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Abstract: The clinical behavior and molecular pathology of prostate cancer 
is highly variable. Current “traditional” prognostic markers cannot reliably 
distinguish the potentially life-threatening cancer from indolent cancer. 
Identification of additional new predictors of cancer aggressiveness is 
therefore urgently required. This communication is aimed at a brief review 
of new biomarkers in prostate cancer diagnostics and prognostics. Pubmed 
systematic search was performed to collect both original and review articles 
addressing prostate cancer prognostic biomarkers using key words genetics, 
prostate cancer, biomarkers and prognosis. The development of molecular 
and immunohistochemical methods enabled the identification of potential 
biomarkers in relation to diagnosis and prognosis. Numerous promising 
markers and approaches have been identified. Some of these markers may 
be translated into clinical practice after verification in larger prospective 
trials in future and can help to determine diagnosis and prognosis of CaP 
more accurately.  
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Introduction 

Prostate Cancer (PCa) is most common 

nondermatologic malignancy of men in Western Europe 

(Jemal et al., 2009; Ziaran et al., 2009). The clinical 

behavior and molecular pathology of PCa is highly 

variable. Identifying patient subgroups that require less 

treatment from those that should be targeted with more 

aggressive therapy is therefore a key goal. Because of 

the highly variable natural history of PCa, additional 

new predictors of cancer aggressiveness are urgently 

required. Over-treatment of PCs is a particular concern 

leading to substantial cardiovascular and skeletal 

morbidity (Ziaran et al., 2013a; 2013b). This is 

especially true for many Prostrate-Specific Antigen 

(PSA) screen-detected cancers, which in the absence of 

treatment, may never become life threatening. 

Conversely, more conservative approaches to disease 

detection and management can leave potentially 

aggressive cancers untreated. Therefore, improved 

biomarkers are required to allow radical therapies to be 

targeted to men with potentially lethal cancers, so that 

the others, with more benign-behaving indolent cancers, 

are spared inappropriate treatment. 

Current “traditional”  clinicopathologic prognostic 
markers predictive of outcome in men with CaP after 
Radical Retropubic Prostatectomy (RRP) consist of 

Gleason score, TNM stage, surgical margin status and 
preoperative serum Prostate-Specific Antigen (PSA) 
(Zummerova et al., 2010; Epstein et al., 2005; 
Repiska et al., 2005). Beyond the current 
clinicopathologic parameters, there have been other 
biomarkers and approaches proposed to: (i) 
Distinguish between indolent and potentially life 
threatening disease (ii) aid the decision for rebiopsy in 
previous negative biopsies with rising PSA, (iii) 
monitor the disease progression and its responsivness to 
therapy These approaches and markers include Genome-
Wide Association Studies (GWAS), chromosomal 
aberrations, DNA-based markers, RNA-based 
biomarkers and protein markers (tissue, serum, urine 
biomarkers) (Manolio, 2010). Available methods to 
identify potential biomarkers include genomics, 
proteomics and tissue based immunohistochemical 
staining. Quantitation of cancer biomarker transcripts 
using Real-Time quantitative Polymerase Chain 
Reaction (qRT-PCR) of large samples may help in the 
search for clinically useful cancer biomarkers that can be 
integrated into clinical trial design (Jiang et al., 2007). 
Gene expression array technology applied to PCa has 
resulted in the identification of a number of genes that 
have been associated with outcome. More recently, 
Next-Generation Sequencing (NGS) have been 
described, which could bring promising information in 
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our understanding of the cancer genome of several tumor 
types (Macconaill and Garraway, 2010). 

This article provides review of current most promising 

molecular and immunohistochemical biomarkers in CaP 

diagnosis, prognosis and clinical behavior. 

Materials and Methods 

Pubmed systematic search was performed to collect 

both original and review articles addressing CaP 

prognostic biomarkers using key words genetics, 

prostate cancer, biomarkers and prognosis. 

Results and Discussion 

Genetics of Prostate Cancer 

Initiation of prostate cancer is a process resulting 

from the progressive accumulation of genetic disorders. 

