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Abstract: On the basis of failure times of an informative sample (X-

sample) of random size M of iid continuous random variables, we consider 

the prediction problem of failure times of another independent future 

sample (Y-sample) of random size N of iid variables from the same 

distribution. In this paper, we derive various exact prediction intervals for 

future failure times from the Y -sample based on the failure times from the 

X-sample. Specifically, prediction intervals for individual failure times as 

well as outer and inner prediction intervals are derived based on X-order 

statistics. Prediction intervals for the increments of order statistics are also 

investigated. Exact expressions for the coverage probabilities of these 

intervals are also derived and computed numerically. A practical example 

on a biometric data set is used to illustrate the results developed here. 
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Introduction 

Prediction of future order statistics is of natural interest 

in many practical problems. Considerably work has been 

done on the one-sample and two-sample prediction 

problems, and both parametric and nonparametric 

inferential methods have been developed in this regard. 

Interested readers may refer to Gulati and Padgett (2003) 

for details on related developments. An excellent review 

of development on prediction problems till late 90s can 

be found in Kaminsky and Nelson (1998). Using the 

Bayesian approach, Raqab and Madi (2002) considered 

the prediction of the total time on test using doubly 

censored Rayleigh data. Basak et al. (2006) considered 

the maximum likelihood predictors for different lifetime 

distributions, when the data are progressively censored. 

The prediction intervals are used extensively in 

reliability theory, survival studies and industrial 

applications for predicting the number of defective items 

to be produced during future production process. 

Distribution-free confidence and prediction intervals 

have been discussed rather extensively in the context of 

order statistics. While Wilks (1962; Krewski, 1976) 

discussed the construction of outer and inner confidence 

intervals for quantile intervals based on order statistics, 

concise reviews on this topic may be found in the books 

by David and Nagaraja (2003; Arnold et al., 2008; 

Ahmadi and Balakrishnan, 2011). Barakat et al. (2011) 

obtained prediction intervals for future exponential 

lifetimes based on random generalized order statistics. 

El-Adll (2011) discussed the problem of predicting 

future lifetimes based on three-parameter Weibull 

distribution. Barakat et al. (2014) obtained prediction 

intervals of future observations for a sample of random size 

from a continuous distribution. For similar prediction 

problems, one also may refer to Balakrishnan et al. (2005; 

Sultan and Ellah, 2006; Asgharzadeh and Valiollahi, 

2010; Abdel-Hamid and AL-Hussaini, 2014; El-Adll and 

Aly, 2016). Prediction intervals based on two-sample 

prediction problems is discussed, for example, in Fligner 

and Wolfe (1976; 1979) for order statistics. Recently, 

Basiri et al. (2016) developed various non-parametric 

prediction intervals of order statistics from a future sample 

based on observed order statistics. Barakat et al. (2016) 

constructed prediction intervals for future two-parameter 

exponential lifetimes based on a random number of 

generalized order statistics under a general set-up. 

Let X1:n ≤ X2:n ≤ ... ≤ Xn:n be order statistics of a 

random sample with fixed sample size n from an 

absolutely continuous cumulative distribution function 
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(cdf) F(x) and probability density function (pdf) f(x): In 

reliability theory, Xs:n represents the life length of a (n-

s+1)-out-of-n system made up of n identical 

components with independent life lengths. When s = n; 

it is better known as the parallel system. For detailed 

discussion in this respect, see Barlow and Proschan 

(1981). In biological, agriculture and some quality 

control problems, we often come across situations 

where the sample size is a random variable (rv) and it is 

almost impossible to have a fixed sample size because 

either some observations get lost for various reasons or 

the size of the target population and its representative 

sample cannot be determined well. Let us consider the 

following practical example. Suppose that fish biologist 

would like to study the weight data of a specific rare 

fish living in the red sea over one-year period. The fish 

weight will vary depending on age, sex, season and 

recent feeding activity. Clearly, the number of fishes to 

be caught on daily or yearly basis is rv. The weight 

outcomes of this study is the ordered data, X1:m ≤ X2:m ≤ 

... ≤ Xm:m; where Xi:m is the i-th ordered weight and m is 

the observed value of a rv M: Although the distribution 

of M is unknown but we can estimate the empirical 

distribution of M by considering its frequency table 

over one-year period. Based on the observed ordered 

weights over one-year period and under similar 

conditions, we aim at providing non-parametric 

prediction intervals for the fish weights to be caught in 

the next year. It is often reasonable to assume that the 

data sample and future sample are independent and the 

random number of fishes to be caught is independent of 

the fish weights. If one introduces the random sample 

size as an extension of a model (mainly for statistical 

inference), one can usually assume that it is 

independent of the underlying variables. Other practical 

applications could be the study of sizes or intensity of 

brightness for comets and shooting stars penetrating the 

atmosphere of earth in certain areas. 

In this paper, we discuss Prediction Intervals (PIs) for 

future order statistics, Y1:N, Y2:N,..., YN:N, from a future 

independent sample (Y -sample) of random size N from a 

continuous cdf F(x); based on informative sample (X-

sample) X1:M, X2:M,...,XM:M of random size M from the 

same distribution. Throughout this paper, we assume that 

the rv's N and M are independent of Y1:n, Y2:n,..., Yn:n and 

the items of the informative sample X1:m, X2:m,...,Xm:m, for 

any n and m, respectively. This paper is organized as 

follows. In Section 2, we present some useful 

preliminaries. In Section 3, we derive Pls for a future 

order statistic. In Sections 4 and 5, outer and inner PIs 

for future order statistic intervals, respectively, are 

derived. Numerical computations for picking the 

appropriate order statistics for the establishment of these 

PIs are performed and presented in their respective 

sections. In Section 6, we show how the increments of 

order statistics of the observed X-sample can be used to 

construct upper and lower prediction limits for 

increments of order statistics of the future Y -sample. 

