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Abstract: In this research paper, we establish Shannon-McMillan-

Breiman Theorem for Wireless Sensor Networks modelled as Coloured 

Geometric Random Networks. For, large n we show that a Wireless 

Sensor Network consisting of n sensors in [0; 1]d linked by an expected 

number of edges of order n log n can be transmitted by approximately 

[n(log n)2πd/2/(d/2)!] H bits, where H is an entropy defined explicitly 
from the parameters of the Coloured Geometric Random Network. In the 

process, we derive a joint Large Deviation Principle (LDP) for the 

empirical sensor measure and the empirical link measure of coloured 

random geometric network models. 
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Introduction 

Background 

A Wireless Sensor Network (WSN) is a network 

formed by a large number of sensor vertices where each 

vertex is assigned a sensor capable of monitoring and 

controlling the physical environment. WSNs are 

regarded as a revolutionary information gathering 

method to build the information or communication 

system which will greatly enhance the reliability and 

efficiency of infrastructure systems. Compared with the 

wired solution, WSNs are easier to set up and it has 

greater exibility of tools. With recent innovative ideas on 

sensors development, WSNs will become the key 

technology for the internet of things. See, example 

Yinbiao et al. (2014; Chong and Kumar, 2003). 
Recent advances in computer science, information 

theory and micro-electromechanical technology have 

resulted in a signicant focus on a new WSN research. 

The new WSN research which begun two decade ago has 

been drawing attention of many communication experts 

internationally. This sensor network research has focused 

on networking technology and networked information 

processing appropriate for highly dynamic ad hoc 

environments and resource-constrained sensor nodes. 

See, Yinbiao et al. (2014). Many researches who have 

tried to find a good network model for the WSN have 

suggested models that have their background from 

classical areas of theoretical computer science and applied 

mathematics. See, example (Stanley-Marbell et al., 2008) 
and the references therein. 

Recent studies, Kenniche (2010) and the references 

therein, have shown that a random schemes is the only way 

to setup the outsized number of sensors in remote areas and 

the random geometric graph or geometric random network 

is the most appropriate model for this network. 

In this article we derive Shannon-MacMillan-

Breiman Theorem (SMBT) or Asymptotic Equipartition 

Property, Dembo and Kontoyiannis (2002) for WSN 

modelled as Coloured Geometric Random Network 

(CGRN) models, using some of the large deviation 

techniques developed for studying information theory, 

Doku-Amponsah (2011), for networked data structures. 
To be specific we derive a Large Deviation 

Principle (LDP) for the empirical sensor distribution 

and the empirical link distribution of the CGRN using 

(Doku-Amponsah, 2011), Theorem 3.3] and the 

methods developed therein. From this LDP we prove 

the Weak Law of Large Numbers (WLLN) for the 

empirical sensor distribution and the empirical link 

distribution. From the WLLN we derive the SMBT for 

CGRN as a model for the WSN. 
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The Coloured Geometric Random Graph Model 

We shall look at a more complex model of random 

geometric networks, the CGRN in which the linking 
radius depends on the sensor of the vertices. The 

empirical sensor distribution and the empirical link 

distribution are our main object to be studied here. 

For a probability distribution v on X and a function rn: 

X × X → (0, 1] we can define the coloured random 
geometric network X with n nodes as follows: Sample 

sites Y1,..., Yn at according to the uniform probability 

distribution on [0, 1]d. For each site Yj, we assign sensor 

X(Yj) independently according to the sensor law µ. For 

given sensors, we link any two nodes Yi, Yj, (i ≠ j) by a 
link independently of everything else, if: 

 

( ) ( )|| || ,
i j n i j

Y Y r X Y X Y − ≤    

 

In this research paper we shall look at rn(a, b), for a, 

b ∈ X as a link radius and all the time consider: 

 

( ) ( )( )( ) ), : , 1,2,3,..., ,
i j

X X Y X Y i j n E= =  

 

under the joint law of network and sensor. We look at X 

as CGRN with nodes Y1,..., Yn sample from the nodes 

space [0, 1]d. For the purposes of this study we only 

consider the sparse, intermediate and dense cases i.e., the 

link radius rn satisfies the assumption 

( ) [ ] ( ), / log ,d

n d
nr a b n a bλ→ for all a, b ∈ X, where λ: X2→ 

[0,∞) is a symmetric function, which is not identically 
equal to zero. The CGRN has been mentioned by 

Cannings and Penman (2003) as a likely extension to the 

coloured random graphs proposed and studied by 

Penman (1998). 

