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Abstract: Gamma distribution is a widely used distribution to analyze data 

in many disciplines such as hydrology, meteorology, environmental 

monitoring, lifetime testing and reliability. In this study, we look at the 

statistical inference for the quantiles of two-parameter gamma distribution. 

The testing and estimation of gamma quantile are required especially in 

areas such as flood frequency analysis and life testing. For this problem, all 

the statistical inference methods available in the statistical literature are 

approximate methods. In this study, we propose two methods to tackle this 

problem. The first method is an exact statistical inference procedure 

utilizing the generalized p-value technique. The procedure is exact in the 

sense that it is based on exact probability statements rather than based on 

approximations. The second procedure is based on the parametric bootstrap 

approach. We apply the proposed methods to several examples with real 

data sets and compare the results with other existing methods. A limited 

simulation study is given to compare the performance of the proposed 

methods with other existing methods. Overall, according to the 

simulation results, in terms of size and power, these two new methods 

perform well over the other existing methods whether it is related to 

lower or higher quantiles. 

 

Keywords: Generalized Inference, Generalized p-values, Gamma 

Quantiles, Confidence Limits, Tolerance Limits 

 

Introduction 

The gamma distribution is a widely used distribution 

for the analysis of rainfall data, pollution data, 

environmental monitoring data and lifetime data. In the 

analysis of rainfall and hydrological data, the gamma 

distribution or gamma-related distributions (Aksoy, 2000; 

Ashkar and Bobèe, 1988; Ashkar and Ouarda, 1998), such 

as the Pearson type 3 and the log-pearson type 3 

distributions are very frequently used. In exposure and 

pollution data analysis, gamma models are used as an 

alternative to lognormal models (Maxim et al., 2006). 

Gibbons (1995) shows applications with groundwater and 

environmental monitoring data. Husak et al. (2007) 

showed that the gamma distribution is a very good choice 

for modeling rainfall data. 

In these areas of research, it is often required to 

estimate quantiles, tolerance limits and prediction limits 

of a gamma distribution. In this article, we consider 

statistical inference related to the quantiles of two-

parameter gamma distribution. 

Let X  G (, ), where both  and  are unknown 

parameters. Here  is the shape parameter and  is the scale 

parameter. The parameter of interest is the qth quantile q, 

which is defined as Pr (X q) = q, where 0< q <1 is a 

known constant. Using a random sample X1, X2, …., Xn, 

we want to construct a Lower Confidence Limit (LCL) 

and Upper Confidence Limit (UCL) and test the upper-

tailed hypothesis (or lower-tailed hypothesis): 

 

0 1: : qH against H       (1) 

 

where,  is a known constant. 

There are many papers written in the existing 

literature, regarding the estimation and testing of the 

gamma parameters and functions of gamma parameters. 

When both parameters are unknown, with few exceptions, 

almost all the statistical inference procedures available in 

the statistical literature are approximate procedures. 

Engelhardt and Bain (1977) gave a uniformly most 

powerful test to test the scale parameter . Bain et al. 

(1984) provided an approximate test for testing the gamma 
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mean . Bhaumik et al. (2009) provided tests for the 

shape parameter  and the mean . Krishnamoorthy and 

León‐Novelo (2014) provided approximate small sample 

likelihood-based statistical inference procedures for the 

gamma parameters and the mean. 

Bain et al. (1984) proposed an approximate tolerance 

limit for the two-parameter gamma distribution. Their 

method consists of replacing the unknown shape para-

meter  with the maximum likelihood estimate of it and 

utilizing an approximation that is accurate only for small 

values of q of the gamma distribution. They showed that 

their method provides satisfactory estimates for the LCL 

when the value of q is lower than 0.2. Their method works 

well with their applications since the lower tail is more 

important than the upper tail in reliability and industrial 

engineering applications. However, this is not the case 

with most applications that arise in hydrological 

applications and flood frequency analysis (Ashkar and 

Ouarda, 1998), the higher values of q are often the ones 

under scrutiny. Therefore, they are more interested in the 

values of q for higher values of q. For example, in flood 

frequency analysis, the 100-year flood is associated with 

the quantile q with q = 0.99; it is often desired to get LCL 

for q (Ashkar and Bobée, 1988). Furthermore, these types 

of data are highly skewed and the gamma distribution and 

gamma-related distributions are frequently used to analyze 

the data in these areas. In these areas of research, there are 

many papers in the literature related to estimation q; but 

they all use approximate methods. 

Ashkar and Ouarda (1998) gave an approximate 

method to construct confidence limits for q using 

transformed data. This method is frequently used in 

hydrology and flood frequency analysis to construct 

confidence intervals for q. Their method is briefly 

described in the next section. By utilizing the X1/3 

transformation, Krishnamoorthy et al. (2008) proposed an 

approximate method for testing and estimating the 

parameters and functions of gamma parameters. Their 

method is also briefly described in the next section. 

Aryal et al. (2008) showed that the two-parameter 

gamma distribution can be approximated by a normal 

distribution when the shape parameter is large. They 

suggested using normal-based tolerance limits if the 

maximum likelihood estimator of the  is more than 

7. Otherwise, they provided tabular values to 

construct tolerance factors. 

Weerahandi and Gamage (2016) introduced a general 

method to tackle statistical inference problems for a two-

parameter continuous distribution. Using this method, 

they showed that one can get an exact test and confidence 

intervals for the gamma parameters and the mean using 

the generalized p-value approach. In this article, we utilize 

their approach to find an exact statistical inference 

procedure for the quantiles of the two-parameter gamma 

distribution. The test is exact in the sense that it is based 

on exact probability statements rather than based on 

approximations. Furthermore, we introduce a parametric 

bootstrap method to carry out statistical inference of q. 

Inference for Gamma Quantiles 

The minimal sufficient statistics for  and  are given 

by 
1

n

i iS X ==  and 
1

n

i iP X == . These two statistics S and 

P are not independent, but a statistic T defined as a ratio 

of the geometric mean and the arithmetic mean is 

independent of S (Bhaumik et al., 2009). Therefore, the 

joint statistic (S, T) is defined by: 

 

( )
( )

1
1

1

1 1

/ n
n / nn
i i

i n
i i i

X P
S X and T

S / nX / n / n





=

= =

= = =  (2) 

 

provides an independently distributed joint sufficient 

statistic for the statistical inference regarding parameters 

 and . In the first two subsections, we summarize two 

leading statistical procedures and the confidence bounds 

for the gamma quantiles. 