Finally, in Section 7, a practical example on a biometric 

data is used to illustrate all the results developed here. 

Preliminaries 

Let 1≤r<s≤m. Then, the interval (Xr:m, Xs:m) is termed 

the coverage and Ir,s:m = Xs:m - Xr:m, the increment. The 

marginal pdf of the r-th order statistic, Ur:n from uniform 

U(0, 1) [see David and Nagaraja (2003)] is: 
 

1

:

!
( ) (1 ) ,0 1

( 1)!( )!

r n r

r n

n
f u u u u

r n r

− −

= − < <

− −

 (1) 

 
The joint pdf of Ur:n and Us:n is similarly given by: 
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The following well-known lemma [see for example, 

David and Nagaraja (2003), P.18] will be quite helpful in 

simplifying some arguments in the proofs of the results 

established in the subsequent sections. 

Lemma 1  

With Ui = F(Xi) and Vj = F(Yj), we have: 
 

: :
( ),

d

r n r nU F X=  (3) 

 
where, Ui:n and Vj:n are the i-th and j-th order statistics 

arising from samples of independent and identically 

distributed (iid) uniform rv's Ui's, Vj’s and 
d

=  denotes 

identical in distribution. 

The following identities are quite useful in showing 

various results in the next sections. 

The pdf and cdf of the i-th order statistic from a 

sample of size n can be rewritten as follows: 
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,
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are incomplete beta function and Bernstein polynomials, 

respectively, with B(i,n-i+1) being the complete beta 

function. Note that when a and b are positive integers 

B(a, b) = (a-1)!(b-1)!/(a + b-1)!. 

PIs for a Future Order Statistic 

Let X1:M, X2:M,...,XM:M be order statistics from the X-

sample with random size M of iid rv's from F(x). For 

given 0 < α < 1, suppose we are interested in obtaining 

100(1-α)% PI for the k-th order statistic Yk:N from the Y -

sample with random size N of the form (Xr:M, Xs:M), 1 ≤ r 

< s ≤ M, such that P(Xr:M ≤ Yk:N ≤ Xs:M) = 1-α.We refer 

to the interval (Xr:M, Xs:M) as a 100(1-α)% PI for Yk:N. In 

this section, we derive such two-sided PIs for Yk:N with 

coverage probabilities being free of the parent 

distribution F. 

Theorem 1  

Let {Xi, i ≥ 1} and {Yi, i ≥ 1} be two independent 

sequences of iid rv's from the same cdf F(x) having 

random sample sizes M and N, respectively. Then, (Xr:M, 

Xs:M) is a PI, based on the X-sample, for the future order 

statistic Yk:N from the Y -sample, with the corresponding 

prediction coefficient, being free of F and is given by: 
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where, PM(m) and PN(n) stand for P(M = m) and P(N = 

n), respectively. 

Proof: 

We have: 

 

: : : : :

: : :
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By the continuity of F, we immediately obtain: 

 

: : : :
( ) ( ) ( ).i m j m i m j mP X x X F x F x≤ ≤ = −  (6) 

By the conditioning arguments, (3) and (5), we can 

write: 
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Now, let us adopt the coverage probability based on 

(Xr:M, Xs:M). On using the facts that M ≥ s and N ≥ k and 

applying the conditioning arguments on the rv's M and 

N (Raghunandanan and Patil, 1972; Buhrman, 1973), 

we obtain: 
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Therefore the result in Theorem 1 follows readily by 

(7) and (8).  

Remark 1: 

From Theorem 1, (Xr:M, Xs:M) can be picked as a 

100(1-α) PI for Yk:N with a specified coefficient level 1-

α (0 < α < 1) such that  π1(r, s; k)≥ 1-α. The prediction 

coefficient π1(r, s; k), which is free of the parent 

distribution F, can thus be computed simply based on the 

probability values of the rv's M and N. Letting r = 0 and 

Xr:M = - ∞, we have one-sided PI of the form (-∞, Xs:M) 

immediately from above formula. Similarly, if s is an 

integer such that P (r≤M<s) = 1 and Xs:M = ∞, we will 

get (Xr:M, ∞) as one-sided PI for Yk:N. In this case, the 

prediction coefficient is reduced to: 
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Remark 2  

Under the settings and conditions of Theorem 1 with 

M and N being integers such that P(M = m) = P(N = n) = 

1, m ≥ s and n ≥ k,  then π1(r, s; k) reduces to: 
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Corollary 1: 

Under the settings and conditions of Theorem 1: 
 
a) If M, N have binomially distributions with 

parameters v and p [M, N  ∼ B(v,p)], then the 

probabilities coefficients in Theorem 1 can be 

represented as: 
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In this case, the prediction confidence coefficient 

reduces to: 
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b) If M,N have negative binomial distributions with 

parameters v and p [M,N∼NB(v, p)], then the 

probabilities coefficients in Theorem 1 becomes: 
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Therefore, the prediction confidence coefficient 

turns out: 
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c) If M, N have Poisson distributions with parameters 

λ [M, N∼ Poisson(λ)], then the probabilities 

coefficients in Theorem 1 becomes: 
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The prediction confidence coefficient is readily 

obtained as: 
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In the following lemma, we provide (1 − α) 100% PI 

that contains at least t observations of the Y -sample (N ≥ t). 

