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Abstract: In this paper we introduce adjusted transformation methods for 

off-line quality control. The proposed methods result in proper 

performance measures for the determination of the controllable factors 

that affect the mean and variability of the response variable of interest. 

The details of the proposed adjusted transformations are provided and 

compared with the well-known Box and Coxtransformation and the 

safeguard method of Logothetis. The performance abilities of the 

proposed methodology are demonstrated on quality control data, 

considering both a real dataset and a simulated one. 

 

Keywords: Quality Control, Adjusted Transformation Methods, Control 

Factors, Performance Measures, ANOVA 

 

Introduction 

Data transformation has been long recognized to play 

a key role in statistical quality control with particular 

interest lying in the determination of control factors that 

affect the mean and the variability of a response variable 

of interest. The well-known Box and Cox (1964) 

transformation has been found to interact effectively 

with the off-line quality control analysis (Taguchi and 

Konishi, 1987) serving adequately the above purposes. 

Transformations play also an important role in 

regression analysis (Cook and Weisberg, 1999). Such 

transformations often succeed in resolving issues related 

to the variability of the error term and as a result 

achieving to a quite satisfactory degree of 

homoskedasticity. Homoskedasticity is directly 

connected to the independence between the mean and the 

variance which should be reflected into the sample 

equivalen characteristics. 

Logothetis (1990) attempted to provide an improved 

technique of safeguarding against the possibility of 

violating the homoskedasticity, or rather, the 

independence between mean and variance. 

Another issue of great importance in data 

transformation is the case where negative values are 

involved. Several attempts to define transformation 

classes that include negative values have been suggested. 

Logothetis (1990), Cook and Weisberg (1999) and Yeo 

and Johnson (2000) have addressed the problem and 

proposed a number of such important transformations. 

Based on the aforementioned, the need of a proper 

choice for data transformation is considered of high 

importance in statistical quality control. One of the 

drawbacks of the Box-Cox transformation is the risk 

that oversimplification via a model-linearly-oriented 

transformation could induce a mean bias in the 

variability. Such a risk jeopardies the homoskedasticity 

assumption or rather the independence between the mean 

and the variance. The safeguard method of Logothetis 

although effective is not fully satisfactory since the 

proposed model may be weak in terms of the 

prediction error and the model accuracy. In addition, 

for the case of negative values an alternative model is 

required making the methodology less attractive. 

In this paper we propose a general model selection 

approach for the proper determination of an 

appropriate transformation that safeguards against the 

violation of homoskedasticity and at the same time 

provides a model of the highest possible accuracy. In 

addition, the proposed approach ensures the 

applicability even in the case where negative values 

are involved without any additional adjustments or 

corrections. The rest of the paper is organized as 

follows. In Section 2 standard transformation methods 

are briefly discussed. The proposed methodology is 

developed in Section 3 while Section 4 is devoted to 

applications based on real case and simulation studies 

for evaluating the performance of the new approach. 

Finally the conclusions are discussed. 
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Methodology 

The family of transformations that is most often used 

in practice is the one introduced by Box and Cox (1964) 

which is defined as follows: 
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where, y the original observations, ybc the transformed 

observations and λ a properly selected value that defines 

the transformation applied to the original data. 

Note that although the above class is applicable for 

strictly positive values of y a proper adjustment was also 

proposed in the same work, useful for y > λ1, for λ1 wisely 

selected by the experimenter. This adjustment could be 

viewed as a shifted location transformation given by: 
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An important component of statistical quality control 

is the accurate decision regarding the improvement of 

the product or the process for which there is a strong 

need in identifying properly the role of each of the 

controllable factors involved in the process. More 

specifically there is a need in identifying those factors 

affecting the variability from those affecting the mean. 

It is frequently observed an ambiguity or an overlap in 

the classification of the factors. This fact could be 

resolved by a proper transformation leading to the 

independence between the variance and the mean. 

Logothetis (1990) suggested the general functional 

form σ = f(µ) for describing the relationship between 

the standard deviation σ and the mean µ. For the 

particular case where: 

 

( ) kf aµ µ=  (1) 

 

the power k could be estimated through the simple linear 

regression model between the log(σ) and the log(µ) if a 

sample of n observations is available. 

In statistical quality control, the Noise 

Performance Measure (NPM) is the measure which is 

used to identify the variability controllable factors of 

the process under investigation. In case there is no 

functional relation established then the noise 

performance measure is given by: 
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T
s  is the sample variance of the transformed data. 

Otherwise, the measure should be defined in such a way 

so that the relationship established is removed. In such a 

case, the measure is given by: 
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where, X the sample mean of the data. 

