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Introduction 

Let M be a complex manifold, h be an Hermitian 
metrics. If h is locally conformal to Kähler metrics, i.e., 
for any point m ∈ M there is an open neighborhood U 
such that on U g = ef

h is a Kähler metrics with a function 
f, we say that (M, h) is a locally conformal Kähler. That 
is, let Ω(⋅,⋅) = h(⋅, J), then d(ef

Ω) = 0. 
A compact complex homogeneous space with an 

invariant Hermitian structure was classified by Wang 
(1954), see also (Hano and Kobayashi, 1960). In fact, 
they classified the compact complex homogeneous space 
with compact Lie groups. A Hermitian manifold is a 
Riemannian manifold. The identity component of the 
Riemannian isometric group for a compact Riemannian 
manifold is a compact Lie group. So is the identity 
component of the Hermitian isometric group for a 
compact Hermitian manifold. 

Therefore, we have: 

Lemma 1 

If M = G/H is a compact homogeneous Riemannian 
manifold with G connected, then G is a subgroup of a 
compact Lie group. In particular, both G and H are 
reductive with compact semisimple parts. 

We then have (Hano and Kobayashi, 1960 Theorem B): 

Lemma 2 

Any compact Hermitian homogeneous manifold is a 
complex torus bundle over a rational (therefore simply 
connected) projective homogeneous space. 

One could also see (Guan, 1994) page 66, Remark for 
a detail understanding of this fibration. 

Recently, Professor Hasegawa et al proved in 
(Hasegawa and Kamishima, 2016; Gauduchon et al., 2015): 

Proposition 1 

A compact homogeneous locally conformal Kähler 
manifold M = G/H is a complex 1-dimensional torus 
bundle over a rational projective homogeneous space. 

It is striking that Lemma 2 and Proposition 1 is so 
close, yet the proofs of Proposition 1 in (Hasegawa and 
Kamishima, 2016) are so complicated (to us). We have 
several purposes in this note: 
 
• We shall take a simple approach from Lemma 2 to 

Proposition 1. As one shall see, our machinery in the 
compact complex homogeneous spaces theory is 
powerful enough to solve this problem 
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• We shall fill in the details of the argument in 
(Hasegawa and Kamishima, 2016) (our argument 
was earlier than (Gauduchon et al., 2015)) from a 
more complex homogeneous space and higher 
dimensional aspect 

• We shall also take Vaisman's earlier approach into 
our account 

• We shall prove our Main Theorem of the classification 
of the locally conformal Kähler metrics 

 
Main Theorem 

The manifold is cohomogeneity one under the action 
of the semisimple part S of the Lie group, i.e., S has 
hypersurface orbits. M = N × S1 as a homogeneous space 
(but not necessary as a Riemannian manifold) with N the S 
orbits. Both the original locally conformal Kähler metrics 
and the related Kähler metrics are cohomogeneity one 
under the S action. Moreover, M is a complex one 
dimensional torus bundle, over a rational homogeneous 
projective space, which is a finite quotient of a quotient of 
a positive C* bundle by some action ea with Re a ≠ 0. The 
metrics on M, as a submersion, is completely determined 
by the Kähler class of the base manifold and the Kähler 
class, as the restriction, of the fiber. 

We added some examples to help both experts and 
the readers understand our arguments. 

We obtained some more detail information in our 
Theorem 2. 

We understand that this result is not trivial to the 
general readers since even a while after the publishing of 
(Hasegawa and Kamishima, 2016; Gauduchon et al., 
2015), we had some discussion of this result and Lemma 
6 with Professor Hasegawa. At the beginning of Sept. 
2012, Professor Hasegawa visited us and showed us their 
work on the classification of compact homogeneous 
locally conformal Kähler manifolds. They seemly had a 
difficulty to publish. Although not being a referee, as 
this was an important result, I came up with these proofs 
in this note. I gave a talk in UCR on Oct. 5, 2012. I told 
Professor Hasegawa of my proofs. Although my proofs 
might be simpler and more convincing, they were 
hesitated to change their original proof. These results 
were also announced in (Cernea and Guan, 2015). 
Although Theorem 1 might be kind of trivial on the 
group level by the Annals paper (Hochchild and Serre, 
1953), it was not very clear to us that it is also true for 
the coset space. Instead, we put some technical details 
from the structure of rational projective homogeneous 
space as our Lemma 4 and we also put Lemma 7 in our 
talk as Theorem 2. We successfully avoided the Lee field 
in the second section, which might cause a lot of 
confusions when the structure of the Hermitian metrics 
was not known. Also, it is very easy to get confused 
when people use the left invariant vector fields on the 