Materials and Methods 

Ashkar and BobÈe Method 

Ashkar and Ouarda (1988) introduced an approximate 

procedure to construct the confidence limits using 

transformed data. We refer to this method as the AB 

method. Their approximate procedure is based on the fact 

that X is distributed as FX
-1 (FY (Y); where X is a gamma 

random variable with the cdf FX and Y is a normal random 

variable with the cdf FY. They came up with the following 

approximately 100(1-)% LCL and UCL for q. 
 

1 2X p X pLCL X S K , UCL X S K= + = +  (3) 

 

where, 2 2

1 1/ ( ) / ( 1);n n

i i X i iX X n, S X X n = == = − − Kp1 

and Kp2 are the values of 
1

thp and 
2

thp quantiles of the 

standardized gamma variate with the coefficient of 

skewness . The coefficient of skewness for the gamma 

distribution 2 / = is estimated using the maximum 

likelihood estimate of . The values of p1 and p2 are given by: 

 

( )1 1

1
n , qp t z n

n
 −

 
=  

 
 

 

and: 

( )2 1 1

1
n , qp t z n

n
 − −

 
=  

 
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Here  (.) is the standard normal cdf, zq is the qth 

quantile of the standard normal distribution and ta;b (c) is 

the bth quantile of the noncentral t-distribution with degrees 

of freedom a and noncentrality parameter c. A two-sided 

approximate 100 (1-2)% confidence interval for q is given 

by (LCL, UCL), where LCL and UCL are given in (3). 

The values of Kp can be approximated using the formula: 
 

3
2

( ) 1 1
6 6

pK z

 



   
 − + −  

   

 

 

where, 2 / = is the coefficient of skewness of the gamma 

distribution, which is estimated using the maximum likelihood 

estimate. This approximation works well when 2  and 

many other approximations are given for other values. The 

references for these approximations and tabulated values for 

Kp are given in Bobee and Ashkar (1991). 

Normal Approximation Approach 

Aryal et al. (2008) argued that the gamma distribution 

can be approximated by a normal distribution when the 

maximum likelihood estimator of the shape parameter of the 

gamma distribution is larger than 7. Krishnamoorthy et al. 

(2008) pointed out that the normal approximation appears 

to not be useful for statistical inference related to gamma 

parameters, but it is accurate for the computation of the 

prediction intervals, tolerance intervals and for statistical 

inference regarding stress-strength reliability parameters. 

Krishnamoorthy et al. (2008) investigated the accuracy 

and appropriateness of the X1/3 transformation suggested 

by Wilson and Hilferty (1931) to analyze the gamma data. 

They showed that the X1/3 transformation works much 

better than the X1/4 transformation which is known as the 

Hawkins and Wixley (1986) approximation. After 

transforming the data, they utilized the available normal 

tolerance intervals (Guttman, 1967) to carry out the 

inferences for the gamma data. Overall, they concluded that 

the X1/3 transformation provides a simple, easy-to-use 

approach for dealing with various problems related to the 

gamma distribution. In our analysis, we use the X1/3 

transformation approach to analyze the data. From here on 

we will refer to the method associated with the X1/3 

transformation as the Normal Approximation (NA) method. 

With the normal approximation method, 

approximate 100 (1-)% LCL and UCL for the gamma 

quantile q is given by: 
 

3 3

1 2,Y YLCL Y c S UCL Y c S   = + = +      (4) 

 
where, 1 3 2 2

1 11,2,..... ; / ( ) ( 1)/ n n

i i i i Y i iY X , i ,n Y Y n, S Y Y / n = == = = = − -  

Here c1 and c2 are given by: 

 

1 -1,γ 2 -1,1-γ

1 1
= t ( ) , = t ( )n q n qc z n c z n

n n
 

where, zq is the qth quantile of the standard normal 

distribution and ta,b (d) is the bth quantile of the noncentral 

t-distribution with degrees of freedom a and noncentrality 

parameter d. The two quantities c1 and c2 are referred to as 

tolerance factors. The two-sided approximate 100 (1-2)% 
confident interval for q is given by (LCL, UCL), where LCL 

and UCL are given in (4). 

Statistical inference for the tolerance limits and 

confidence intervals go hand in hand. To describe this, let 

q denote the "content" and 1- denote the coverage 

probability of a tolerance interval. Then the Upper 

Tolerance Limit (UTL) for the two-parameter gamma 

distribution with content q and the coverage probability 1- 

is given by the UCL that is given in 4. 

The Lower Tolerance Limit (LTL) with content q and the 

coverage probability 1- can be obtained by replacing the plus 

sign with the minus sign in the UCL formula, i.e., 
3

2[ ]YLTL Y c S= + . Or else, LTL can be obtained by computing 

100 (1-  )% LCL given in (4) for the (1-Q)th quantile 1-q. 

Generalized Inference Procedure 

To describe the method introduced by Weerahandi and 

Gamage (2016), let X1, X2,…., Xn be a random sample 

from a two-parameter continuous density ( ; , )X f x    

with a joint minimal sufficient statistics (S, T). Both 

parameters are assumed to be unknown and let be  the 

parameter of interest. Let FT (t; , ) = Pr(T  t) be the cdf 

of T. Then U = FT (T) has a uniform distribution over 0 and 1 

and ( ; )U U T , =  is a function of ,  and T. At the 

observed value t of T, if u (t) is the value of u, then u (t) = Ft 

(t; , ) For a fixed value of t, this is a function of  and 

when treated as a function of , u () = FT (t; , ). Let u-1 

be its inverse function satisfying the equation u-1 (u()) = . 

Now, define the random variable Rb (T; , , t) = u-1 (U (T)), 

which satisfies the following two properties: 

 

1. At the observed value t of T, Rb (t;, , t) =  and 

2. The distribution of Rb is free of the parameter  

 

The random quantity Rb (T; , , t), at times, is denoted 

as ˆ  (U )  since this is the quantity that is used to replace 

 the construction of the generalized pivotal quantity.  

Now, let 
/ ( ; , )S T tF s  =

be the cdf of the conditional 

distribution of S given T = t. Let us denote it by W (S, t) = 

FS/T = t (S) and it is distributed as W  U (0, 1). This 

conditional distribution does not depend on t. Therefore, 

the unconditional distribution of W (S, T) is U (0, 1) and 

it is independent of T. 

For the testing and estimation , Weerahandi and 

Gamage (2016) defined a Generalized Test Variable 

(GTV) and a Generalized Pivotal Quantity (GPQ) using 

the random quantity: 
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( , ; , )

( , ; ( ), )

W S T
R

ˆw s t U

 

 
=  

 

where, W and U are independent uniform U  U (0, 1) 

random variables. 