Lemma 2:  

Let us define Jt,N as the number of future observations 

≥ t out of N such that N≥ t. Under the condition and 

setting of Theorem 1, the coverage probability of Jt,N 

based on the two-sided interval of the form (Xr:M, Xs:M) is: 
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Proof: 

Given M = m, N = n > t, we have: 
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Using the conditioning argument, the result 

follows immediately. 
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Corollary 2: 

If the experiment conditions have not changed, we 

may assume P(M  = x) = P(N = x) and then get PI, 

ˆ ˆ: :( , )
r m s m

X X ≈ (Xr:M, Xs:M) for Yk:N, where m̂ is the 

observed value of the rv M. Under the condition that 

both samples have equal random sizes (say N), the 

coverage probability in Theorem 1 is simplified to: 
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Remark 3: 

It is worth mentioning that one can't apply Theorem 1 

for any future order statistics except for the lower 

extremes. Otherwise, the value of k in π1(r, s, k) depends 

on N, which does not make any sense. However, if the 

goal is to estimate a specific parent quantile  ξp of order 

p(0<p<1), one may refer to Al-Mutairi and Raqab 

(2017). For predicting the sample median when the 

sample size N is random, we first obtain an integer k 

such that P(N≤k) ≥ 1/2 and P(N≥k) ≥ 1/2, then we 

immediately predict the corresponding value for Yk:N. For 

example, if N ∼ B(20, 0:3); then k = 6 and Y6:N has to be 

predicted. Let us consider the case with P(N = n0) = 1, 

where n0 is either the observed value of N or just a 

hypothetical value or even the predicted value of N. 

Then, we may consider ˆ ˆ: :( , )
r m s m

X X ≈ (Xr:M, Xs:M), as the 

PI for the future median Yk:N, where m̂ is the observed 

value of M and 0

2

n
k

 
=  
 

, with [x] being the greatest 

integer less than or equal to x. 

The values of π1(r,s;k) are presented in Table 1 for 

various choices of r, s and k. If the desired level of the PI 

is specified to be 1-α, we may choose r and s so that 

π1(r, s; k)≥1-α. Evidently, the distribution of the sample 

size plays an important role in evaluating the prediction 

coefficients. It can be easily checked that for fixed r, π1(r, s; 

k) increases rapidly when s increases for small values of s. 

For large values of s, π1(r, s; k) changes very slowly as s 

increases. That is, the computed values of these coefficients 

are not sensitive to the large values of s-r. 

Outer PIs for an Order Interval 

Suppose (Yk:N, Yl:N) is a future interval of order 

statistics from the Y -sample and that we are interested 

in obtaining 100(1-α)% PI for it of the form (Xr:M, 

Xs:M) such that P (Xr:M<Yk:M<Yl:N<Xs:M) ≥ 1-α. Then, 

(Xr:M, Xs:M) is termed the outer PI for the interval 

(Yk:N, Yl:N). In this section, we describe how such these 

PIs can be constructed. 

Theorem 2:  

Under the settings and assumptions of Theorem 1, 

(Xr:M, Xs:M) is an outer PI, based on the X-sample, for the 

future interval of order statistics (Yk:N, Yl:N) from the Y -

sample, with the corresponding prediction coefficient, 

being free of F, given by: 
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Proof: 

From Lemma 1, 
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( ) ( )
d d

i M i M j N j NF X U and F Y V= = . For 

1≤r<s≤M and 1≤k <l≤N, let us consider: 

 

: : : : : : : :

: : : :

1 1

: : : :
0

, :

( ) ( )

1
( ) ( ) ( ).

( ) ( )

1
( )

( ) ( )

( , ) ( ) ( ).

k

r M k N l N s M r M k N l N s M

r m k n l n s m M N

m s m l

r m k n l n s m
v

m s n l

k l n k l vl vk M N

P X Y Y X P U V V U

P U V V U P m P n
P M s P N l

P U v v U
P M s P N l

f v v d d P m P n

∞ ∞

= =

∞ ∞

= =

< < < = < < <

= < < <

≥ ≥

= < < <

≥ ≥

×

∑∑

∑∑∫ ∫

 (9)  

 

 From Lemma 1 and the fact that (Ur:n, Us:m) with m 

and n being fixed, are jointly distributed as the r-th and 

s-th order statistics from the standard uniform 

distribution, we first have: 
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Since the inside integral is an incomplete beta 

function, it can be expressed as a sum of binomial 

probabilities using (4). Then the resulting expression is: 
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Table 1: Values of π1(r, s; k) for some choices of r, s and k 

   B(20, p)    NB(6, p) 