The distance rn plays a role similar to that of pn in 
the coloured random graph model proposed in 

Penman (1998) and studied by Doku-Amponsah 

(2006). Based on one's choice of rn, qualitatively, 

different types of behaviour can be seen. Note that, 

intuitively, the average degree scales with nrd: To be 

specific, it can be shown that in the classical random 

geometric graph the ratio of the average degree 

divided by nrd tends to a constant in probability as 

long as 2 d

n
n r →∞ . MCDiarmid and Müller (2005). As 

a result of the interpretation of d

n
nr a distribution of 

the average degree, we refer to the case where nrd/log 

n →λ[d] = 0 as sparse case, the case nrd/log n → λ[d] as 

the intermediate case(s) and nrd/log n → λ[d] = ∞ as 
the dense case. 

With any coloured graph X we associate a probability 

distribution, the empirical sensor distribution 

( )1

X
L B X∈ , by: 

( ) ( ) ( )1

1

1
: ,

j

n

X X Y
j

L a a for a X
n

δ
=

= ∈∑  

 

and a symmetric finite distribution, the empirical link 

distribution ( )2 2

*X
L B X∈ ɶ , by: 

 

( )

( ) ( )( ) ( ) ( )( )( )
( ) ( )

2

2

, ,
,

,

1
: , , ,

log i j j i

X

X Y X Y X Y X Y
i j E

L a b

a b for a b X
n n

δ δ
∈

 = + ∈  
∑

 

 

The total mass 2|| ||
X

L  of the empirical link 

distribution is 2|E|/n log n. 

For any finite or countable set X we denote by B(X) 

the space of probability distributions and by ( )B Xɶ  the 

space of finite distributions on X, both endowed with the 

weak topology. 

The remaining part of the paper is organized as 

follows: Section 2 contain statement of our main results, 

Theorem 2.1 and Theorem 2.2. In Section 3 we proof the 

main results, 2.2 and 2.1. 

Statement of Main Results 

Throughout the remaining part of this research paper 

we assume d≥2 is finite. 

Asymptotic Equipartition Property the Sparse and 

Intermediate for WSN 

The underlying question is, how many bits are 

needed to store or transmit the information contained 

in a Wireless Sensor Network consisting of n sensors 

connected by number of links? This question can be 

answered by the SMBT for Wireless Sensor 

Networks, see Theorem 2.1. To state the SMBT we 

denote by P the distribution of the CGRN. We define 

the distribution [ ] ( )d
B X Xλ σ σ⊗ ∈ ×ɶ  by: 

 

[ ] ( ) [ ] ( ) ( ) ( ), , , ,
d d

a b a b a b for a b Xλ σ σ λ σ σ⊗ = ∈  

 

and write: 

 

[ ] ( ) ( ) [ ] ( ) ( )
2

,

, : ,
d dX

a b X

da db a a b bλ σ σ σ λ σ
∈

⊗ = ∑∫  

 

Theorem 2.1 

Let X be a CGRN with sensor law v and connection 

radius rn: X2→ [0, 1] satisfying 

( ) [ ] ( ), / log ,d

n d
nr a b n a bλ→ , for some symmetric function 

λ[d]: X
2→[0,∞) not identical to zero. Then, for every ε > 0: 
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( )
( )

( ) [ ] ( )2

2

/ 2

1
log

log
lim 0

,
2 / 2 !

dn

dX

P X
n n

P

v v da db
d

ε
π

λ
→∞

 
− 

 ≥ = 
 − ⊗ 
 

∫
 

 
In other words, in order to code a WSN in the given 

sparse or intermediate regime one needs with high 

probability, about [n(log n)2πd/2/(d/2)!]H bits, where H is 
the entropy defined by: 
 

[ ] ( )
22

1
: ,

2log
dX

H v v da dbλ= ⊗∫  

 

For d ∈ N we write: 

 

( )

/ 2

2
2

:
2

1 1

d

if d
d

d

if d

π

ρ


≥ + Γ=   

 
 =

 

 

where, Γ is the gamma function. For the pair of 
distributions (σ, η) we define the near entropy (Kullback 

action) 
[ ]dλ
H  by: 

 

[ ] ( ) ( ) [ ]( )
( ) [ ]

|| : ||

|| || || ||

d d

d

H d

d

λ η σ η ρ λ σ σ

ρ λ σ σ η

= ⊗

+ ⊗ −

H
 

 

where, ( )||H η ηɶ  means the relative entropy of the finite 

distribution η with respect to ηɶ . 