If the cdf of R is monotonically increasing with respect to 

the parameter of interest , then the hypothesis 
0 0:H  

1 0:H   can be tested using the p-value: 
 

( )0

0

, ; ,
1 ( , ; ), )

, ; ,

W( S T )
ˆp  Pr E w s t (U

ˆw( s t (U ) )

 
 

 

 
=  = 

 
 

 

where, the expected value is taken with respect to the 

uniform U (0, 1) random variable. 

Generalized Inference Procedure for Gamma Quantiles 

Now let us consider the statistical inference for the qth 

quantile q of the gamma distribution G(, ); where both  

and  are unknown parameters. Here   is the shape 

parameter and  the scale parameter. The joint statistics 

(S, T) defined in (2) is an independently distributed complete 

minimal sufficient statistic for and  . 

Let F,  (.) Denote the cdf of the gamma G(, ) 

distribution. Then F,  (q) = q and: 
 

0 ( )

q
y

/ y e
dy q


 

 

−

=
-1

 (5) 

 

The parameter of interest q = q (, ) can be written as: 

 
1

,1( , ) ( ) ( ,1)q qF q     −= =  

 

where, 1

,1(.)F

−  is the inverse cumulative distribution 

function of G(, 1) i.e., the qth quantile of the gamma 

distribution G(, 1). 

Since q is the parameter of interest, let us 

reparametrize the problem with parameters q and ; 

treating  as the nuisance parameter. Now X  G (, q/) 

and S  G(n, q/). 

Furthermore, the statistic T is scale-invariant and the 

distribution of T does not depend on  , it only depends on

 . Therefore, we can use it to estimate the nuisance 

parameter  . Following the technique introduced by 

Weerahandi and Gamage (2016), let FT (t; ) = Pr (T  t) 

be the cdf of T. Then U = FT(T; ) has a uniform 

distribution over 0 and 1 and U = U(T; ) is a function of 

T and . In general, U could be a function of T and both 

unknown parameters  and . At the observed value t of 

T, if u (t) is the value of u, then ( ) ( ; )Tu t F t = . For a fixed 

value of t; this is a function of  and when treated as a 

function of , u() = FT(t; ), Let u-1 be its inverse function 

satisfying the equation u-1 (u()) = . Now, define the 

random variable Rb(T; , t) = u-1 (u(T)), which satisfies the 

following two properties: 
 

1. At the observed value t of T, Rb (t; , t) =   

2. The distribution of Rb is free of the parameter  
 

The quantity (T; , )bR t will be used to replace   the 

construction of the generalized pivotal quantity and 

therefore let us denote it by ( ) ( ; , )b
ˆ U R T t = . 

Now consider the cdf of the conditional distribution of 

S given 
S/, ( ; , )T t qT t F s  == .As before, if we denote it by 

( )S /T tF S=
, W is distributed as U(0,1). Since S and T are 

independent, W (S, T) and T are independent. Now we can 

de ne a generalized pivotal quantity for as: 
 

( ; , )

( , ; ( ; ) ) ( ( ), )

q

b q q

W S,T W
R

ˆw s t R T ,t , w s,t; U

 

   
= =  

 
where, ( , ; , )qW W S T  = and U = U (T) are independent 
uniform U (0, 1) random variables. The value of R is equal 
to one at the observed values s of S and t of T. 
Furthermore, the distribution of R is free of the nuisance 
parameter  and therefore R is a generalized pivotal 
quantity for q. 

The cdf of the R is monotonically non-decreasing with 
respect to the parameterq and the hypothesis H0 :q   

against H1 :  >  can be tested using the p-value. 
 

( )( )
( , ; , )

1 , ; ( ),
 ( , ; ( ),

qW S T
ˆp  Pr E w s t U

ˆw s t U

 
 

 

 
=  = 

 
 

 
where, the expected value is taken with respect to the 

uniform U (0, 1) random variable. 

Confidence intervals and tolerance limits can be 

constructed using the generalized pivotal quantity R. The R 

depends only on q and any percentile of the distribution of 

R is only a function of q. Furthermore, the generalized 

pivotal quantity R is a monotonically non-decreasing function 

of q. Therefore, the LCL for a 100 (1-)% upper confidence 

interval for q would be the th percentile of the distribution 

is equal to one. Similarly, the UCL for a 100(1-)% lower 

confidence interval for q would be the the (1-)th percentile 

of the distribution is equal to 1. Moreover, the interval 

(LCL, UCL) is a two-sided 100 (1-2)% confidence 

interval for q. The computations of LCL and UCL can be 

carried out with simulation by generating a large number 

of uniform random numbers from U and W. 

The Upper Tolerance Limit (UTL) for the gamma 

distribution with content q and the coverage probability 1- 

is equal to the UCL stated above. The Lower Tolerance 

Limit (LTL) with content q and the coverage probability 

1- can be obtained by constructing 100 (1-)% LCL for 

the (1-q) th quantile 1-q. 
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A Parametric Bootstrap Approach 

In this section, we outline another approach utilizing 

the parametric bootstrap approach. With the parametric 

bootstrap, inference is done by generating random 

samples from an estimated model, which is achieved by 

replacing the unknown parameters with their estimates. In 

order to establish the estimated model, we utilize the 

maximum likelihood estimates of  and . 

For gamma quantiles, confidence limits can be 

established as follows: 

 

Step 1: For sample data x1, x2,…., xn, first compute the 

maximum likelihood estimates of ,  and q. 

Let; , ˆ̂   and 
q̂  be those maximum likelihood 

estimates respectively 

Step 2: Generate a large number of bootstrap samples 

(say N = 5000) from the gamma distribution with 

the shape parameter ̂  and the scale parameter ̂

. For each of these samples, find the maximum 

likelihood estimate of q and let 
q ,i̂  (i = 1, 2, N) 

be those estimates 

Step 3: The approximate 100(1 )%−   Lower Confidence 

Limit (LCL) for q is given by the th  percentile of 

the estimates 1,2,...,q,i
ˆ ( i N ) = . The approximate 

100(1 )%−   Upper Confidence Limit (UCL) for q 

is given by the (1 )th−  percentile of the estimates 

, ( 1,2,..., )q i
ˆ i N − . A two-sided approximate 

100(1 2 )%−  confidence interval q is given by 

(LCL, UCL)  

 

With respect to the tolerance limits, the Upper 

Tolerance Limit (UTL) for the gamma distribution with 

content q and the coverage probability 1- is given by 

the UCL as described above. The Lower Tolerance 

Limit (LTL) with content q and the coverage 

probability 1- can be obtained by evaluating the 100 

(1-)% LCL for the (1-q)th quantile. 