group in the same time with right invariant vector fields 
on the manifold. Koszul (1955) serves as a good 
example. It is well-known in the homogeneous space 
theory. We try to avoid any confusion as much as 
possible. In the proof of Theorem 2, we extended the 
proof of Hasegawa et al for the parallel property of θ. To 
make the proof complete, we have to use a submersion 
calculation which was well known for the symmetric 
spaces. Because of the Theorem 1 in the second section, 
we can now deal with the Lee field freely in the third 
section. To include the Lee field in the Lie algebra, we 
use the full isometry group in the third section.  

Homogeneous spaces is always a hot and classical 
topic in Mathematics. We list some good references as 
(Borel and Remmert, 1962; Chevalley, 1968; Cernea and 
Guan, 2015; Dorfmeister and Guan, 1991;     
Dorfmeister and Nakajima, 1988; Guan, 2002; 1996; 
Gauduchon et al., 2015; Hasegawa and Kamishima, 
2016; Hano and Kobayashi, 1960; Hochchild and Serre, 
1953; Koszul, 1955; Mostow, 1961; Matsushima, 1957; 
Nakamura, 1975; Nomizu, 1954; Tits, 1971; Wang, 
1954) as examples at the end. From our Theorem 1, we 
also obtained that the semisimple part S of the Lie group 
acts on M with cohomogeneity one action, i.e., with 
hypersurface orbits. The reduction of M by S is S1. That 
is M = N × S1 as a homogeneous space and the related 
Kähler metrics are cohomogeneity one under the S 
action. We also are able to classify the cohomogeneity 
one case. We shall deal with it in a different paper. Our 
early purpose for this note is giving an alternative 
explanation of (Hasegawa and Kamishima, 2016). 
However, after receiving some concerns, we decided to 
add the Corollary 1 and therefore, the Main Theorem to 
make our Theorem 1 a little bit more different from the 
contents in (Hasegawa and Kamishima, 2016). We also 
added some examples from the original Hopf surfaces 
(Kobayashi and Nomizu, 1996, page 137). 

Let us give a quick description for the case when dimC 
M = 2. According to Lemma 2 above, M is either a 
complex torus of complex dimension 2 or a complex one 
dimensional torus bundle over CP

1. The simply connected 
case was excluded by the locally conformal Kähler (but 
nonkähler) condition. For a complex torus, all the 
homogeneous hermitian metrics are actually Kähler. 
Therefore, we obtain the Proposition 1. We also notice 
that the manifold M might not be a Hopf surface itself but 
a finite covering of it. However, any homogeneous 
hermitian metrics comes from the Hopf surface covering 
and therefore, all the discussion about the Hopf surfaces in 
the later sections in this note apply to M. 

Also, in this case, the semisimple part of the group 
comes down to be an effective isometric subgroup on 
CP

1 and therefore is SU(2). This is because that the 
isometric group on the torus fiber is abelian. Now, the 
dimension of SU(2) is 3 and the action is cohomogeneity 
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one, i.e., it has hypersurfaces as orbits. To be 
homogeneous for M = G/H, the center of G is at least of 
a real dimension 1 and at most of real dimension 2. G is 
locally either SU(2) × R or SU(2) × C. Moreover, the 
SU(2) orbits are S1 bundles over CP

1. That leads to a line 
bundle and therefore a C* bundle M* over CP

1. 
M

* is a covering of M. Let Ma = (C2
-{0})/(a), (a) = 

{a
i|i∈Z} with a ∈ C* and |a| ≠1, be a Hopf surface, then 
*
a

M  = C2-{0}. Then *
a

M  is a finite covering of M*. We 

denote the earlier one simply by C2,*. The covering map 
C

2,* to M
* introduces a Hopf surface covering over M 

(introduced by the corresponding S
1 bundles, which 

introduces a finite torus covering for each fiber). 
This is our Main Theorem (and Corollary 1) for the 

complex dimension 2 case. 