On the basis of the constellation of polymorphisms of 

germ cell cancer the risk of developing cancer is 

individual. The cumulative effect of polymorphism 

genome may lead to one or more disorders and/or may 

“offer” an environment for further genetic alterations in 

prostate epithelial cells. Over time, additional somatic 

genetic disorders alter the behavior of prostate epithelial 

cells until it represents signs of malignancy (Zheng et al., 

2008). Epigenetic alterations are other common events in 

carcinogenesis, including CaP, which may lead to 

aberrant expression of critical genes such as tumor 

suppressors and oncogenes. Although most CaP are 

classified into a single group of adenocarcinomas, there 

is no universal molecular path of CaP development. It is 

also unlikely that two prostate adenocarcinomas share 

the same genetic path in the development of cancer. 

Genetic and genomic technologies have helped to clarify 

the changes in genes that lead to the development of 

CaP. These changes provide a molecular basis from 

which diagnostic, prognostic and predictive 

biomarkers can be developed (Febbo, 2009). For 

genetically determined diseases, genetic alterations 

can be identified via methods of molecular genetics 

(e.g., polymerase chain reaction, fluorescence in situ 

hybridisation, genome sequention). These alterations, 

when identified, can be in turn used as biomarkers for 

prognosis of CaP and other cancers. 

Criteria for a Candidate Biomarker 

The National Cancer Institute defines a biomarker 

as a biological molecule found in blood, other body 

fluids, or tissues that is a sign of a normal or abnormal 

process or of a condition or disease. A biomarker may 

be objectively measured and evaluated as an 

indication of normal biologic processes, pathogenic 

processes, or pharmacologic responses to a particular 

treatment or condition. 

Biomarker is an analyte that signifies the presence or 

degree of a biological process, which in itself is 

frequently directly linked to the clinical expressions and 

result of a particular disease. The selection of a cancer 

biomarker should have a biological or therapeutic basis 

or, at minimum, the biomarker should indicate a reliable 

correlation with the presence, characteristics, or 

aggressiveness of the cancer. Also, there should be an 

evaluation of the strength of the marker in relation to the 

outcome of the disease, which, together with other 

factors, should be carried out as an independent predictor 

in a multivariable assay in the general population 

(Hartwell et al., 2006). Biomarkers for the diagnosis and 

prognosis of PCa include DNA-based markers, RNA-

based biomarkers and protein markers. They may be 

useful for prognostic purposes in the outcome of 

diseases, with particular attention on the quantitative 

biomarkers that demonstrate a relationship with the 

clinical manifestation of the disease and that have an 

effect on quality of life, risk of complications, or 

survival. Surrogate biomarkers have a significant 

function in disease monitoring after accepted treatments 

are introduced. Surrogates are particularly important for 

those treatments that are uncommon, such as cases in 

which the direct study has proved to be very difficult 

because of the limited number of patients and varying 

expression of their primary illness or in which the 

efficiency of the treatment must justify the high cost. 

Identifying Discriminating Markers 

With the completion of the Human Genome Project, 

the publication of the International Haplotype Map 

Project (a catalog of millions of common single 

nucleotide polymorphisms, or SNPs, in the human 

population) and a decrease in the cost of high-throughput 

genotyping, an unbiased genomewide search for 

inherited variants associated with PCa risk has become 

feasible. This approach, called a Genome-Wide 

Association Study (GWAS), scans the entire genome, 

evaluating common inherited variants (minor allele 

frequency >1-5% in the population) in large numbers of 

cases and controls (Manolio, 2010). 

GWAS indicate genetic heterogeneity for the onset of 

disease with numerous low risk loci described along with 

two notable high-risk loci at 8q24 and 7q31. The linked 

loci on 8q24 are located immediately downstream of the 

MYC gene that is upregulated in PCa (Beuten et al., 

2009; Robbins et al., 2007). 

There are several potential mechanisms by which a 

genetic variant may be associated with altered cancer 

risk, including: (i) Genetic linkage to a coding variant in 

a cancer-relevant gene (i.e., the risk SNP is merely a 

proxy for the true causal exonic variant that was not 

tested in the GWAS), (ii) alteration in promoter/enhancer 

binding sites or chromatin structure affecting expression 
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of adjacent or distant genes, or (iii) change in the 

expression of noncoding RNAs. There is also a high 

probability that PCa genes/alleles act cooperatively in 

the aetiopathogenesis of the disease supporting the 

notion that it is unlikely that any one biomarker alone is 

likely to be conclusive in detecting and predicting 

outcome of cancer (Clarke et al., 2010). 