Large-Deviation Principles in the Sparse and 
Intermediate CGRN 

The following LDP is a key ingredient in the proof of 

our SMBT, see Theorem 2.1. 

Theorem 2.2 

Let X be a CGRN with sensor law v: X → (0, 1] and 

link radius rn: X × X → [0, 1] satisfying 

( ) [ ] ( ), / log ,d

n d
nr a b n a bλ→ , with λ[d]: X × X → [0,∞) 

symmetric. Then, for n → ∞, the pair ( )1 2,
X X

L L  satisfies 

an LDP in ( ) ( )*
B X B X X× ×ɶ  with speed: 

• n log n and good rate function: 

 

[ ] ( )
[ ]
( )1

1
, ||

2 d

d
I

λ
σ η η σ= H  (2.1) 

 

whilst 
[ ]
( )|| 0

dλ
η σ ≥H  and equality holds if and only 

if η = ρ(d)λ[d] σ⊗σ. 

• n and good rate function” 

 

[ ] ( )
( ) ( ) [ ]

1

||
,

d d
H v if d

I
otherwise

σ η ρ λ σ σ
σ η

 = ⊗= 
∞

 (2.2) 

 

Derivation of Theorems 2.2 and 2.1 

For any two points U1 and U2 uniformly and 
independently chosen from the space [0; 1]d write: 

 

( ) { }1 2
: || ||F t P U U t= − ≤  

 

where, F(rn(a, b)) = ( ) ( ),d

nd r a bρ , a, b ∈ X2 i.e., the 

volume of a d-dimensional (hyper) sphere with radius 

r(a, b) satisfying ( ),d

nr a b / log n → λ[d](a, b)). Let pn(a, 

b) = F(rn(a, b)) = ( ) ( ),d

n
d r a bρ and: 

 

( )) ( ) [ ] ( ), ,
d

C a b d a bρ λ=  

 

Then we have: 

 

( ) ( )( ) ( ) ( )( )( )
( )

( ) ( )( )( )
( )

,

,

,

1 ,

u n u u

u V u v E

n u v

u v E

dP X v X Y F r X Y X Y

F r X Y X Y

∈ ∈

∉

=

−

∏ ∏

∏
 (3.1) 

 

( )( )
( )

( ) ( )( )

( )
( ) ( )( ) ( )

,

,

,

1 ,

u n u v

u V u v E

n u v

u v E

v X Y p X Y X Y

p X Y X Y dP X

∈ ∈

∉

=

− =

∏ ∏

∏ ɶ
 (3.2) 

 

where, ( )P Xɶ  is the law of coloured random graph X 

with the geometric plane [0; 1]d ignored. 

Hence by the exponential equivalence, [(Dembo and 

Zeitouni, 1998), Theorem 4.2.13] and [(Doku-Amponsah, 

2011), Theorem 3.3] we have Theorem 2.1 with rate 

functions [ ]
1

d
I and [ ]

2

d
I . 

Derivation of Theorems 2.1 

Lemma 3.1 

Let X be a CGRN with sensor law v: X → (0, 1] and 

link radius rn: X × X → [0, 1] such that 

( ) [ ] ( ), / log ,d

n d
nr a b n a bλ→ , for λ[d]: X × X → [0,∞) 

nonzero. Then, for any ε > 0 we have: 

 

( ) ( ){ }1lim sup | | 0
X

n a X

P L a v a ε
→∞ ∈

− ≥ =  



Kwabena Doku-Amponsah / Journal of Mathematics and Statistics 2017, 13 (4): 325.329 

DOI: 10.3844/jmssp.2017.325.329 

 

328 

and: 

 

( ) ( ) ( ) [ ] ( ) ( ){ }2lim sup | , , | 0
X d

n a X

P L a b v a d a b v bρ λ ε
→∞ ∈

− ≥ =  

 
From Theorem 2.2(ii), we prove this lemma. To 

begin, we define a closed set: 

 

( ) ( ) ( )
( ) ( ) ( ) [ ] ( )) ( )

*

1

,

, :

sup | , , |
d

a b X

B X B X X
F

a b v a d a b v b

σ η

η ρ λ ε
∈

 ∈ × × =  − ≥  

ɶ

 