First Proof of Proposition 1, from Lemma 2 

In the Introduction we noticed that on U d(ef
Ω) = 0. 

That is: 
 

( ) 0fe df d∧Ω + Ω =  

 
We define θ = -df. Then dΩ = θ∧Ω. Since Ω is 

nondegenerate, θ is uniquely determined if n = dimC M > 
1. In the following, we always assume that n ≠ 1 since 
when n = 1, M is always Kähler. 

Lemma 3 

θ is closed, represents a nonzero cohomology class if 
h is not conformally Kähler itself. In the compact 
homogeneous case, θ is in the dual of the center. 

Proof 

dθ = d(-df) = 0 implies that θ is closed. If θ 
represents a zero class in the cohomology, then θ = dF 
for a global function F. That is, e−F h is Kähler. Since G 
is reductive, the Lie algebra of G is s + t with s 
compact semisimple and t abelian. Since Ω and dΩ are 
invariant under G, so is θ. The dual of the Lie algebra 
is s* + t*. The pull back of θ to G is also closed. Now 
we use α as the left invariant 1-form on G such that α 
is the same as θ at the identity point. Then α has the 
same property as θ, i.e., closed and dβ = α∧β(mod H) 
with β the left invariant 2-form corresponding to the 
pullback of Ω (they are equal at the identity). α = αs + 
αt ∈ s* + t*, where αs ∈ s* and it is not closed unless it 
is zero while αt ∈ t* is always closed. Therefore, αs is 
also closed and hence is zero. We have that α is in t*. 
Since t is the center, we can identify α to be the 
pullback of θ and still denote it as θ.  

Next result is one of the major parts of the proof. We 
need prove. 

Theorem 1 

Ω = k(θ∧Jθ-d(Jθ)) and the torus bundle is a 
submersion. 

Corollary 1 

The manifold is cohomogeneity one under the action 
of the semisimple part S of the Lie group, i.e., it has 
hypersurface orbits. M = N × S1 as a homogeneous space 
(but not necessary as a Riemannian manifold) with N the 
S orbits. The related Kähler metrics are cohomogeneity 
one under the S action. Moreover, M is a complex torus 
bundle over G/K and a finite quotient of a quotient of a 
positive C* bundle by some action ea with Re a ≠ 0. The 
Lie group action can be locally isomorphic to S × R or S × 
C

*. In the first case, the Lee field may and may not be in 
the Lie algebra but in the second case the Lee field is in 
C

*. The metrics on M is completely determined by the 
metrics (actually the Kähler class) on the rational 
projective space and the metrics (same as the Kähler class) 
on any one of the complex one dimensional torus fiber. 

Notice that this Theorem is basically from 
(Hasegawa and Kamishima, 2016) by using (Hochchild and 
Serre, 1953). However, the result from (Hochchild and 
Serre, 1953) only stated for the Lie group level. That is 
the reason that we need give a detail account of this 
result as it is crucial to all the proofs. 

Before we prove our Theorem 1, we need a structure 
of the Lie algebra G of G, from e.g., (Wang, 1954;   
Hano and Kobayashi, 1960; Guan, 2002). Let H be the 
Lie algebra of H. We have a tower of two fiber bundles: 
 

/ /G G H G K→ →  

 
where, G/K = S/KS is the rational projective 
homogeneous space and K/H a complex torus. KS is a 
centralizer of a torus in S. G = s + t = H + m = m0 + m1 
with m0 the tangent space of the rational projective 
space and m1 the tangent space of the complex torus. 
Let K and Ks be the Lie algebra of K and KS 
respectively, then t ⊂ K, m0 ⊂ s. Let HS = H ∩ S, then 
the semisimple part of HS is the semisimple parts of 
both KS and H. Let Hs be the Lie algebra of HS. 