   ------------------------------------------------------------- -------------------------------------------------------- 

k r p s = 6 s = 10 s = 14 s = 18 s = 6 s = 10 s = 14 s = 18 

6 1 0.30 0.497 0.971 0.992 0.990 0.492 0.915 0.985 0.989 

  0.50 0.495 0.957 0.991 0.990 0.495 0.949 0.990 0.990 

  0.70 0.492 0.930 0.990 0.990 0.497 0.966 0.991 0.990 

  0.90 0.490 0.903 0.987 0.990 0.498 0.975 0.992 0.990 

 2  0.30 0.484 0.946 0.961 0.956 0.461 0.882 0.951 0.952 

  0.50 0.472 0.931 0.960  0.956 0.473 0.921 0.957 0.955 

  0.70 0.462 0.900 0.958 0.956 0.483 0.941 0.960 0.956 
  0.90 0.456 0.869 0.953 0.955 0.490 0.952 0.961 0.956 
 3 0.30 0.447 0.889 0.895 0.886 0.395 0.814 0.880 0.880 
  0.50 0.418 0.871 0.894 0.886 0.421 0.859 0.889 0.883 
  0.70 0.397 0.834 0.891 0.885 0.445 0.882 0.893 0.885 

  0.90 0.386 0.799 0.883 0.884 0.463 0.895 0.895 0.886 

 4 0.30 0.367 0.788 0.789 0.778 0.290 0.708 0.772 0.772 

  0.50 0.321 0.768 0.788 0.778 0.327 0.756 0.783 0.776 

  0.70 0.292 0.729 0.785 0.778 0.364 0.781 0.787 0.777 

  0.90 0.279 0.692 0.775 0.777 0.396 0.794 0.789 0.778 

7 1 0.30 0.271 0.941 0.996 0.996 0.347 0.858 0.985 0.995 

  0.50 0.316 0.918 0.995 0.996 0.311 0.905 0.992 0.996 

  0.70 0.347 0.875 0.993 0.996 0.275 0.933 0.995 0.996 
  0.90 0.358 0.840 0.987 0.996 0.244 0.949 0.996 0.996 
 2 0.30 0.267 0.932 0.982 0.980 0.332 0.842 0.967 0.976 
  0.50 0.307 0.908 0.981 0.980 0.303 0.894 0.977 0.978 
  0.70 0.334 0.862 0.979 0.979 0.270 0.923 0.981 0.979 
  0.90 0.342 0.823 0.971 0.979 0.241 0.941 0.982 0.979 
 3 0.30 0.252 0.905 0.947 0.939 0.297 0.804 0.927 0.933 

  0.50 0.283 0.878 0.945 0.939 0.279 0.863 0.940 0.937 

  0.70 0.299 0.827 0.942 0.939 0.255 0.896 0.944 0.938 

  0.90 0.302 0.783 0.931 0.938 0.231 0.915 0.947 0.939 

 4 0.30 0.215 0.849 0.880 0.868 0.230 0.736 0.855 0.859 
  0.50 0.230 0.818 0.878 0.868 0.228 0.801 0.871 0.864 
  0.70 0.233 0.761 0.873 0.867 0.217 0.838 0.877 0.866 
  0.90 0.230 0.712 0.859 0.866 0.203 0.860 0.880 0.868 
8 1 0.30 0.131 0.973 0.995 0.998 0.224 0.768 0.974 0.997 

  0.50 0.174 0.840 0.994 0.998 0.176 0.824 0.988 0.998 

  0.70 0.220 0.786 0.990 0.998 0.137 0.861 0.993 0.998 

  0.90 0.242 0.747 0.978 0.998 0.110 0.885 0.995 0.998 
 2 0.30 0.130 0.870 0.990 0.991 0.218 0.762 0.966 0.988 
  0.50 0.171 0.836 0.988 0.991 0.172 0.820 0.982 0.990 
  0.70 0.215 0.780 0.984 0.991 0.136 0.858 0.987 0.991 
  0.90 0.235 0.740 0.971 0.991 0.109 0.883 0.990 0.991 

 3 0.30 0.124 0.860 0.973 0.970 0.200 0.743 0.945 0.964 

  0.50 0.161 0.824 0.971 0.970 0.162 0.806 0.963 0.968 
  0.70 0.198 0.764 0.966 0.970 0.130 0.847 0.970 0.969 
  0.90 0.214 0.719 0.950 0.969 0.106 0.873 0.73 0.970 
 4 0.30 0.109 0.834 0.936 0.927 0.162 0.703 0.901 0.917 
  0.50 0.137 0.795 0.933 0.927 0.137 0.775 0.923 0.923 
  0.70 0.162 0.727 0.926 0.926 0.113 0.820 0.932 0.925 
  0.90 0.171 0.676 0.907 0.925 0.095 0.849 0.936 0.926 

 

By a change of variable z = (1-w2)/(1-vk), the integral 

in (11) can be transformed to an incomplete beta 

function, which upon using the identity in (4), yields: 
 

1 1
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− − −

−

= =

− −

−  
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   − −
×   
   − −   

∑ ∑
 (12) 

Upon substituting the expression in (12) into 

Equation (9) and using the change of variable arguments, 

the result readily follows. ∇ 

Corollary 3: 

Under the settings and the condition that both 

samples are taken with equal sizes (say, N), then the 

corresponding prediction coefficient is: 
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The values of π2(r, s, k, l) are presented in Table 2 for 

various choices of r, s, k and l. If the desired level of the 

outer PI is specified to be 1-α0, we may choose 

appropriate values of r and s so that π2(r, s, k, l) ≥1-α0. It 

is naturally expected that the outer PIs of the order 

intervals are observed to be wider to achieve the 

specified level 0.90. Therefore, given a specified level 

1-α0, it is more likely to pick up outer PI for (Yk:N, 

Yl:N) based (Xr:M, Ys:M) when s-r gets large. Clearly, 

the randomness of the sample size is affecting the 

behavior of π2(r, s, k, l) when comparing with the 

fixed sample size. It can be seen from Table 2 that 

π2(r, s, k, l) increases when s moves away from r but 

it is not sensitive to the large values of s. 