Novel Biomarkers for CaP Diagnosis 

The PCA3 and TMPRSS2: ERG Fusion 

PCA3 is a noncoding RNA with expression confined 

to the prostate and which is highly overexpressed in 95% 

of PCas compared with normal or benign hyperplastic 

prostate tissue (Salagierski and Schalken, 2012). PCA3 

has been assayed from urine following prostatic massage 

in 11 separate clinical studies totalling 2737 men from 

Western countries (Tosoian et al., 2010; Van Gils et al., 

2007; Marks et al., 2007) with an overall sensitivity of 

69% and specificity of 70% for men with PCa. The role 

of PCA3 in clinical practice as a commercially-

available test remains uncertain with most advocates 

indicating a place in patients who have already had 

TRUS biopsies with a negative result for cancer but in 

whom PCa remains suspected. 

Detection of the TMPRSS2: ERG fusion in urine has 

been reported to yield >90% specificity and 94% positive 

predictive value for PCa detection (Hessels et al., 2007), 

although a clinical diagnostic test is not yet available. 

The combination of urinary PCA3 and TMPRSS2-

ERG with serum PSA levels has been reported to 

improve screening performance compared to PSA 

alone (Salami et al., 2013). Moreover, the recent study 

indicates that integration of levels TMPRSS2: ERG 

transcripts in urine, with PCA3-score androgenic status, 

genetic status and traditional clinical variables could 

significantly increase detection of high risk localized 

PCa (Cornu et al., 2013). 

Early Prostate Cancer Antigen 

Leman et al. (2007) reported results on a serum 

biomarker called Early Prostate Cancer Antigen (EPCA) 

using an antibody assay against the EPCA-2.22 epitope. 

The study involved 385 men and reported a 92% 

specificity for healthy men and men with benign prostatic 

hyperplasia and a 94% sensitivity for overall PCa 

detection. In addition, the authors indicated that EPCA-

2.22 was highly accurate in differentiating between 

localized and extracapsular disease (Witt et al., 2000). 

SPINK1 

SPINK1 (also referred to as TAT1) is a biomarker for 

PCa that can be detected in prostatic massage urine. 

SPINK1, a trypsin inhibitor secreted from pancreatic 

acinar cells, is thought to function in the prevention of 

trypsin-catalyzed premature activation of zymogens 

within the pancreas and the pancreatic duct. Mutations of 

this gene are associated with hereditary pancreatitis and 

tropical calcific pancreatitis (Bhatia et al., 2002). 

Laxman et al. (2008) showed that a multiplexed 

qPCR assay including SPINK1 on sedimented urine 

from patients presenting for prostate biopsy or 

prostatectomy outperformed serum PSA or PCA3 alone. 

SPINK1 expression in urine is also an independent 

predictor of biochemical recurrence after resection. On the 

other hand, recent study concludes that SPINK1 protein 

expression (evaluated by immunochemistry) may not be a 

predictor of recurrence or lethal PCa amongst men treated 

by radical prostatectomy (Flavin et al., 2014). 

α-Methylacyl Coenzyme A Racemase (AMACR) 

AMACR is an enzyme localized to the peroxisome 

and involved in fat metabolism and has been identified 

to function as a growth promoter, independent of 

androgens, in prostate cancer (Zha et al., 2003). By 

using various experimental methods and different PCa 

specimens, the AMACR gene has been shown to be 

overexpressed in PCa tissue at the mRNA and protein 

levels and making it a highly specific tissue biomarker 

currently used to aid in the pathological diagnosis 

(Jiang et al., 2004). 

When PCa tissues were compared with normal 

controls, a 9-fold increase in mRNA levels of AMACR 

was discovered in 88% of the sample PCa tissues 

(Rogers et al., 2004). Immunodetectable serum 

autoantibodies generated in response to the AMACR 

tumor-associated antigen may also be useful in 

preliminary diagnosis, especially if combined with PSA 

screening. A considerably more enhanced sensitivity and 

specificity in PCa patients with mid-range PSA levels 

have been observed with AMACR antibodies than that 

with PSA. This demonstrates that AMACR can be useful 

in discriminating control subjects from those with PCa 

(Sreekumar et al., 2004). Interestingly, it has been 

described, that trifluoroibuprofen, an AMACR inhibitor, 

reduces cancer cell proliferation and Inhibits in vivo 

tumor growth in aggressive PCa models (Festuccia et al., 

2014). This makes AMACR one of possible 

therapeutical targets in future. 