For the hypothesis testing, the upper-tailed hypothesis 

given in (1) can be tested at the  level by rejecting H0 if 

the (1-)t percentile of the estimates
, ( 1,2,..., )q i
ˆ i N =  is 

larger than the null hypothesized  value. Similarly, the 

lower-tailed hypothesis can be tested at the  level by 

rejecting H0 if the th percentile of the estimates

, ( 1,2,..., )q i
ˆ i N =  is less than the null hypothesis  value. 

However, since the hypothesis testing is done under the 

assumption of null hypothesis, one can obtain a better 

parametric bootstrap procedure for testing as follows. 

We can reparametrize the problem in terms of (, q ) 

instead of (); where q is the qth quantile. For given values 

of q and ; let  *(, q ) be the solution of  for Eq. (5). 

This solution has to be evaluated numerically. By replacing 

 with  *(, q ); the likelihood function can be written as: 
 

*( , )
( , ) ( , ) ( ( ( , ))) qnS / * * n

q q qL e P
           

−− −= -1  
 
where, S and P are the sufficient statistics given in (2). Under 

the null hypothesis in (1), assume the worst possible value q  

which is q = . Then the likelihood function has only one 

unknown parameter. The maximum likelihood estimate of 

this unknown parameter  say m can be obtained by 

maximizing the log-likelihood function: 
 

( ) ( 1) ( ) )) ( )l S / * ln P nln( ( * n * ln      = − + − − −  
 

Here *  represents * (, ). 

Now bootstrapping can be done by generating a large 

number of datasets from the gamma distribution with the 

shape parameter *(, q ) and the scale parameter. 

Testing the hypothesis given in (1) can be done as follows. 

Proposed parametric bootstrap testing procedure 

(referred to as PB method): 

 

Step 1: For sample data x1, x2,…., xn, compute the 

maximum likelihood estimate of  and   the 

maximum likelihood estimate of q ,
q̂    

Step 2: Under the null hypothesis (1), using the sample 

data x1, x2,…, xn, compute
m̂  by maximizing (6) 

and then compute the corresponding shape 

parameter ( , )m
ˆ*    

Step 3: Generate a large number of bootstrap samples 

(say N = 5000) from the gamma distribution with 

the shape parameter *(
m̂ ,) and the scale 

parameter
m̂ . For each of these samples and find 

the maximum likelihood estimate q; as outlined 

in step 1. Let ( 1,2,..., )q
ˆ i N = be these estimates. 

Compute the th and (1-)th percentiles of the 

estimates ( 1,2,..., )q
ˆ i N = . Let LC be the th 

percentile and UC be the(1-)th percentile 

respectively 

Step 4: For the upper-tailed hypothesis given in (1), reject 

the null hypothesis at -level if 
q̂ is larger than the 

UC. Similarly, the lower-tailed hypothesis can be 

tested at -level if 
q̂ is smaller than the LC 

 

Instead of reparametrizing the problem with (, q ), one 

could approach the problem by reparametrizing in terms of 
(, q ) and try to take the computational advantage coming 

from Eq. (5). It certainly works but runs into computational 

issues when the shape parameter  is large. 

Some similarities exist between the Generalized 

Test Variable (GTV) approach and the parametric 

bootstrap methods. In the case of one-way anova, 
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Weerahandi and Krishnamoorthy (2019) showed that 

the parametric bootstrap procedure can be derived as a 

GTV method by considering an appropriate test 

variable. In the case of two-way ANOVA, Ananda et al. 

(2023) showed that the parametric bootstrap procedure 

can be derived as a GTV method. For a complete coverage 

of generalized test variable approach along with 

applications, see the books by Weerahandi (1995; 2004). 

Examples 

In this section, we will apply these methods to several 
real data sets. In hydrological studies, researchers are 
often interested in confidence intervals for upper quantiles 
values and our rest example is from this area. 

Example 1. Stream Flows for the Harricana River 

Ashkar and Ouarda (1998) analyzed the maximum 
river discharges recorded during the month of September 
over the period of 1940-1968 for the Hurricane River in 
Canada. The recorded 27 discharge values are as follows. 

119.0, 126.0, 39.9, 101.0, 43.3, 62.6, 51.0, 49.6, 32.8, 

61.4, 18.7, 39.1, 88.6, 49.6, 92.6, 22.9, 70.8, 65.4, 86.1, 

62.0, 84.7, 106.0, 26.8, 81.6, 38.8, 117.0, 65.7. 

Using the AB method, Ashkar and Ouarda (1998) 

analyzed this data to and a 90% confidence interval for a 

100-year flood, which is .99th quantile .99. They showed 

that the 90% confidence interval for .99 is given by 

(133.38, 208.62). The 90% confidence intervals using the 

NA, GM and PB methods yield (135.669, 214.076), 

(136.022, 212.690) and (126.133, 193.769) respectively. 

The 90% confidence intervals for 0.1, which goes with 

a 10-year flood using the AB, NA, GM and PB methods 

yield (22.65, 38.81), (21.52, 38.16), (21.40, 37.63) and 

(24.104, 40.196), respectively. 

Example 2. Alkalinity Concentrations in Groundwater 

Krishnamoorthy et al. (2008) used the following 

alkalinity concentration levels in groundwater data set to 

illustrate their method. The 37 alkalinity concentration 

levels are: 58, 82, 42, 28, 118, 96, 49, 54, 42, 51, 66, 89, 40, 

51, 54, 55, 59, 42, 39, 40, 60, 63, 59, 70, 32, 52 and 79. 

The data set was originally reported by Gibson 

(1994) and the gamma distribution was shown to 

provide a good fit to this data. Aryal et al. (2008) used 

this data to demonstrate the appropriateness of the 

straightforward normal approximation if the shape 

parameter is larger than 7. The 90% confidence 

intervals for .9 using the AB, NA, GM and PB methods 

yield (74.780, 96.857), (75.084, 97.705), (75.029, 

97.812) and (72.664, 93.178) respectively. 

The 90% confidence intervals for .1 using AB, NA, 

GM and PB methods yield (0.092, 0.384), (0.067, 

0.379). (0.084, 0.378) and (0.114, 0.430) respectively. 