Lemma 4 

For any given *
0mγ ∈ , we have dγ ≠ 0. For any 

*
1mγ ∈ dγ ≠ 0 unless γ ∈ t*. For any γ ∈ m* dγ ∈ 0 unless 

γ ∈ t*. 

Proof 

Of course, the first and the second statements are 
actually special cases of the third statement. The first one 
looks stronger but one might notice that the intersection 
of *

0m  and t* is trivial. 
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I am putting all three statements in the Lemma just 
for the convenience of the readers. One could check 
the first statement easily by the well-known properties 
of the rational projective space, e.g., in (Hano and 
Kobayashi, 1960; Guan, 2002; Tits, 1971). Or we just 
notice that G/K is simply connected. Similarly for the 
second statement that                              by m1 being 
in the center of K. To get the third statement, one only 
need to compare the term types appeared in dγ from 
the first and the second statement. We leave the 
details to the readers. One could also use a spectral 
sequence argument as in (Guan, 1996) that the only 
real contribution for H1(G/H, R) comes from *

1m  since 

H
1(G/K, R) = 0. 

If all those arguments above do not satisfy the reader, 
just take the same reason as for why θ is in the center of 
the Lie algebra. The point is that if dγ = 0, then: 
 

( ) [ ]( )0 , ,d x y x yγ γ= =  

 
That is, the Lie algebra of S is in the kernel of γ. 
Now, we are ready to prove the Theorem 1: 

Proof of Theorem 1 

By diagonalizing the Hermitian form we can assume: 
 

1k Jθ θΩ = ∧ + Ω  

 
with Ω1 perpendicular to θ and Jθ. Then: 
 

( ) 1d k d J dθ θΩ = − ∧ + Ω  

 
This implies, dΩ1 = 0. By Lemma 4, we have: 

 

1 0 (mod  H)dαΩ = +Ω  

 
with Ω0 ∈ ∧2

t
* and α ∈ s*. Ω0 is perpendicular to θ in the 

Lie algebra. If t is an center element corresponding to θ, 
then Ω0(t) = 0: 
 

0

0

(mod  H)

( )  ( )(mod  H)

k J d

d k d J d

θ θ α

θ θ θ θ α

Ω = ∧ + +Ω

Ω = − ∧ = ∧Ω = ∧ +Ω
 

 
We have d(Jθ) ∈ ∧2

s
* implies that Ω0 = 0 and: 

 
( )  (mod  H)kd J dθ α− =  

 
Therefore, we get the Theorem 1. 
To get Proposition 1, we just notice that -kd(Jθ) is the 

Kähler form of the rational projective homogeneous 
space M0 which contains the semisimple part of KS in its 
isotropic subgroup and hence M0 is G/K. The rank of -

kd(Jθ) is obviously n-1. Therefore, G/H is a 1-
dimensional complex torus bundle over G/K. The map 
G/H over G/K is a Hermitian submersion. 

Relation to Vaisman's Method 

Theorem 1 might be a little bit too abstract to the 
readers, let us look at the standard Hopf surface: 
 

( ){ }( ) ( )2 0,0 / aC e−  

 

with Re a ≠ 0. There are metrics 
2

k z dz dz
−

∧ : 

 

( )2 2 2ln | | , | | / | |f z df d z zθ= = − = −  

 
Actually, any cohomogeneity one Kähler metrics of a 

principal C
* bundle over a rational projective 

homogeneous manifold is fully understood. One might 
see (Guan, 1995). We shall discuss the Hopf surfaces a 
little bit more after Lemma 6. 

From our Theorem 1, we could see that the Lee field 
is in the center of the Lie algebra of the isometric group. 
There was a concern of the described Lee field, with an 
example in the proof of the Proposition 3 in (Hasegawa 
and Kamishima, 2016). But it seems to us that there is 
no problem with above Hopf surface with any given 
complex number a above and it fits with this metric. 
That is, the Lee field has nothing to do with a and is 
in the center. However, we do see that the geodesics 
perpendicular to the S orbits might not be closed. 