Glutathione S-transferase P1 (GSTP1) 

GSTs are aubiquitous family of multifunctional 

enzymes that conjugate reactive substrates with reduced 

Glutathione (GSH) and are involved in detoxification. 

Their role is in protecting the cells from oxidative attack. 

The GSTP1 gene has been observed to be unmethylated 

in all normal human tissues and BPH, but hypermethylated 

in specimens of PCa tissues (Harden et al., 2003). GSTP1 

has been shown to be acutely sensitive in detecting the 

presence of prostatic intraepithelial neoplasia and PCa, 
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thereby distinguishing patients with these diseases from 

patients with BPH (Lee et al., 1994).  

Biomarkers for Determining CaP Prognosis and 

Progression 

Loss of PTEN 

The PTEN gene on 10q23 is mutated in up to 1/3 of 
hormone refractory PCa and homozygous deletions and 
mutations have been identified in a subset of primary 
PCa. Loss of PTEN protein in primary PCa, as determined 
by immunohistochemistry, correlates with high Gleason 
score and advanced stage (McMenamin et al., 1999). 
PTEN is a dual protein and lipid phosphatase that is 
responsible for dephosphorylation and inactivation of 
phosphatidylinositol 3,4,5-trisphosphate (PIP3), a second 
messenger that is produced after activation of PIP3 
kinase in response to ligation of several growth factor 
receptors, including IGF-1. PIP3 activates the protein 
kinase AKT. AKT signalling results in inhibition of 
apoptosis in response to a variety of signals and to 
increased cell proliferation (Vivanco and Sawyers, 2002). 
In assessing the relationship of PTEN deletion with the 

TMPRSS2-ERG fusion, two independent groups found 

that patients with neither lesion had a favorable 

prognosis (Reid et al., 2010). 

Other markers tested in combination with PTEN loss 
for prognostic information include tumor protein p27 
gene loss (Halvorsen et al., 2003), hemoxygenase-1 
overexpression (Li et al., 2011) and HER2/3 
overexpression (Ahmad et al., 2011). A four-protein 
signature, as assessed by immunohistochemical staining 
for PTEN in combination with a subset of proteins 
involved in tumor growth factor-b signaling: SMAD4, 
cyclin D1 and SPP1, was found to predict biochemical 
recurrence significantly better than Gleason score alone 
(Ding et al., 2011). The most promising pathway in 
which this is likely to be employed in the near future is 
the PTEN/PI3K pathway as a number of clinical trials 
using inhibitors of this pathway are in development or 
underway in PCa (Thomas et al., 2004). 

Thus, the measurement of PTEN protein levels and 
downstream targets of AKT in prostate needle biopsies 
may have value in the future if these trials show promise 
(Thomas et al., 2004). It remains to be determined which 
combinations of events will provide the most reliable 
prognostic information to guide clinical decision 

making. Moreover, it has been found that PI3K and 
Androgen Receptor (AR) pathway crosstalk plays an 
intortant role in castrate resistant PCa development, with 
potentially important implications for PCa etiology and 
therapy (Mulholland et al., 2011). 

C-MYC 

The C-MYC protein is a nuclear transcription 

factor that regulates a number of cellular processes 

including cell cycle progression, metabolism, 

ribosome biogenesis, protein synthesis and 

mitochondrial function (Dang et al., 2006). In PCa, 

there is evidence that C-MYC is involved in PCa 

progression since a region encompassing the MYC locus 

(8q24) is somatically amplified at low levels in a subset 

of patients and the presence of amplification in this 

region correlates with both high histological grade and 

worse prognosis (Ribeiro et al., 2007). 
It has been long known that a subset of PCa lesions 

express elevated levels of MYC mRNA, often in 
parallel with increased expression of PIM-1, a gene 
known to cooperate with MYC in other malignancies 
(Tomlins et al., 2006) and that is often overexpressed 
in PCa (Cibull et al., 2006). Targeted overexpression 
of the human MYC gene in the mouse prostate results 
in early invasive prostate adenocarcinoma and rare 
metastatic adenocarcinoma (Ellwood-Yen et al., 
2003). These findings provide evidence that C-MYC 
overexpression can drive neoplastic transformation in 
the mouse prostate and thus may play a role in 
initiation and progression of human PCa. 