Note that the Upper Tolerance Limits (UTL) with a 

content of .95 and coverage probability of 0.9 using the 

methods AB, NA, GM and PB are given by 96.875, 

97.705, 97.812 and 93.178, respectively. Similarly, the 

Lower Tolerance Limits (LTL) with a content of .95 and 

coverage probability of 0.9 using the methods AB, NA, 

GM and PB are given by 28.805, 28.343, 28.180 and 

30.376 respectively. 

Results 

In this section, we provide a limited simulation 

study to compare the performance of the AB, NA, GM 

and PB methods. 

The rest simulation study is to evaluate the size 

performance of these methods to test the lower and upper 

hypotheses stated in (1). We use the following parameters 

and sample size configurations:  = 0.5, 1.0, 1.5, 5.0,  = 

1.0, 5.0, n = 10, 20. Under each of these configurations, 

using 5000 simulated samples, the lower and upper 

hypotheses stated in (1) were tested for the quantile levels 

q = 0.1, 0.3, 0.5, 0.7, 0.9. For all these size calculations, 

the intended level is set at 0.05. The actual sizes, i.e., the 

simulated rejection rates were calculated and the results 

are reported in Tables 1-2. As explained in chapter 2, the 

calculations of the GM and PB methods involve 

simulations and each of these simulated sample sizes is 

kept at 5000. 
 
Table 1: Type I error performance of competing tests  = 1 

Actual size of lower/upper-tailed tests for testing qth quantile (intended level 0.05) 

---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

q: 0.1 0.3 0.5 0.7 0.9 

Method/case:  = 0.5,  = 1, n = 10 
GM 0.048(0.043) 0.049(0.041), 0.060(0.040) 0.060(0.040) 0.055(0.040)  
NA 0.019(0.025) 0.019(0.053) 0.042(0.062) 0.066(0.058) 0.082(0.044) 
AB 0.037(0.065) 0.040(0.063) 0.050(0.055) 0.067(0.043) 0.088(0.034) 
PB 0.055(0.053) 0.054(0.052) 0.051(0.052) 0.051(0.051) 0.050(0.054) 
Method/case:  = 1.0,  = 1, n = 10 
GM 0.031(0.036) 0.055(0.036) 0.058(0.026) 0.044(0.041) 0.055(0.038)  
NA 0.033(0.042) 0.036(0.051) 0.047(0.053) 0.057(0.051) 0.059(0.046)  

AB 0.037(0.067) 0.043(0.064) 0.053(0.056) 0.066(0.046) 0.076(0.038) 
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Table 1: Continue  

PB 0.055(0.053) 0.052(0.050) 0.048(0.050) 0.049(0.052) 0.050(0.053) 

Method/case:  = 1.5,  = 1, n = 10 

GM 0.046(0.042) 0.051(0.042) 0.059(0.045) 0.060(0.046) 0.059(0.042)  

NA 0.039(0.045) 0.043(0.050) 0.049(0.051) 0.054(0.050) 0.054(0.047)  

AB 0.038(0.068) 0.047(0.064) 0.056(0.057) 0.065(0.047) 0.071(0.038)  

PB 0.056(0.052) 0.050(0.051) 0.049(0.053) 0.051(0.052) 0.052(0.053) 

Method/case:  = 5,  = 1, n = 10 

GM 0.036(0.036) 0.046(0.048) 0.054(0.064) 0.046(0.047) 0.046(0.025)  

NA 0.047(0.049) 0.048(0.051) 0.050(0.050) 0.051(0.050) 0.051(0.049)  

AB 0.039(0.068) 0.049(0.063) 0.058(0.058) 0.063(0.049) 0.068(0.039)  

PB 0.051(0.051) 0.051(0.051) 0.047(0.051) 0.051(0.052) 0.050(0.055) 

Method/case:  = 0.5,  = 1, n = 20 

GM 0.051(0.054) 0.052(0.048) 0.059(0.044) 0.055(0.042) 0.054(0.037)  

NA 0.020(0.022) 0.011(0.070) 0.030(0.079) 0.063(0.063) 0.097(0.038) 

AB 0.040(0.061) 0.039(0.059) 0.044(0.049) 0.057(0.040) 0.078(0.038)  

PB 0.054(0.051) 0.051(0.052) 0.053(0.053) 0.052(0.052) 0.050(0.050)  

Method/case:  = 1.0,  = 1, n = 20 

GM 0.047(0.034) 0.047(0.034) 0.053(0.046) 0.055(0.046) 0.058(0.049)  

NA 0.030(0.040) 0.030(0.057) 0.044(0.057) 0.057(0.052) 0.065(0.042)  

AB 0.041(0.064) 0.043(0.059) 0.049(0.051) 0.058(0.045) 0.070(0.040)  

PB 0.055(0.049) 0.050(0.049) 0.051(0.051) 0.052(0.052) 0.050(0.050) 

Method/case:  = 1.5,  = 1, n = 20 

GM 0.052(0.042) 0.053(0.042) 0.062(0.043) 0.062(0.044) 0.054(0.044)  

NA 0.036(0.046) 0.039(0.053) 0.046(0.053) 0.054(0.050) 0.057(0.045)  

AB 0.041(0.063) 0.045(0.058) 0.051(0.053) 0.059(0.045) 0.067(0.041)  

PB 0.054(0.050) 0.052(0.051) 0.052(0.052) 0.049(0.050) 0.051(0.051) 

Method/case:  = 5.0,  = 1, n = 20 

GM 0.041(0.051) 0.042(0.048) 0.052(0.038) 0.052(0.044) 0.054(0.043)  

NA 0.047(0.049) 0.048(0.050) 0.049(0.051) 0.052(0.050) 0.051(0.048)  

AB 0.040(0.062) 0.047(0.058) 0.054(0.054) 0.057(0.048) 0.063(0.041)  

PB 0.052(0.051) 0.052(0.053) 0.052(0.052) 0.052(0.052) 0.051(0.050) 

 
Table 2: Type I error performance of competing tests when  = 5 

Actual size of lower/upper-tailed tests for testing qth quantile (intended level 0.05) 

---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

q: 0:1 0.3 0.5 0.7 0.9 

Method/case:  = 0.5,  = 5, n = 10 

GM 0.049(0.044) 0.049(0.041) 0.060(0.042) 0.060(0.038) 0.053(0.042) 

NA 0.019(0.026) 0.020(0.052) 0.041(0.061) 0.066(0.057) 0.083(0.044) 

AB 0.036(0.066) 0.040(0.065) 0.051(0.056) 0.067(0.043) 0.088(0.035) 