Earlier, Vaisman proved that Proposition 1 is true if θ 
is parallel. 

Lemma 5 

If M is a compact homogeneous locally conformal 
Kähler manifold,  θ is harmonic. That is, dθ = 0 = δθ. 

Proof 

Since M is homogeneous, δθ is a constant: 
 

( ) ( )( ),1 , 1 0volume dδ δθ θ⋅ = = =  

 
In (Vaisman, 1982) Theorem 2.1, Vaisman proved 

the following Proposition: 

Proposition 2 

Let (M, h) be a compact locally conformal Kähler 
manifold and assume that its underlying structure 
consists of related Kähler metrics with nonnegative Ricci 
curvatures. Then there is a global function ϕ > 0 on M 
such that (M, ϕh) is a generalized Hopf manifold. 

A locally conformal Kähler manifold is a 
generalized Hopf manifold if ∇θ = 0, i.e., θ is 

H) (mod** 0
2

1 mdm ∧⊂
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parallel. See Vaisman (1982) page 232. He basically 
found a ϕ such that θ for ϕh is harmonic, which we 
already achieved in Lemma 5. Then he proved that 
with the Ricci curvature condition, harmonic implies 
that θ is parallel. See his proof from page 234 (the 
second paragraph) to 235 in (Vaisman, 1982). 

Lemma 6 

If M is a compact homogeneous locally conformal 
Kähler manifold, then: 
 

( )l k J ld Jθ θ θΩ = ∧ −  

 
is also a locally conformal Kähler structure. 

Proof 

By a direct calculation. 
We notice that the new metrics in the Lemma 6 is 

different from that in Theorem 1 since we have a 
different θ in this new metrics. Comparing this to 
Theorem 1, if we let θ′ = mθ be the new Lee form, 
then k′m

2 = k and k′m = l. This implies m = k/l k′ = 
l
2/k. In the case of Hopf surfaces, the change in the 

second term (the term with l) comes from the pullback 
of the standard metrics on: 
 

( ){ }( )1 2 *0,0, /CP C C= −  

 
which is: 
 

2

4
log | |

| |

i
i z w w

z
∂∂ = ∧  

 
with w = z2dz1-z1dz2. 

By Corollary 1, all the homogeneous locally 
conformal Kähler metrics on the Hopf surfaces have 
above form. 

In general, Theorem 1 gives a C
* (or line) bundle 

over M0 = G/K such that M is the quotient of the C
* 

bundle by some e
a with Re a ≠ 0. Jθ is more like the 

connection of the circle bundle and -dJθ is more like the 
Chern class of line bundle (or the Euler class of the circle 
bundle). See Kobayashi (1987) page 10 to 12 for the line 
bundle calculations. 

The following Theorem implies the main results in 
both papers of Hasegawa and Kamishima, 2016 and 
Gauduchon et al., 2015, i.e., θ is parallel (or M is 
Vaisman). However, it also gives some extra 
information on the Ricci curvature of the related 
Kähler metrics when l is big. That relates our 
argument  to Proposition 2 and is completely new, at 
least at the end of 2012 when we gave a talk in 
University of California at Riverside. 

Theorem 2 

When l is big enough, the new Hermitian structure is 
locally conformal to Kähler metrics with nonnegative 
Ricci curvatures. Therefore, θ is parallel. 