AZGP1 and hCAP-D3 

Zinc-Alpha2-Glycoprotein (AZGP1) is present in 
high concentration in human seminal plasma and 
considered to be a soluble homologue of MHC-I 
(Hassan et al., 2008). Some studies reported on the 
highly predictive value of AZGP1 expression after 
Radical Prostatectomy (RP) specimens as as a 

predictor of metastatic PCa (Henshall et al., 2006). In 
addition, urine detected AZGP1 showed promising 
results in the prediction of PCa, making him a 
potentional urine biomarker (Katafigiotis et al., 2012). 
Lapointe et al. (2008) reported a combination of 
immunohistology for AZGP1 and RNA in situ 

hybridisation for hCAP-D3 expression in tissues from 
RP specimens which distinguished even more clearly 
those patients whose tumours would reccur. 

Annexin A3 (ANXA3) 

ANXA3 has an inverse relationship to cancer and the 

immunhistochemical staining in prostatic tissue 

correlates with disease progression, Gleason score and 

malignancy. ANXA3 belongs to a family of calcium 

and phospholipid binding proteins that are implicated 

in cell differentiation and migration, 

immunomodulation, bone formation and 

mineralization in PCa metastasis (Gerke et al., 2005). 

ANXA3 represents a promising candidate tissue marker and 

when combined with the standard prognostic parameters, 

may provide a more precise prediction of prognosis in the 

individual patient (Köllermann et al., 2008). 

Forkhead Box Protein A1 (FOXA1) 

FOXA transcription factors are potent, context-

specific mediators of development that hold specialized 



Zuzana Varchulova Novakova et al. / OnLine Journal of Biological Sciences 2014, 14 (4): 277.285 

DOI: 10.3844/ojbsci.2014.277.285 

 

281 

functions in hormone-dependent tissues. Over the last 

several years, FOXA1 has emerged as a critical mediator 

of nuclear steroid receptor signalling, manifest at least in 

part through regulation of androgen receptor and 

oestrogen receptor activity. Recent findings point 

towards a major role for FOXA1 in modulating nuclear 

steroid receptor activity in breast and PCa and suggest 

that FOXA1 may significantly contribute to pro-

tumourigenic phenotypes (Augello et al., 2011). 

Jain et al. (2011) examined the expression of 

forkhead box protein A1 (FOXA1). Their findings 

suggest that increased expression of FOXA 1 is 

associated with the development of metastatic CaP. 

Metastatic PCa specimens demonstrated high nuclear 

FOXA1 staining in 89% of tissues as compared with 

19% of patient-matched primary tumour samples. 

FOXA1 colocalized with androgen receptor in all 

samples and FOXA1 levels were positively correlated 

with tumour size, extraprostatic extension and lymph 

node metastasis. Such data implicate that FOXA1 is 

strongly associated with metastatic disease in PCa. 

Epigenetic Alterations and Prostate Carcinogenesis 

Epigenetic alterations represent important 

contributing factors in prostate carcinogenesis and may 

provide useful biomarkers for disease progression 

(Nelson et al., 2009). For example, DNA methylation 

has been implicated in silencing genes involved in signal 

transduction, hormonal response, cell cycle control and 

oxidative damage response, such as GSTP1 and others 

(Harden et al., 2003). 

One key modification associated with prostate 

carcinogenesis is trimethylation of lysine residue 27 

of his tone H3 (H3K27-me3), which is mediated by 

the his tone methyltransferase enzyme Ezh2, a key 

oncogenic driver of advanced disease and metastasis 

(Varambally et al., 2002). Since the H3K27-me3 mark is 

associated with transcriptional repression, increased 

levels in PCa are associated with repression of tumor 

suppressor genes such as DAB2IP, a member of the Ras 

GTPase family (Chen et al., 2005). 

A number of other genes have also been found to be 

hypermethylated in PCa. Using quantitative real-time 

methylation specific PCR (Real Time-MSP), 

Yegnasubramanian et al. (2004) assessed the extent of 

hypermethylation in 16 different genes in PCa and 

found strikingly high frequencies of hypermethylation 

in the CpG islands associated with APC, RASSF1a, 

PTGS2 and MDR1, but virtually no methylation in 

normal prostate tissues. 