Inner PIs for an Order Interval 

Suppose we are interested in obtaining a 100(1-α)% 

PI for the future interval of order statistics (Yk:N, Yl:N) 

from the Y -sample of the form (Xr:M, Xs:M) such that P 

(Yk:N < Xr:M < Xs:M < Yl:N) ≥ 1-α. Then, (Xr:M, Xs:M) is 

termed the inner PI for the interval (Yk:N, Yl:N) : In this 

section, we describe how such inner PIs can be 

constructed. 

Theorem 3:  

Under the setting and assumption of Theorem 1, 

(Xr:M, Xs:M) is an inner PI, based on the X-sample, for 

the future record interval (Yk:N, Yl:N) from the Y -

sample, with the corresponding prediction coefficient, 

being free of F, given by: 
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Proof:  

Using arguments similar to those in the proof of 

Theorem 2, we have: 
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Now, upon using the conditioning argument, we 

can write: 
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By using change of variables, the integral in (14) can 

be transformed into an incomplete beta integral which 

can be written as a finite sum of binomial probabilities 

using (4). The required result in Theorem 3 then follows 

by conditioning arguments on M and N: ∇ 

Remark 4: 

When N and M are degenerate rv's at m and n such 

that P(M = m) = P(N = n) = 1 with m≥ s and n≥ l; then 

π3(r, s, k, l) is turned to be: 
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Table 3 presents the values of π3(r, s; k, l) for various 

choices of r, s; k and l. If the desired level of the inner 

prediction interval is specified to be 1-α0, we may 

choose appropriate values of r and s so that π3(r, s; k, l) 

≥1-α0. It is worth mentioning here that it is expected to 

have shortest inner PIs to attain the specified level 0.90. 
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Table 3 shows that, for fixed r, π3(r, s; k, l) reaches its 

maximum quickly for small values of s−r. The values of 

π3(r, s; k, l) are not sensitive to the small values of s−r 

and change significantly when s−r gets large. 
 

Table 2: Values of π2(r, s; k, l) for some choices of r, s, k and l 

   B(20, p)    NB(20, p) 

   ----------------------------------------------------- --------------------------------------------------------- 