It should be noted that irrespectively of the noise 

measure chosen, the standard sample mean is always 

considered as the mean measure for the identification of 

the factors affecting the mean of the process. 

The case of negative values could be handled in the 

above case in a similar fashion as in the Box-Cox 

transformation, with the implementation of an extra wisely 

chosen parameter k1 entering into the function form, namely 

σ = a(µ + k1)
k
. It should be pointed out that various 

approaches for handling negative values have been 

proposed over the years. Yeo and Johnson (2000) have 

proposed a general class of transformations applicable 

without restrictions which resembles the Box-Cox 

methodology. This class of transformations is given by: 
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Observe that Yeo and Johnson transformation is 

equivalent to the two-parameter Box-Cox with λ = 1 for 

y > 0. On the other hand, for y < -1 the transformation is 

equivalent to Box-Cox transformation of the variable –y 

+1 with power 2-λ instead of λ. 

Alternative classes of transformations for negative 

values like the folded power family (see Cook and 

Weisberg (1999), p. 330) have been proposed, but rarely 

used due to limited properties of the resulting 

transformations. For other such approaches see Hawkins 

and Weisberg (2017). 

The Proposed Transformations 

The Simple Polynomial Approach 

For describing the relationship between the standard 

deviation and the mean, we propose: 
 

k
aσ µ=   (3) 

 

and then identify, via an exhaustive search, the best 

estimates a and k for which the mean squared error is 
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minimized. Note that the approach is equivalent to the 

model selection criteria technique since all competing 

models have the same penalty term. Indeed, for Akaike 

Information Criterion (AIC) given by: 

 

2log ,AIC Lik pn= − +  

 

where, Lik the likelihood, p is fixed and equal to 2 

representing the number of parameters involved for all 

competing models. 

It should be pointed out that the approach based on the 

simple linear regression used by Logothetis is not a proper 

one since for its implementation a further “internal” log-

transformation is required for the implementation of the 

regression analysis technique. As a result, the analysis 

attempts to model not the intended standard deviation but 

the logarithm of it with all the unavoidable consequences of 

reduced variability. This defect of the Logothetis method is 

resolved through the proposed procedure which attempts 

the modeling of the standard deviation taking into 

consideration the actual variability of the process. 

The Full Polynomial Approach 

Instead of the first approach as previously described, 

we further recommend the polynomial regression: 

 
2
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k
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where, via an exhaustive search the best polynomial can 

be identified. In fact we choose the polynomial of degree 

k for which AIC is minimized. 

Note that the proposed model is applicable not only for 

positive but also for negative values. Indeed, observe that 

the models proposed by Box-Cox and Logothetis can be 

considered as special cases of the proposed polynomial 

regression. The advantages of the full polynomial 

regression is the selection of the best possible model which 

possesses the highest possible accuracy in terms of the 

mean squared error and the coefficient of determination. 

Based on the above methods the noise performance 

measures introduced in the previous section are 

reformulated accordingly. 

Additionally, the control charts associated with the 
mean and variability of the process ( X R− chart) could 
be appropriately adjusted to incorporate the proposed 
methodology. Indeed, such charts are useful in verifying 

whether a process is in control or whether changes have 
affected the process or product resulting in an out-of-
control procedure. The implications of the proposed 
procedure will be presented through both real and 
simulated data in the following section. 

Remark 1 

In the KKLP method for selecting the optimal 

value of the parameter k, we first preassigned a 

sufficiently large range of candidate values and then 

for each value of k, through ordinary least squares 

(OLS), the estimate â of a is being estimated. The 

optimal k is chosen to be the one for which the 

minimum MSE is attained. Thus, the optimal estimate 

of a is the OLS estimator â obtained when k takes its 

optimal value. As a result, â has all standard 

properties of OLS i.e., consistency, unbiasedness and 

asymptotic normality. For the Ladopoly method, the 

aforementioned procedure was also implemented with 

the exception that instead of using MSE as a criterion 

for the determination of k, we made use of AIC, due 

to the fact that it assigns a considerable penalty for 

too many terms in the polynomial regression equation. 

Based on the above, all the estimates of the 

coefficients a involved in KKLP and Ladopoly 

methods, have the standard properties of OLS. It 

remains as an open problem to examine the 

asymptotic theory associated with the estimate of the 

power k which is left for future work. 

Applications 

Real Data - Performance Measures 

The dataset consists of three (3) measurements for 

each combination of six (6) factors with three (3) levels 

each, according to the design of OA183
6
 (see Taguchi and 

Konishi (1987)). The full dataset is given in Table 0 in 

the Appendix. 