Proof 

Let us just calculate the Ricci curvature of the related 
Kähler metric of Ωl. We notice that dΩl = -kθ∧d(Jθ) = 
(k/l)θ∧Ωl and therefore, fl = (k/l)f. Ricci curvature of the 
Kähler metric is: 
 

( )( ) ( ) ( )

( ) ( ) ( ) ( )

/

0

log / 2

/ / 2

n k l ne n k l d J

Ricci G K n k l d J k d J

θ

θ θ

∂∂ Ω =

+ = +
 

 
if the Ricci curvature of G/K is k0d(Jθ). Actually, the 
relation between d(Jθ) and the Ricci form of G/K does 
not matter since d(Jθ) is a pullback closed 2-form from 
G/K, which is Kähler-Einstein. Another way to look at 
this is that even if the Ricci curvature of G/K is not 
k0d(Jθ) but dγ with some γ from the center of K (Guan, 
1994, page 66, Remark for a detail understanding of this 
calculation), we still have: 
 

( )Cd d J Cdγ θ γ− < <  

 
for some constant C. For more details of the structure 
of H1,1(G/K) = H2(G/K,R) (been a Fano manifold) see, 
for example, (Dorfmeister and Guan, 1991). We 
notice that G/K is Kähler-Einstein (Guan, 2002) and 
the Ricci form fibration is exactly the torus fibration. 
Therefore, when l is big, the Ricci curvature of the 
related Kähler metrics is close to the pullback Ricci 
curvature from G/K and is nonnegative. This finished 
the first part of Theorem 2. 

For the second part, we could follow Vaisman's 
argument in the proof of Proposition 2 to prove ∇lθ = 0 
when l is big enough. Then: 
 

0kθ θ∇ = ∇ =  
 
follows from that as a rational function of l, ∇lθ  is zero 
on an open interval. 

However, here I would like to use an argument 
similar to Hasegawa et al. To prove that θ is parallel, one 
might prove ψ = h*( ,θ) is parallel. 

The reason is following: 
 

( )( ) ( )( ) ( )

( )( ) ( ) ( ), ,

X X X

h X h X X

θ θ θ

ψ ψ θ

∇ = ∇ + ∇

= ∇ = ∇ + ∇
 

 
hence (∇θ)(X) = h(∇ψ,X). That is, ∇ψ = 0 implies ∇θ = 0. 
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Before we go further, we notice that the Lee field ψ 
might not be in the Lie algebra. To include the Lee field 
in the Lie algebra, we now let G be the identity 
component of the full isometric group. From Theorem 1, 
we notice that M is the quotient of a C* bundle over S/KS. 
Jθ acts on C* as the circle action and θ, ψ corresponds to 
the expanding direction. Therefore, ψ is commute with S 
and hence is in the center. 

Now, we pull ψ back to G, since it is in the center, it is 
both right and left invariant. According to (O'Neill, 1983) 
page 311, part (2) of the Proposition 11.22, there is one 
and only one G left-invariant and Ad(H) invariant metrics 
on G such that G → G/H induces a Riemannian 
submersion to h. We again denote it by h. We want to 
apply (O'Neill, 1983) page 212, part (3) of Lemma 7.45 to 
our situation. That is, if ψ is parallel on G, so is it on G/H. 

Now, let x, y be two left invariant vector fields on G 
(nonnecessary the pullback ones which are only right-
invariant), then: 
 

( )( ) ( ) ( )0 , , ,x xx h y h y h yψ ψ ψ= = ∇ + ∇  

 
and: 
 

( )( ) ( ) ( )0 , , ,y yy h y h x h xψ ψ ψ= = ∇ + ∇  

 
since 0 = [ψ, x] = ∇ψx-∇xψ. Substracting the first two 
identities, we get: 
 

( ) ( )0 , ,x yh y h xψ ψ= ∇ − ∇  

 
Comparing with the third identity, we have h(∇xψ, y) 

= 0. That is, ∇ψ = 0 on G. By Lemma 7.45 in (O'Neill, 
1983), we get that ∇ψ = 0 on G/H also. Therefore, ∇θ = 
0 as desired. 

Conclusion 

Therefore, we proved in this note that any compact 
complex homogeneous space which is a one dimensional 
complex torus bundle over a rational projective 
homogeneous space Q and is a quotient of a 
homogeneous positive C

* over Q, has homogeneous 
locally conformal Kähler structures described in the 
Lemma 6. On the other hand, all the compact complex 
homogeneous space with a homogeneous locally Kähler 
structure must be one of them. 
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