(k, l) r p s = 6 s = 10 s = 14 s = 18 s = 6 s = 10 s = 14 s = 18 

(5, 6) 1 0.30 0.490 0.960 0.979 0.977 0.472 0.835 0.949 0.969 

  0.50 0.485 0.946 0.979 0.977 0.373 0.848 0.956 0.971 

  0.70 0.480 0.918 0.978 0.977 0.475 0.861 0.963 0.974 

  0.90 0.478 0.890 0.974 0.977 0.476 0.874 0.969 0.976 

 2 0.30 0.453 0.904 0.917 0.911 0.399 0.761 0.874 0.894 

  0.50 0.436 0.888 0.916 0.911 0.403 0.775 0.883 0.899 

  0.70 0.422 0.856 0.914 0.911 0.407 0.790 0.892 0.903 

  0.90 0.415 0.824 0.908 0.910 0.411 0.806 0.900 0.907 

 3 0.30 0.374 0.799 0.807 0.799 0.291 0.645 0.758 0.778 

  0.50 0.343 0.782 0.806 0.799 0.296 0.660 0.768 0.783 

  0.70 0.322 0.747 0.803 0.799 0.300 0.676 0.778 0.789 

  0.90 0.311 0.713 0.796 0.798 0.306 0.693 0.787 0.794 

 4 0.30 0.254 0.650 0.660 0.655 0.170 0.507 0.619 0.639 

  0.50 0.218 0.634 0.660 0.655 0.174 0.521 0.628 0.643 

  0.70 0.196 0.601 0.658 0.654 0.178 0.535 0.636 0.647 

  0.90 0.187 0.569 0.651 0.654 0.182 0.551 0.644 0.651 

(5, 7) 1 0.30 0.177 0.926 0.978 0.977 0.355 0.760 0.928 0.965 

  0.50 0.293 0.902 0.977 0.977 0.352 0.773 0.939 0.969 

  0.70 0.332 0.858 0.975 0.977 0.349 0.787 0.949 0.973 

  0.90 0.342 0.821 0.969 0.977 0.346 0.802 0.959 0.975 

 2 0.30 0.157 0.871 0.916 0.911 0.289 0.685 0.853 0.890 

  0.50 0.254 0.845 0.915 0.911 0.289 0.701 0.866 0.897 

  0.70 0.282 0.797 0.912 0.911 0.288 0.717 0.879 0.902 

  0.90 0.286 0.756 0.903 0.910 0.288 0.734 0.891 0.907 

 3 0.30 0.119 0.766 0.806 0.799 0.196 0.571 0.737 0.774 

  0.50 0.187 0.740 0.805 0.799 0.197 0.587 0.751 0.781 

  0.70 0.201 0.689 0.801 0.799 0.198 0.605 0.764 0.788 

  0.90 0.201 0.646 0.791 0.798 0.200 0.623 0.777 0.793 

 4 0.30 0.071 0.619 0.660 0.655 0.101 0.437 0.598 0.635 

  0.50 0.106 0.593 0.658 0.655 0.103 0.452 0.611 0.641 

  0.70 0.110 0.546 0.655 0.654 0.104 0.467 0.623 0.646 

  0.90 0.108 0.505 0.646 0.654 0.106 0.484 0.634 0.651 

(5, 8) 1 0.30 0.125 0.857 0.976 0.977 0.256 0.670 0.896 0.959 

  0.50 0.165 0.823 0.974 0.977 0.250 0.681 0.911 0.965 

  0.70 0.207 0.767 0.970 0.977 0.243 0.694 0.926 0.971 

  0.90 0.227 0.726 0.957 0.977 0.236 0.708 0.941 0.975 

 2 0.30 0.106 0.803 0.914 0.911 0.200 0.598 0.821 0.884 

  0.50 0.137 0.767 0.912 0.911 0.196 0.611 0.838 0.893 

  0.70 0.169 0.708 0.907 0.911 0.193 0.626 0.855 0.900 

  0.90 0.182 0.663 0.891 0.910 0.188 0.642 0.873 0.906 

 3 0.30 0.074 0.702 0.804 0.799 0.126 0.488 0.705 0.768 

  0.50 0.094 0.666 0.802 0.799 0.125 0.502 0.723 0.777 

  0.70 0.112 0.604 0.796 0.799 0.123 0.518 0.741 0.786 

  0.90 0.119 0.557 0.779 0.798 0.122 0.535 0.760 0.793 

 4 0.30 0.039 0.560 0.657 0.655 0.058 0.362 0.568 0.629 

  0.50 0.048 0.526 0.655 0.655 0.058 0.375 0.584 0.637 

  0.70 0.055 0.469 0.650 0.654 0.058 0.389 0.601 0.644 

  0.90 0.057 0.425 0.635 0.654 0.058 0.405 0.617 0.650 
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Table 3: Values of π3(r, s; k, l) for some choices of r, s; k and l 

   B(20, p)    NB(5, p) 

   --------------------------------------------------------- ------------------------------------------------------ 

(k, l) r p s = r+1 s = r+4 s = r+7 r+10 s = r+1 s = r+4 s = r+7 r+10 

(2, 18) 5 0.30 0.911 0.911 0.907 0.860 0.907 0.904 0.879 0.769 

  0.50 0.911 0.911 0.907 0.858 0.910 0.909 0.897 0.817 

  0.70 0.911 0.911 0.916 0.853 0.911 0.910 0.903 0.842 

  0.90 0.910 0.910 0.902 0.835 0.911 0.911 0.907 0.856 

 6 0.30 0.956 0.955 0.946 0.842 0.952 0.945 0.901 0.731 

  0.50 0.956 0.955 0.945 0.839 0.955 0.952 0.928 0.785 

  0.70 0.956 0.955 0.944 0.832 0.956 0.954 0.939 0.817 

  0.90 0.955 0.954 0.937 0.806 0.956 0.955 0.945 0.837 

 7 0.30 0.980 0.978 0.956 0.737 0.975 0.962 0.889 0.638 

  0.50 0.979 0.978 0.955 0.734 0.978 0.972 0.927 0.683 

  0.70 0.979 0.977 0.952 0.726 0.979 0.976 0.944 0.711 

  0.90 0.979 0.976 0.940 0.700 0.979 0.978 0.954 0.732 

 8 0.30 0.991 0.991 0.987 0.494 0.986 0.961 0.845 0.492 

  0.50 0.991 0.987 0.935 0.494 0.989 0.977 0.894 0.493 

  0.70 0.991 0.986 0.930 0.996 0.990 0.984 0.919 0.494 

  0.90 0.990 0.983 0.912 0.494 0.991 0.986 0.934 0.494 

(3, 18) 5 0.30 0.795 0.751 0.799 0.799 0.794 0.790 0.766 0.664 

  0.50 0.795 0.749 0.795 0.749 0.797 0.796 0.785 0.710 

  0.70 0.799 0.799 0.794 0.745 0.798 0.798 0.791 0.734 

  0.90 0.798 0.798 0.790 0.727 0.799 0.799 0.794 0.748 

 6 0.30 0.886 0.885 0.876 0.776 0.879 0.872 0.829 0.666 

  0.50 0.886 0.885 0.875 0.773 0.883 0.881 0.857 0.721 
  0.70 0.885 0.885 0.873 0.766 0.885 0.884 0.869 0.751 
  0.90 0.884 0.883 0.867 0.741 0.885 0.885 0.875 0.771 
 7 0.30 0.939 0.938 0.916 0.703 0.932 0.919 0.847 0.602 
  0.50 0.939 0.938 0.915 0.700 0.937 0.931 0.886 0.649 
  0.70 0.939 0.937 0.911 0.692 0.938 0.935 0.904 0.677 
  0.90 0.938 0.935 0.900 0.666 0.939 0.937 0.914 0.698 
 8 0.30 0.970 0.966 0.917 0.481 0.962 0.937 0.822 0.475 
  0.50 0.970 0.966 0.914 0.481 0.967 0.955 0.872 0.478 
  0.70 0.969 0.965 0.909 0.481 0.969 0.962 0.898 0.480 
  0.90 0.969 0.961 0.891 0.480 0.970 0.965 0.913 0.481 
(4, 18) 5 0.30 0.655 0.654 0.651 0.612 0.651 0.648 0.625 0.533 