By applying the: 

 

(a) Standard Taguchi performance measure 

(b) Logothetis measure 

(c) Box-Cox transformation 

(d) The simple polynomial approach referred to as KKLP 

(Kalligeris-Karagrigoriou-Ladopoulos-Parpoula) 

(e) The full polynomial approach referred to as 

Ladopoly (Ladopoulos polynomial) 

 

to both the mean and variability, the results presented in 

the Appendix are obtained. 

The purpose of this analysis is to identify the factors 

affecting the mean and those affecting the variability 

with the least possible overlapping. The mean and 

variance have been evaluated for each of the 18 

experiments using the 3 available measurements and the 

ANOVA results are presented in Tables 1-5 (see 

Appendix). Table 1 refers to the mean and Tables 2-5 

refer to the variability of the real data. 

The Taguchi and Box-Cox transformations (Table 

2 and Table 4) recognize both A and B as factors 

affecting the variability with almost identical Pvalues 

(i.e., Pvalues<0.05). Observe though, that the same 
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factors are recognized as factors affecting the mean 

(i.e., Pvalues = 0.00) resulting in a complete 

confusion (Table 1). Logothetis method (Table 3) 

resolves partly the problem by identifying only the 

factor A (i.e., Pvalue<0.05) while the proposed 

method of KKLP manages to fully resolve the issue 

by recognizing neither A nor B as factors affecting the 

variability (i.e., Pvalues>0.05). 

In conclusion, the proposed methodology removes 

the dependence between mean and variance which 

results in clear discrimination between the factors 

affecting the main characteristics of the procedure. 

Simulations 

The simulations that took place, mimic the real 

dataset of Table 0 and performed with the use of R 

(Fox and Weisberg, 2019). The formulation of the 

simulated dataset is fully based on the one of the real 

dataset presented in the previous section. Finally, the 

proposed technique is applied to X S−  control chart 

(Shewhart (1931)) which is used to evaluate the two 

basic characteristics of a procedure. 

For this purpose we apply the: 

 

(a) Standard X S−  control chart; 

(b) Logothetis transformation given in (1), σ = f(µ) ≡ σ1 

and µ = f
-1
(σs) ≡ µ1 

(c) Box-Cox transformation, 
1

1
bc

y
y

λ

λ

−

=

−

 

(d) KKLP given in (3), σ = fKKLP(µ) ≡ σ2 and µ = 

( )1

KKLP
f σ
− ( )1

KKLP
f σ
−

≡ µ2 + (σ) ≡ µ3 

(e) Ladopoly given in (4), σ = fLadopoly(σ)_ σ3 and µ = 

fLadopoly. 

 

Figure 1 presents the charts for X , µ1, µ2 and µ3 

while Fig. 2 the charts for S; σ1, σ2 and σ3. We observe 

that the multiple X -Graph reveals the out-of-control 

point via Logothetis and KKLP approaches. All others 

fail to reveal the out-of-control single point (observed at 

time point t14). Ladopoly approach appears to behave 

similarly to the original X -Graph at least in reference to 

the out-of-control point t14. Note that the Ladopoly 

approach is the one that tends to describe as accurately 

as possible the observed X -values regressed on the S-

values. Therefore as expected the similarities between 

the original X and Ladopoly are observed. KKLP is 

superior to Logothetis due to the fact that in general, this 

approach results in a more accurate modeling of the 

underline characteristic (σ). Ladopoly, as before, 

attempts to describe as accurately as possible the original 

S-values and as a result the out-of-control point is easily 

revealed. Finally, Logothetis and KKLP are comparable 

in terms of identifying the out-of-control point but it 

should be stressed out that the modeling for Logothetis 

method is based on the logarithm transformation of the 

original (S, X ) data as opposed to KKLP for which the 

modeling is based on the raw data. 

 

 
 

Fig. 1: X -Graph 
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Fig. 2: S-Graph 

 

Note that “Ladopoly4” and “Ladopoly3” in Fig 1 and 

2, represent the full polynomial in (4) with k = 4 and 3, 

respectively. 

Conclusion 

A proper data transformation is considered to be of 

high importance in statistical quality control for 

achieving a satisfactory degree of homeskedasticity and 

at the same time ensuring high accuracy and great 

applicability. In this paper by relying on a general model 

selection approach we propose appropriate 

transformations that safeguard against the violation of 

homoskedasticity and at the same time provide the 

highest possible accuracy. In addition, the proposed 

transformations ensure the applicability even in the cases 

where negative values are involved. 