PB 0.054(0.053) 0.054(0.053) 0.047(0.052) 0.050(0.053) 0.050(0.053) 

Method/case:  = 1.0,  = 5, n = 10 

GM 0.040(0.036) 0.057(0.045) 0.058(0.047) 0.061(0.040) 0.056(0.036)  

NA 0.032(0.041) 0.036(0.051) 0.048(0.053) 0.056(0.051) 0.059(0.046)  

AB 0.038(0.068) 0.044(0.064) 0.054(0.057) 0.065(0.046) 0.075(0.037)  

PB 0.055(0.052) 0.052(0.051) 0.051(0.051) 0.052(0.051) 0.050(0.054) 

Method/case:  = 1.5,  = 5, n = 10 

GM 0.045(0.043) 0.050(0.042) 0.056(0.047) 0.061(0.045) 0.059(0.040)  

NA 0.038(0.046) 0.042(0.051) 0.048(0.052) 0.054(0.050) 0.054(0.048)  

AB 0.038(0.068) 0.046(0.064) 0.056(0.056) 0.065(0.049) 0.072(0.038)  

PB 0.052(0.048) 0.052(0.051) 0.053(0.050) 0.049(0.052) 0.049(0.053) 

Method/case:  = 5,  = 5, n = 10 

GM 0.056(0.048) 0.064(0.050) 0.057(0.052) 0.053(0.049) 0.053(0.038)  

NA 0.048(0.049) 0.049(0.050) 0.050(0.050) 0.050(0.049) 0.051(0.049)  

AB 0.037(0.067) 0.049(0.064) 0.057(0.058) 0.063(0.049) 0.069(0.039)  

PB 0.055(0.050) 0.054(0.049) 0.051(0.050) 0.051(0.052) 0.049(0.053) 

Method/case:  = 0.5,  = 5, n = 20 
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Table 2: Continue  

GM 0.051(0.055) 0.051(0.048) 0.060(0.044) 0.055(0.042) 0.054(0.037)  

NA 0.020(0.022) 0.011(0.069) 0.031(0.080) 0.064(0.063) 0.098(0.037)  

AB 0.041(0.061) 0.039(0.058) 0.043(0.049) 0.056(0.040) 0.077(0.038)  

PB 0.054(0.051) 0.054(0.052) 0.050(0.050) 0.047(0.052) 0.049(0.054) 

Method/case:  = 1.0,  = 5, n = 20 

GM 0.048(0.044) 0.047(0.043) 0.054(0.041) 0.049(0.043) 0.055(0.047)  

NA 0.030(0.041) 0.030(0.057) 0.044(0.058) 0.056(0.051) 0.064(0.043)  

AB 0.040(0.063) 0.043(0.057) 0.049(0.052) 0.059(0.044) 0.069(0.040)  

PB 0.052(0.051) 0.050(0.050) 0.052(0.052) 0.051(0.052) 0.050(0.052) 

Method/case:  = 1.5,  = 5, n = 20 

GM  0.059(0.049) 0.056(0.047)  0.048(0.042)  0.048(0.043) 0.46(0.044) 

NA 0.037(0.046) 0.038(0.053) 0.047(0.053) 0.054(0.050) 0.057(0.045)  

AB 0.040(0.063) 0.045(0.059) 0.050(0.052) 0.058(0.045) 0.066(0.041)  

PB 0.051(0.051) 0.052(0.051) 0.050(0.050) 0.049(0.052) 0.051(0.051) 

Method/case:  = 5.0,  = 5, n = 20 

GM 0.045(0.048) 0.053(0.058) 0.057(0.061) 0.052(0.054) 0.053(0.057)  

NA 0.047(0.049) 0.048(0.050) 0.049(0.051) 0.051(0.049) 0.052(0.049)  

AB 0.041(0.062) 0.048(0.058) 0.053(0.053) 0.059(0.048) 0.063(0.041)  

PB 0.051(0.052) 0.051(0.051) 0.051(0.050) 0.050(0.052) 0.051(0.052) 

 

Discussion 

According to these simulations, when  is small and q 

is large, both the NA and AB methods have highly 

elevated type 1 error rates for the lower-sided tests. When 

gets large, the disadvantage diminishes with the NA 

method. Notice here that when   and q are both small, the 

NA test tends to be too conservative. Overall, with respect 

to type 1 error rates, the PB test performs well for all of 

the scenarios considered. 

Next, we carry out a limited simulation study to 

compare the powers of these four tests. The power 

comparison is done without adjusting the size. These tests 

have different type 1 error rates and ideally, the sizes of 

these tests need to be adjusted to the same level for such 

a comparison. Adjusting the size to the same level is a 

time-consuming task and at this point, it is beyond the 

scope of our article. 
We select n = 10,   = 5.0 to run the power 

comparison. For  and q, the choices  = 0.5, 1.0, 1.5, 

5.0 and q = 0.1, 0.3, 0.5, 0.7, 0.9 were selected. The 
power comparison is done for the lower and upper-sided 
hypotheses stated in (1). Furthermore, in order to display 
the selected choices for  that species in (1), we 
introduce the ratio c = q. For the given values of c and 
q, the values of  were selected. The simulation was done 

under these parameter configurations and the rejection 
rates are reported in Tables 3-6. 

When c = 1, by design the null hypothesis is true and the 

rejection rates are the actual size (type 1 error rates) for the 

test. When c>1, the alternative hypothesis is true and the 

choice is associated with a lower-tailed test and the rejection 

rate is the power of the test for that choice. Similarly, when 

c<1, the rejection rate is the power of the upper-tailed test 

associated with that choice. Tables 3-6 correspond to the 

choices of  = 0.5, 1.0, 1.5, 5.0, respectively. 

According to these limited power simulation results, 

the following performance patterns were observed. 

For the Lower Tailed Tests 

When  and q are small, both the GM and PB 
methods perform well. In these cases, in terms of the 
size, both the NA and AB tests are too conservative. 

When  gets larger, the size disadvantage goes away 
with the NA method. 

When  small and q is large, the power of the NA 
and AB tests is higher than the GM and PB methods. 
However, in these cases, the NA and AB methods have 
highly elevated type 1 error rates. When  gets larger, 

the size disadvantage goes away with the NA method. 

For the Upper Tailed Tests 

When  and p are small, the AB test possesses good 

power performance. However, in this case, the AB test has 

an elevated type 1 error rate. Even with large  values, the 

AB test possesses elevated type 1-error rates. When  and 

p are small, the NA method performs poorly. But when  

gets larger, the NA method's performance becomes better. 