It is clear that epigenetic regulation plays an 

important role in the development and progression of 

CaP, but the significance of identified genes still 

remains hypothetical (Febbo, 2009). There is 

mounting evidence, however, that methylation of 

genes (e.g., GSTP1, APC, PTGS2, EDNRB and 

T1G1) plays an important role in the development and 

prognosis of CaP, that makes then promising 

biomarkers in near future (Tomlins et al., 2005). 

Androgen Receptor and Prostate Cancer 

Although androgen deprivation therapy is the gold 

standard for the treatment of metastatic CaP, patients 

gradually become resistant to castration levels of 

androgens and the disease progresses. It is now clear that 

even though CaP progression in a state of low levels of 

androgens, most cancers is still dependent on stimulation 

of Androgen Receptor (AR) (Ziaran et al., 2011). 

In the vast majority of PCa, it is clear that AR 

function is essential for tumor development and 

progression, that these activities are supported by 

FOXA1 and that resurgent AR activity after hormone 

therapy (a hallmark of the transition to lethal disease) 

requires FOXA1 activity (Linja et al., 2001). 

At present, it is impossible to distinguish carcinoma, 

which is really independent of AR stimulation and 

cancer which maintains the dependence. Therefore, there 

are currently being developed predictors based on AR 

transcriptional activity, which could predict the activity 

of AR during treatment (Pulukuri et al., 2007). 

In normal prostate epithelium, AR suppresses cellular 

proliferation, as probasin-Cre-mediated conditional 

deletion of AR leads to increased proliferation 

accompanied by decreased expression of differentiation 

markers (Kawamoto et al., 2007). In PCa, however, AR 

suppresses proliferation of basal cells, supports survival of 

luminal cells and promotes metastasis (Phé et al., 2010). 

When PCa progresses to castration resistance, AR 

activation and signaling remains sustained through a 

variety of mechanisms. Several molecular mechanisms 

have been described for the ability of AR to retain 

signaling activity in castration resistant PCa. These 

mechanisms include the amplification of AR gene copy 

number in approximately one-third of castration-resistant 

carcinomas (Tomlins et al., 2005). Another 10-30% of 

tumors have gain-of-function mutations of AR that may 

confer increased protein stability, greater sensitivity to 

androgens, novel responses to other steroid hormones, 

ligand-independent activity, or increased recruitment of 

AR coactivator proteins (Demichelis et al., 2007). In 

addition, recent studies have shown that expression of 

alternative splice isoforms encoding constitutively active 

AR variants also occurs in castration-resistant cancer 

(Maher et al., 2009). Finally, an unusual mechanism for 

increased AR signaling activity is the endogenous 

expression of androgen synthetic enzymes by tumor 

tissue, which can lead to de novo androgen synthesis or 

conversion of weaker adrenal androgens into 

testosterone and dihydrotestosterone (Varambally et al., 

2005). Ligand-independent activation of AR activity can 
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also take place through activation of growth factor 

signaling pathways. Notably, up-regulation of the PI3K 

pathway through Pten deletion appears to be particularly 

effective, as PIN lesions in Nkx3.1; Pten double-mutant 

mice display castration resistance prior to carcinoma 

formation (Tomlins et al., 2007). 

Conclusion 

There is an urgent need for novel biomarkers for 

assessing CaP diagnosis and prognosis, due to the highly 

variable natural history of CaP. “Traditional” markers 

cannot reliably distingish the potientially life-threatenig 

cancer from insignificant cancer. The development of 

molecular and immunohistochemical methods enabled 

the identification of potential biomarkers in relation to 

prognosis. Numerous promising markers and approaches 

have been identified and used (expression of FOXA1, 

loss of PTEN, fusion of genes TMPRSS2 ERG and 

ETV1, C-MYC, ANXA3, AR and FOXA1, AMACR, 

GWAS, epigenetic modifications, next generation 

sequencing, combination of “traditional” markers with 

novel biomarkers). In addition, attempts to identify 

cancers with different response to hormonal therapy have 

been used. The common feature of most current studies 

is their lack of prospectivity, limited mumber of patients 

and have to be verified in larger prospective studies. 

However, some of these markers may be translated into 

clinical practice in future and can help to assess 

prognosis of CaP more accurately. 
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