The KKLP method through the model σ = fKKLP(µ) = 

aµ
k
 succeeds in recognizing discrepancies in the noise 

behavior which are depicted in the X -Graph through the 

transformation µ = (σ/k)
1/a
. Hence the KKLP 

methodology provides the double X -control chart 

which suffices to reveal the behavior of both noise and 

mean of the data. 

Concludingly, we proposed adjusted transformations 

for off-line quality control. The proposed methods result 

in proper performance measures for the determination of 

the controllable factors that affect the mean and 

variability of the response variable of interest. 
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Appendix 

Real Data Results 

Table 0: Data used for the real case study 

 Internal Order-Control Factors 
 ------------------------------------------------------------------------------------ Data 
 1 2 3 4 5 6 -------------------------------------------------- 
Trial Α B C D E F Υ1 Υ2 Υ3 

1 1 1 1 1 1 1 10.4 10.6 10.8 
2 2 2 2 2 2 2 9.8 9.9 9.7 
3 3 3 3 3 3 3 9.1 9.1 9.2 
4 1 1 2 2 3 3 10.2 10.3 10.5 
5 2 2 3 3 1 1 9.5 9.6 9.7 
6 3 3 1 1 2 2 9.1 9.0 8.9 
7 1 2 1 3 2 3 9.9 9.6 9.5 
8 2 3 2 1 3 1 9.2 9.3 9.1 
9 3 1 3 2 1 2 9.3 9.4 9.5 
10 1 3 3 2 2 1 9.4 9.5 9.0 
11 2 1 1 3 3 2 10.0 10.3 9.9 
12 3 2 2 1 1 3 9.0 9.2 9.1 
13 1 2 3 1 3 2 9.8 9.6 9.9 
14 2 3 1 2 1 3 9.2 9.1 9.5 
15 3 1 2 3 2 1 9.3 9.2 9.3 
16 1 3 2 3 1 2 9.2 9.1 9.4 
17 2 1 3 1 2 3 10.5 10.4 10.7 
18 3 2 1 2 3 1 9.5 9.4 9.6 

 
Table1: General linear model average versus A; B; C; D; E; F 

Source DF Adj SS Adj MS F-Value P-Value 

A 2 9.645 4.823 1813.840 0.000 

B 2 0.612 0.306 115.030 0.000 

C 2 0.032 0.016 5.960 0.013 

D 2 0.517 0.026 9.720 0.002 

E 2 1.004 0.502 188.790 0.000 

F 2 0.011 0.005 1.990 0.174 

Error 14 0.037 0.003 

Total 26 11.392 

 

Table 2:  General linear model NPM (Taguchi) versus A; B; C; D; E; F 

Source DF Adj SS Adj MS F-Value P-Value 

A 2 0.979 0.490 6.86 0.037 

B 2 1.698 0.849 11.88 0.013 

C 2 0.095 0.047 0.66 0.555 

D 2 0.088 0.044 0.62 0.576 

E 2 0.046 0.023 0.32 0.740 

F 2 0.037 0.019 0.26 0.780 

Error 5 0.357 0.071 

Total 17 3.300 
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Table 3: General linear model NPM (logothetis) versus A; B; C; D; E; F 

Source DF Adj SS Adj MS F-Value P-Value 

A 2 146.039 73.019 10.24 0.017 

B 2 2.189 1.094 0.15 0.862 

C 2 43.208 21.604 3.03 0.137 

D 2 0.316 51.658 0.79 0.502 

E 2 4.379 2.190 0.31 0.749 

F 2 2.800 1.400 0.2 0.828 

Error 5 35.658 7.132 

Total 17 245.588 

 

Table 4:  General linear model NPM (Box-Cox) versus A; B; C; D; E; F 

Source DF Adj SS Adj MS F-Value P-Value 

A 2 0.059 0.030 6.95 0.036 

B 2 0.103 0.051 12.06 0.012 

C 2 0.006 0.003 0.66 0.555 

D 2 0.005 0.003 0.59 0.587 

E 2 0.003 0.001 0.33 0.731 

F 2 0.002 0.001 0.25 0.787 

Error 5 0.021 0.004 

Total 17 0.199 

 

Table 5:  General linear model: NPM (KKLP) versus A; B; C; D; E; F 

Source DF Adj SS Adj MS F-Value P-Value 

A 2 88.317 44.158 4.56 0.075 

B 2 12.942 6.471 0.67 0.553 

C 2 33.252 16.626 1.72 0.271 

D 2 8.570  4.285 0.44 0.665 

E 2 7.279 3.639 0.38 0.705 

F 2 2.119 1.059 0.11 0.899 

Error 5 48.435 9.687 

Total 17 200.915 

 