 

and: 

 

( ) ( ) ( ) ( ) ( )2 *
,

, : sup | |
a b X

F B X B X X a v aσ η σ ε
∈

 = ∈ × × − ≥ 
 

ɶ  

 

We observe that, by Theorem 2.2(ii): 

 

( ){ }
( )

[ ] ( )1 2
2

,

1
limsup log , inf ,

d

X X
n

P F I
n ∈→∞

∈ ≤ −
σ η

σ η
F

L L  

 

where, F = F1∪F2. 
This will be shown by contradiction that the right of 

(3.3) is negative. We assume there is a sequence (σn, ηn) 

in F such that [ ] ( )2 , 0
d

n n
I σ η ↓ . Then, because the function 

[ ]
2

d
I is a good rate function, we have all its level sets 

compact. Notice that, by lower semi-continuity of the 

mapping ( ) [ ] ( )2
, ,

d
Iσ η σ η֏ , there is a limit point (σ, η) ∈ 

F with [ ] ( )2
, 0

d
I σ η = . Using Theorem 2.2(i), we have 

H(σ||v) = 0 and HC(η||σ) = 0. This implies σ(a) = v(a) and 

η(a, b) = ρ(d)λ[d](a, b)) σ(a)σ(b), for a, b ∈ X which 

contradicts (σ, η) ∈ F. Hence as required. 
Recall that [n] is a fixed set of n vertices, say [n] = 

{1,…, n}, Gn is the set of all (simple) graphs with 

vertex set [n] and edge set E ⊂ E:= {(u, v) ∈ [n] × [n]: 

u < v}. Now we calculate the law Pn: Gn(X) → [0, 1] 
of X: 

 

( ) ( )( ) ( ) ( )( )( )
( )

( ) ( )( )( )( )
( )

( )( )
( ) ( )( )( )
( ) ( )( )( )( )

( ) ( )( )( )( )
( )

,

,

,

,

,

1 ,

,

1 ,

1 ,

u n u v

u V u v E

n u v

u v E

n u v

u

u V u v E
n u v

n u v

u v E

P x v x y F r x y x y

F r x y x y

F r x y x y
v x y

F r x y x y

F r x y x y

∈ ∈

∉

∈ ∈

∈

=

−

=
−

−

∏ ∏

∏

∏ ∏

∏

 

 

Therefore, we have in the case of Theorem 2.1: 

( )( )
( ) ( )

( )
( )

( )( ) ( )( )( )( )
( )

( )( )( )(
( )

( )

( )( )( )(
( )

( )

2

2

2

1

2 2

2

1 1

2

1

2

log1
log

loglog

log , / 1 ,1
,

2 log

log 1 ,1
,

2 log /

log 1 1,1
,

2 log

X
X

n n

X
X

n

X X
X

n

X

v a
P x L da

nn n

F r a b F r a b
da db

n

F r a b
da db

n

F r b
da da

n
∆

− = −

−
−

−
− ⊗

−
−

∫

∫

∫

∫

L

L L

L

 

 

Now in the first case the integrands 
( )

( )2

log

log

v a

n

−
, 

( )( )( )(
( )

log 1 ,

log /

n
F r a b

n n

− −
 and 

( )( )( )(
( )2

log 1 1,

log

nF r b

n

− −
all 

approach zero, while 
( )( )( ) ( )( )( )log , / 1 ,

log

n nF r a b F r a b

n

− −
 

→ 1, for all a, b ∈ X. Hence Theorem 2.1 follows from 
Theorem 3.1. 

Conclusion 

In Information theory, the Shannon-McMillan-
Breiman Theorem (SMBT) or Asymptotic Equipartition 
Property is the analog of the strong law of large 
numbers. See, Cover and Thomas (1991). We have 
found in this research paper an SMBT, see Theorem 2.1, 
for the Wireless Sensor Networks. It is a direct 
consequence of the weak law of large numbers, see 
Lemma 3.1, for the empirical sensor distribution and 
empirical link distribution of a Wireless Sensor 
Networked data structure. The SMBT will allow us to 
partition output sequence of a Wireless Sensor 
Networked data structure into two sets, the typical set, 
where the sample entropy is close to the true entropy and 
the non-typical set, which contains the other sequence. 
Further coding theorems could be developed for the 
Wireless Sensor Network from this SMBT. 
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