may cause angina, or a thrombus 

fragment might detach, leading to micro-infarctions 

(distal embolization) as it blocks smaller vessels. 

There is interesting evidence that C-Reactive Protein 

(CRP) demonstrates thrombotic activity (Kunutsor et al., 

2017). Therefore, it was previously established that the 

monomeric c-reactive protein form has a certain 

importance in platelet adhesion.  

Circulating c-reactive protein in its native (pentameric) 

form doesn't affect platelet deposition (Boncler et al., 

2019). However, the monomeric form exhibits a 

prothrombotic phenotype, initiating platelet deposition and 

thrombus progression. Monomeric c-reactive protein 

dissociates from its pentameric form on activated platelet 

surfaces, facilitated by GPIIb/IIIa activation. 

Additionally, microparticles released during cell 

activation or apoptosis can convert native C-reactive 

protein to its monomeric form (Boncler et al., 2019). 

Platelet recruitment is triggered by locally stored 

mediators upon platelet adhesion/activation, with crucial 

roles played by Thromboxanes A2 (TXA2) and ADP, in 

combination with thrombin (Braune et al., 2020). TXA2, 

generated through PLA2 stimulation, binds to TX 

receptors, amplifying platelet recruitment and activation. 

ADP, released from dense granules, increases platelet 

aggregation via P2Y1 and P2Y12 receptors, launching 

PLC-mediated calcium increase and cAMP production 

suppression (Karim et al., 2015). 

Thrombin, a central protease in blood coagulation, 

activates platelets through PAR-1 and 4 receptors, 

triggering multiple signaling pathways (Koupenova and 

Ravid, 2018) G-protein-coupled receptors contribute to 

platelet shape change, granule release, TXA2 generation, 

GPIIb/IIIa activation and procoagulation reactions 

(Duvernay et al., 2017). Activated platelets output 

phosphatidylserine, stimulating the procoagulation 

reaction and undergo conformational changes in the 

GPIIb/IIIa receptor, promoting platelet aggregation 

(Holinstat, 2017). 

These processes involve new platelets and other 

circulating cells, contributing to injury. Thrombin-mediated 

conversion of fibrinogen into fibrin stabilizes and increases 

the thrombus. Acute occlusive growth of a coronary 

thrombus can lead to acute coronary syndromes and, in some 

cases, sudden coronary death (Holinstat, 2017). 

Differences Between Human and Animal 

Atherosclerotic Plaque 

The majority of animal models of atherosclerosis are 

based on mice, rats, rabbits, and guinea pigs. Bigger 

animals are less popular, but birds, swine, dogs, cats, and 

non-human primates are still used as model animals. 

However, numerous differences in the pathogenesis of 

atherosclerosis limit the investigations. For example, in 

mice, rats, dogs, and cats an induction of 

hypercholesterolemia or atherosclerosis is very difficult 

because these animals have high HDL levels, which have 

an anti-atherosclerotic effect. Watanabe heritable 

hyperlipidemic rabbits express non-functional LDL 

receptors, which recognize some VLDL remnants, but not 

LDL. The suitable choice in the scope of atherosclerosis 

induction is the use of genetically-modified models. Thus, 

mice with double-knockout of ApoE- and LDL-receptor 

were created. Unfortunately, being fed with a normal diet, 

these mice do not exhibit lesions more developed than 

early foam-cell, fatty-streak stage (Veseli et al., 2017; 

Mirоnоv et al., 2020).  

Another important difference is that in experimental 

animals the atheroma narrows the vascular lumen, while 

in humans this is not common. This can be explained by 

the differences between the intima in large arteries of 

humans and model animals. Thus, human intima 

includes cells of different types, as well as the intima of 

large animals. Such cell types include pericytes and 

maybe SMCs, while the intima of small animals consists 

of only endothelium and the basal membrane. In 

humans, the vast majority (84-93%) of the intimal cells 

exhibit antigens of smooth muscle cells and pericyte-like 

stellate cells (Andreeva et al., 1992). 



Anastasia Vladimirovna Poznyak et al. / OnLine Journal of Biological Sciences 2024, 24 (3): 382.394 

DOI: 10.3844/ojbsci.2024.382.394 

 

390 

Conclusion 

Thrombosis carries serious risks to life and health. 

Despite the fact that in most cases fragmentation of 

atherosclerotic plaques does not lead to the formation of 

blood clots as such, such a problem still exists. Thrombus 

formation on disrupted plaques is influenced by factors 

such as vascular wall thrombogenicity, altered blood 

flow, and imbalances in blood hemostasis. Studies 

conducted on both human and animal models of 

atherothrombosis have revealed significant factors that 

contribute to the process of thrombus formation and 

propagation. These factors include platelets, extrinsic and 

intrinsic coagulation factors, pro-inflammatory factors, 

plaque hypoxia, and alterations in blood flow. In some 

cases, platelets concentrate around the plaque fragment 

and form a thrombus, which can clog the vessel and lead 

to gangrene or heart attack. The molecular basis of this or 

the fate of a fragment of an atherosclerotic plaque is not 

fully understood. Most likely, the reason lies in the 

different levels of secretion of factors that stimulate 

platelet aggregation. However, such a concern still exists. 

Platelet activation and the discharge of granules 

appear to be pivotal in both the initiation of 

atherosclerosis and acute atherothrombosis. 

Nevertheless, despite such point-like findings, the 

development of atherothrombosis as a complication of 

atherosclerosis has yet to be elucidated. 
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