  0.50 0.655 0.654 0.651 0.610 0.653 0.652 0.641 0.575 
  0.70 0.654 0.654 0.650 0.606 0.654 0.654 0.648 0.596 
  0.90 0.654 0.653 0.647 0.591 0.655 0.654 0.650 0.609 
 6 0.30 0.778 0.778 0.769 0.677 0.771 0.764 0.723 0.572 
  0.50 0.778 0.778 0.768 0.674 0.776 0.773 0.751 0.625 
  0.70 0.778 0.777 0.766 0.668 0.777 0.776 0.762 0.654 
  0.90 0.777 0.776 0.760 0.644 0.778 0.778 0.768 0.672 
 7 0.30 0.868 0.866 0.845 0.644 0.858 0.845 0.774 0.543 
  0.50 0.868 0.866 0.844 0.640 0.864 0.858 0.814 0.590 
  0.70 0.867 0.865 0.840 0.633 0.866 0.863 0.833 0.618 
  0.90 0.866 0.863 0.829 0.607 0.867 0.866 0.843 0.638 
 8 0.30 0.927 0.923 0.874 0.455 0.915 0.890 0.777 0.442 
  0.50 0.926 0.922 0.872 0.455 0.922 0.911 0.829 0.449 
  0.70 0.926 0.921 0.867 0.454 0.925 0.918 0.855 0.453 

  0.90 0.925 0.917 0.848 0.452 0.926 0.922 0.870 0.455 

 

PIs for Order Statistics Increments 

The increments of order statistics Ir,s:M = Xs:M-Xr:M, M ≥ s 

based on X-sample can be used in similar settings to 

construct PIs for the increments of order statistics 

*
, : : : ,k l N l N k NI Y Y N l= − ≥ for Y-sample. For s = r+1 and 

l = k + 1, Ir,s:M and 
*
, :k l NI  are simply the spacing of two 

consecutive order statistics. The order statistics increments 

are usually used to measure the variation in the case of 

location-scale distributions; see, for example, David 

and Nagaraja (2003, p.160). In this section, we 

describe how the record spacings Ir,s:M can be used to 

construct upper and lower prediction limits for the 

increments of order statistics *
, :k l NI . Let us first start 

with the following: 
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We have also: 
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By conditioning argument and the fact that 
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m
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Upon using (17) and substituting (16) into (15), we 

immediately conclude: 
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Proceeding similarly, we also obtain: 
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On the other hand, we clearly have: 
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and: 
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where, π2(r, s; k, l) and π3(u, v; k, l)) are as defined in 

Theorems 2 and 3, respectively. 

Therefore: 

 

4 : : : :

2 4

( , ; , ) ( )

max{ ( , ; , ), ( , ; , )}
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≥
 

 
and: 

 

5 : : : :

3 5

( , ; , ) ( )

max{ ( , ; , ), ( , ; , )}.

s M r M l N k Nr s k l P X X Y Y

r s k l L r s k l

π

π

= − ≤ −

≥
 

 

Thus, Xs:M − Xr:M and Xv:M − Xu:M are then the upper 

and lower prediction limits for Yl:N − Yk:N with prediction 

coefficient being at least max {π2(r, s; k, l); L4(r, s; k, l)} 

and max {π3(r,  s; k, l), L5(r, s; k, l)}. 

Remark 5: 

The increments of order statistics Ir,s:M represent the 

width of the outer and inner PIs. Since the expected width 

of the PI can be considered as an optimality criterion 

while comparing different intervals, evaluation of E(Ir,s:M) 

is of natural interest. In this regard, sharp bounds for 

E(Ir,s:m) established by Raqab (2003) would be useful. 
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Illustrative Data Analysis 

In this section, we apply the procedures developed 

here on a biometric data set analyzed by Prentice (1973) 

and Lawless (2003). The data represent the survival 

times of lung cancer patients, measured from the start of 

chemotherapy treatment for each patient. 

The survival times, in weeks, are given below: 

 

0.14 0.29 2.14 2.57 2.71 2.86 6.14 6.29

7.29 12.0 12.86 23.43 28.71 33.0 48.57.
 

 

The methods developed in the previous sections will 

be applied to analyze the survival times data assuming a 

random sample size N and that 20 patients begin the 

therapeutic program. From past experience, it is known 

that 20% of patients had left the therapeutic program for 

one reason or another. Consequently, a binomial random 

sample size is a reasonable assumption. That is, N ∼ 

B(20; 0:70). Based on the observed ordered data above, 

PIs for future order statistics and order intervals from 

another independent sample of random size under similar 

conditions were obtained with prediction coefficient of at 

least 1-α0 = 0.90. These intervals are presented in Tables 

4 and 5, respectively. 

To see how the PIs of future order statistics compare 

for random and  fixed sample sizes, we have also 

presented in Table 4, the prediction coefficients based on 

fixed sample size n = 20. In Table 4, it is checked that 

the PIs based on the informative sample are shorter than 

those for fixed sample size with probability coefficient 

being at least the specified level 1-α = 0.90. For 

example, let us consider the PI of 6-th order statistic 

from Y -sample for random sample size as well as for 

fixed sample size. The shortest PI of Y6:N is (X2:M, X10:M) 

= (0.29, 2.0) with probability coverage 0.90 which is the 

same as the coefficient level 0.90 when the sample size 

is random. But for fixed sample size, the shortest PI 

interval of Y6:20 is (X2:20, X11:20) = (0.29, 12.86) with the 

coefficient level 0.902. Similar observations can be 

noticed for the PI of Y8:N. Generally, one can conclude 

that the randomness of the N along its respective 

distribution represent essential factors in allowing the 

PIs to become shorter when compared with fixed sample 

size. The outer and inner PIs of a future order interval for 

both random sample size N and fixed sample size N = 20 

are displayed in Tables 5 and 6, respectively. From 

Tables 5 and 6, it is evident that the outer PIs for random 

size N are shorter than those for fixed sample size N = 20 

under the available coefficient level being at least the 

specified desired level 1-α = 0.90. On the contrary, these 

tables shows that the inner PIs of random N is wider than 

the inner PIs for fixed N = 20.  