When  small and p is large, the performance of all 

methods is somewhat similar. 

In general, according to these simulations, when the 

shape parameter  gets larger, the performance of the NA 

method gets better. This is expected since the gamma 

distribution is less skewed when the shape parameter is 

large. According to Aryal et al. (2008), when the shape 

parameter of the gamma is larger than 7, the gamma 

distribution can be approximated by a normal distribution. 

Overall, by taking into account both the size and power 

performance, the GM method and the PB method perform 

better than the other two procedures with statistical 

inference related to the gamma quantiles. 
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Table 3: Power performance of lower and upper-tailed tests when  = 0.5,  = 5, n = 10 

  For lower-tailed test     For upper-tailed test 

  -------------------------------------------------------   ------------------------------------------------------ 

p c NA AB GM PB p c NA AB GM PB 

.1 1.0 0.019 0.036 0.049 0.054 .1 .1 0.083 0.299 0.259 0.273 

 1.5 0.042 0.073 0.090 0.098  .25 0.060 0.186 0.154 0.169 

 2.0 0.072 0.115 0.136 0.156  .5 0.041 0.117 0.084 0.101 

 2.5 0.106 0.157 0.191 0.201  .75 0.031 0.084 0.058 0.073 

 3.0 0.145 0.203 0.232 0.251  1 0.026 0.066 0.044 0.053 

.3 1.0 0.020 0.040 0.049 0.054 .3 .1 0.548 0.633 0.540  0.595 

 1.5 0.075 0.123 0.173 0.158  .25 0.325 0.377 0.295 0.343 

 2.0 0.166 0.240 0.307 0.286  .5 0.160 0.191 0.139 0.169 

 2.5 0.280 0.367 0.436 0.416  .75 0.089 0.107 0.074 0.094 

 3.0 0.404 0.492 0.558 0.540  1 0.052 0.065 0.041 0.053 

.5 1.0 0.041 0.051 0.060 0.047 .5 .1 0.947 0.898 0.852 0.892 

 1.5 0.152 0.175 0.221 0.168  .25 0.699 0.614 0.541 0.604 

 2.0 0.317 0.353 0.406 0.351  .5 0.329 0.282 0.229 0.276 

 2.5 0.493 0.535 0.594 0.530  .75 0.143 0.125 0.927 0.120 

 3.0 0.649 0.691 0.732 0.685  1 0.061 0.055 0.042 0.052 

.7 1.0 0.066 0.067 0.060 0.050 .7  .1 0.994 0.987 0.987 0.991 

 1.5 0.220 0.220 0.210 0.170  .25 0.878 0.815 0.802 0.848 

 2.0 0.420 0.420 0.405 0.346   .5 0.466 0.384 0.373 0.431 

 2.5 0.612 0.609 0.580 0.524  .75 0.178 0.138 0.125 0.161 

 3.0 0.757 0.758 0.733 0.677   1 0.057 0.043 0.038 0.053 

.9 1.0 0.083 0.088 0.053 0.050 .9  .1 0.997 0.996 0.998 0.998 

 1.5 0.249 0.254 0.188 0.152  .25 0.907 0.898 0.904 0.920 

 2.0 0.448 0.449 0.332 0.291   .5 0.489 0.462 0.487 0.524 

 2.5 0.632 0.623 0.479 0.442  .75 0.169 0.146 0.163 0.192 

 3.0 0.768 0.755 0.607 0.568   1 0.044 0.035 0.042 0.053 

 

Table 4: Power performance of lower and upper-tailed tests when  = 1.0,  = 5, n = 10 

  For lower-tailed test    For upper-tailed test 

  ---------------------------------------------   ---------------------------------------------------------------- 

p c NA AB GM PB p c NA AB GM PB 

.1 1.0 0.032 0.038 0.040 0.055 .1 10 0.349 0.594 0.491 0.547 

 1.5 0.120 0.129 0.148 0.168  .25 0.211 0.360 0.237 0.316 

 2.0 0.258 0.265 0.275 0.315  .5 0.112 0.189 0.088 0.153 

 2.5 0.412 0.412 0.501 0.457  .75 0.067 0.110 0.041 0.085 

 3.0 0.558 0.551 0.671 0.604  1 0.041 0.068 0.036 0.052 

.3 1.0 0.036 0.044 0.057 0.052 .3 .1 0.906 0.937 0.899  0.915 

 1.5 0.220 0.244 0.267 0.265  .25 0.639 0.693 0.600 0.651 

 2.0 0.512 0.538 0.554 0.575  .5 0.294 0.340 0.258 0.296 

 2.5 0.758 0.774 0.812 0.789  .75 0.125 0.151 0.108 0.124 

 3.0 0.897 0.907 0.925 0.918   1 0.051 0.064 0.045 0.051 

.5 1.0 0.048 0.054 0.058 0.051 .5 .1 0.998 0.998 0.996 0.998 

 1.5 0.291 0.317 0.316 0.307  .25 0.927 0.916 0.884 0.909 

 2.0 0.630 0.661 0.662 0.646  .5 0.518 0.514 0.442 0.496 

 2.5 0.860 0.879 0.886 0.866  .75 0.186 0.190 0.150 0.173 

 3.0 0.958 0.966 0.965 0.960  1 0.053 0.057 0.047 0.051 

.7 1.0 0.056 0.065 0.061 0.052 .7  .1 1.000 1.000 1.000 1.000 

 1.5 0.306 0.336 0.294 0.283  .25 0.987 0.982 0.983 0.988 

 2.0 0.636 0.667 0.611 0.595  .5 0.684 0.655 0.647 0.684 

 2.5 0.855 0.875 0.853 0.828  .75 0.240 0.222 0.209 0.162 

 3.0 0.952 0.961 0.956 0.936  1 0.051 0.046 0.040 0.051 

.9 1.0 0.059 0.075 0.056 0.050 .9 .1 1.000 1.000 1.000 1.000 

 1.5 0.274 0.321 0.285 0.232  .25 0.992 0.990 0.989 0.993 

 2.0 0.556 0.607 0.592 0.479  .5 0.721 0.659 0.662 0.736 

 2.5 0.773 0.811 0.785 0.689  .75 0.248 0.221 0.182 0.270 

 3.0 0.899 0.919 0.887 0.830  1 0.046 0.037 0.036 0.054 
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Table 5: Power performance of lower and upper-tailed tests when  = 1.5,  = 5, n = 10 

  For lower-tailed test     For upper-tailed test 

 ----------------------------------------------------   ------------------------------------------------- 

p c NA AB GM PB p c NA AB GM PB 

.1 1.0 0.038 0.038 0.045 0.052 .1  .1 0.603 0.798 0.738 0.759 

 1.5 0.204 0.194 0.223 0.246  .25 0.370 0.522 0.438 0.464 

 2.0 0.461 0.441 0.466 0.499   .5 0.176 0.260 0.201 0.210 

 2.5 0.692 0.672 0.707 0.712  .75 0.087 0.131 0.090 0.104 

 3.0 0.846 0.831 0.849 0.854   1 0.046 0.068 0.043 0.048 

.3 1.0 0.042 0.046 0.050 0.052 .3  .1 0.985 0.993 0.982 0.988 

 1.5 0.349 0.365 0.399 0.383  .25 0.833 0.872 0.818 0.841 

 2.0 0.747 0.759 0.770 0.769   .5 0.421 0.476 0.397 0.427 

 2.5 0.939 0.942 0.950 0.947  .75 0.157 0.191 0.150 0.161 

 3.0 0.990 0.990 0.992 0.991   1 0.051 0.064 0.042 0.051 

.5 1.0 0.048 0.056 0.056 0.053 .5  .1 1.000 1.000 1.000 1.000 

 1.5 0.411 0.437 0.443 0.417  .25 0.986 0.986 0.977 0.985 

 2.0 0.816 0.837 0.843 0.824   .5 0.676 0.683 0.623 0.665 

 2.5 0.969 0.975 0.977 0.970  .75 0.237 0.251 0.204 0.234 

 3.0 0.996 0.997 0.994 0.997  1 0.052 0.056 0.047 0.050 

.7 1.0 0.054 0.065 0.061 0.049 .7  .1 1.000 1.000 1.000 1.000 

 1.5 0.392 0.433 0.405 0.371  .25 0.999 0.999 0.999 0.999 

 2.0 0.781 0.813 0.791 0.761  .5 0.826 0.815 0.801 0.832 

 2.5 0.950 0.961 0.950 0.942  .75 0.305 0.295 0.270 0.313 

 3.0 0.991 0.994 0.994 0.988   1 0.050 0.049 0.045 0.052 

.9 1.0 0.054 0.072 0.059 0.049 .9  .1 1.000 1.000 1.000 1.000 

 1.5 0.321 0.381 0.322 0.296  .25 0.990 0.999 0.999 0.999 

 2.0 0.655 0.717 0.653 0.610  .5 0.848 0.829 0.846 0.859 

 2.5 0.867 0.902 0.861 0.828  .75 0.314 0.284 0.298 0.329 

 3.0 0.957 0.971 0.952 0.933   1 0.048 0.038 0.040 0.053 

 
Table 6: Power performance of lower and upper-tailed tests when  = 5.0,  = 5, n = 10 

  For lower-tailed test     For upper-tailed test 

  ----------------------------------------------   ---------------------------------------------------- 

p c NA AB GM PB p c NA AB GM PB 

.1 1.0 0.048 0.037 0.050 0.055 .1 .1 0.997 1.000 0.999 0.999 

 1.5 0.686 0.654 0.686 0.702  .25 0.931 0.968 0.938 0.949 

 2.0 0.986 0.983 0.985 0.989  .5 0.561 0.653 0.561 0.581 

 2.5 1.000 1.000 1.000 1.000  .75 0.203 0.262 0.201 0.208 

 3.0 1.000 1.000 1.000 1.000  1 0.049 0.067 0.048 0.050 

.3 1.0 0.049 0.049 0.057 0.054 .3 .1 1.000 1.000 1.000 1.000 

 1.5 0.865 0.865 0.932 0.869  .25 1.000 1.000 1.000 1.000 

 2.0 1.000 0.999 1.000 0.999  .50 0.901 0.928 0.889 0.902 

 2.5 1.000 1.000 1.000 1.000  .75 0.373 0.425 0.350 0.375 

 3.0 1.000 1.000 1.000 1.000  1 0.050 0.063 0.050 0.049 

.5 1.0 0.050 0.057 0.058 0.051 .5 .1 1.000 1.000 1.000 1.000 

 1.5 0.868 0.886 0.876 0.870  .25 1.000 1.000 1.000 1.000 

 2.0 1.000 1.000 1.000 1.000  .5 0.990 0.992 0.984 0.991 

 2.5 1.000 1.000 1.000 1.000  .75 0.544 0.573 0.540 0.548 

 3.0 1.000 1.000 1.000 1.000  1 0.050 0.058 0.052 0.050 

.7 1.0 0.050 0.063 0.053 0.051 .7 .1 1.000 1.000 1.000 1.000 

 1.5 0.778 0.821 0.790 0.779  .25 1.000 1.000 1.000 1.000 

 2.0 0.996 0.997 0.997 0.996  .50 0.999 0.999 0.997 0.999 

 2.5 1.000 1.000 1.000 1.000  .75 0.655 0.652 0.650 0.670 

 3.0 1.000 1.000 1.000 1.000  1 0.049 0.049 0.049 0.052 

.9 1.0 0.051 0.069 0.053 0.049 .9 .1 1.000 1.000 1.000 1.000 

 1.5 0.592 0.668 0.627 0.585  .25 1.000 1.000 1.000 1.000 

 2.0 0.946 0.968 0.955 0.944  .50 0.998 0.998 0.996 0.998 

 2.5 0.997 1.000 0.998 0.994  .75 0.634 0.601 0.607 0.646 

 3.0 1.000 1.000 1.000 1.000  1 0.049 0.039 0.038 0.053 
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Conclusion 

Statistical inference on gamma quantiles has very 

useful applications in many disciplines such as hydrology, 

environmental monitoring and life testing. However, all 

of the statistical inference procedures available in the 

statistical literature are approximate procedures due to the 

complexity of the structure of the gamma distribution. 

According to the simulation results, in some cases, the 

type 1 error rates of the approximate procedures are either 

too conservative or too liberal depending on whether it is 

related to the low or high quantiles. In this study, we 

introduced two new methods, one utilizing the 

generalized p-value technique (GM) and the other 

utilizing the Parametric Bootstrap technique (PB). Both of 

these new procedures perform well over the entire range 

of the quantiles q, 0< q <1. Overall, by taking into 

account both size and power performance, the GM 

method and the PB method perform better than the other 

two procedures whether it involves lower or higher 

quantile values or whether it involves the lower or upper-

tailed tests. However, the PB method has advantages over 

the GM method, due to its computational simplicity. 
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