 
Table 4: PIs for Yk:N 

 B(20, 0:7)      Fixed sample size 

 -----------------------------------------------------------------  --------------------------------------------------------------------- 

k 1-α r s (Xr:M, Xs:M) π1(r, s; k) k 1-α r s (Xr:20, Xs:20) π1(r, s, k) 

5 0.90 1 9 (0.14,7.29) 0.918 5 0.90 1 10 (0.14,12.0) 0.929 

 0.90 2 11 (0.29,12.86) 0.907  0.90 2 12 (0.29,23.43) 0.900 

6 0.90 1 10 (0.14,12.0) 0.930 6 0.90 1 11 (0.14,12.86) 0.937 

 0.90 2 10 (0.29,12.0) 0.900  0.90 2 11 (0.29,12.86) 0.902 

7 0.90 1 11 (0.14,12.86) 0.938 7 0.90 1 11 (0.14,12.86) 0.900 

 0.90 2 11 (0.29,12.86) 0.924  0.90 2 12 (0.29,23.43) 0.923 

 0.90 3 12 (2.14,23.43) 0.922  0.90 3 13 (2.14,28.71) 0.908 

8 0.90 1 11 (0.14,12.86) 0.900 8 0.90 1 12 (0.14,23.43) 0.900 

 0.90 2 12 (0.29,23.43) 0.939 8 0.90 2 13 (0.29,28.71) 0.934 

 0.90 3 12 (1.14,23.43) 0.922 8 0.90 3 13 (1.14,28.71) 0.911 

 0.90 4 13 (2.57,28.71) 0.914 8 0.90 4 15 (2.57,48.57) 0.910 

 

Table 5: Outer and inner PIs for (Yk:N, Yl:N) when N is random 

 Outer PI      Inner PI 

 -----------------------------------------------------------------  ------------------------------------------------------------- 

(k, l) 1-α r s (Xr:M, Xs:M) π1(r, s; k, l) (k, l) 1-α r s (Xr:M, Xs:M) π1(r, s; k, l) 

(5,7) 0.90 1 11 (0.14,12.86) 0.920 (2,13) 0.90 5 8 (2.71,6.29) 0.900 

 2 13  (0.29,28.71) 0.907  0.90 6 9 (2.86,7.29) 0.912 

 - - - -   0.90 8 10 (6.29,12.0) 0.900 

(5,8) 0.90 1 12 (0.14,23.43) 0.925 (3,15) 0.90 7 11 (6.14,12.86) 0.905 

 0.90 2 14 (0.29,33.0) 0.907  0.90 8 11 (6.29,12.86) 0.935 

 - - - -   0.90 9 12 (7.29,23.43) 0.909 

(6,9) 0.90 1 13 (0.14,28.71) 0.943 (4,15) 0.90 8 10 (6.29,12.0) 0.915 

 0.90 2 13 (0.29,28.71) 0.912  0.90 9 11 (7.29,12.86) 0.929 

 -  - - -  0.90 10 12 (12.0,23.43) 0.907 
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Table 6: Outer and inner PIs for (Yk:N, Yl:N) when N is fixed 

 Outer PI      Inner PI 

 --------------------------------------------------------------  ----------------------------------------------------------------- 

(k, l) 1-α r s (Xr:20, Xs:20) π1(r, s; k, l) (k, l) 1-α r s (Xr:20, Xs:20) π1(r, s; k, l) 

(5,7) 0.90 1 12 (0.14,23.43) 0.921 (2,13) 0.90 5 6 (2.71,2.86) 0.900 

 0.90 2 15 (0.29,48.57) 0.904  0.90 6 8 (2.86,6.29) 0.900 

 - - - - -  0.90 7 8 (6.14,6.29) 0.922 

(5,8) 0.90 1 13 (0.14,28.71) 0.920 (3,15) 0.90 7 9 (6.14,7.29) 0.910 

 0.90 2 15 (0.29,48.57) 0.900  0.90 8 10 (6.29,12.0) 0.915 

 - - - - -  0.90 9 10 (7.29,12.0) 0.932 

(6,9) 0.90 1 14 (0.14,33.0) 0.934 (4,15) 0.90 8 9 (6.29,7.29) 0.900 

 0.90 2 14 (0.29,33.0) 0.900  0.90 9 10 (7.29,12.0) 0.906 

 

Further, we can also obtain the upper prediction 

limits for the increments of order statistics from the 

future sample with coefficient at least 1-α0 = 0.90. For 

example, the upper prediction limit for Y12:N -Y5:N is X9:N - 

X1:N = 7.17 with prediction coefficient 0.902 while the 

upper prediction limit for Y15:N - Y5:N is X14:N -X2:N = 

32.71 with prediction coefficient 0.903. 
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