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equations requires the development of suitable numerical methods. This 

paper is devoted to finding the numerical solution of some classes of 

fractional integro-differential equations by employing the Chebyshev 

Neural Network (ChNN). The accuracy of proposed method is shown by 

comparing the numerical results computed by using Chebyshev neural 

network method with the analytical solution. 
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Introduction 

Numerical methods are very power tools for solving 

the complicated problems in many fields (Bianca et al., 

2009; Bhrawy and Alghamdi, 2012; Yang et al., 2014; 

Bhrawy and Aloi, 2013; Doha et al., 2011;       

Irandoust-Pakchin et al., 2013; Irandoust-Pakchin and 

Abdi-Mazraeh, 2013; Saha Ray, 2009; Mittal and 

Nigam, 2008; Saeedi and Samimi, 2012; Saeed and 

Sdeq, 2010; Ahmed and Salh, 2011). Newly, few 

numerical methods for solving the Fractional 

Differential Equations (FDEs) and Fractional Integro-

Differential Equations (FIDEs) have been presented. 

Bhrawy and Alghamdi (2012; Yang et al., 2004) used 

collocation method to solve the nonlinear fractional 

Langevin equation involving two fractional orders in 

different intervals and the fractional Fredholm 

Integro-differential equations. Doha et al. (2011; 

Bhrawy and Aloi, 2003; Irandoust-pakchin et al., 

2013), proposed the Chebyshev polynomials method 

to solve the nonlinear Volterra and the Fredholm 

Integro-differential equations of fractional order and 

the multiterm fractional orders differential equations. 

Irandoust-Pakchin and Abdi-Mazraeh (2013) applied 

the variational iteration method to solve the fractional 

Integro-differential equations with the nonlocal 

boundary conditions. Few other methods presented for 

solving the fractional diffusion; the fractional Integro-

differential and the fractional nonlinear Fredholm 

Integro-differential equations in (Saha Ray, 2009;   

Mittal and Nigam, 2008; Saeedi and Samimi, 2012; 

Saeed and Sdeq, 2010). 

In this study, Chebyshev neural network method 

with a unit layer has been proposed to solve the 

integro-differential equations from fractional order. 

To minimize the computed error function, a neural 

network with feed forward and with fundamental error 

back propagation will be used. This paper deals with 

numerical analysis of fractional order integro-

differential equation as follows: 
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with the following initial conditions: 
 

( ) ( )0 , 1 ,
i

iy n n n Nβ α= − < ≤ ∈  

 
The problem of the nonlinear multi-order fractional 

differential equations studies by using the Chebyshev 

neural network to obtain the numerical results. The 

hidden layer was excluded by extending the input style 

by the Chebyshev polynomials and has been used a 

single layer neural network. The idea of the method is to 

find the semi-analytical solution of this kind equations 

with high accuracy. 



Sarkhosh S. Chaharborj et al. / Journal of Mathematics and Statistics 2017, 13 (1): 1.13 

DOI: 10.3844/jmssp.2017.1.13 

 

2 

In section 2, basic definitions of the fractional 

derivatives will be presented. In section 3, main results 

of proposed method including learning algorithm of 

the Chebyshev neural network, Chebyshev neural 

network formulation for the fractional integro-

differential equations, computation of gradient for the 

Chebyshev neural network and algorithm of the 

proposed method will be presented. Applications of 

the proposed method will be shown in Section 4 with 

solving few examples. Finally we end the paper with 

some conclusion in section 5. 

Basic Definitions of the Fractional 

Derivatives 

Few definitions of the fractional derivative of 

order α > 0 can find (Miller and Ross, 1993). The 

Riemann-Liouville and Caputo fractional derivative 

are most commonly definitions that we will use in this 

study. Also, the Riemann-Liouville fractional 

integration of order α which using in this research is 

defined as follows (Grigorenko and Grigorenko, 2003; 

Podlobny, 2002): 

 

( )
( )

( ) ( )1

0

1
, 0, 0

x

J h x x h d x
αα τ τ τ α

α
−

= − > >
Γ ∫  (2) 

 

In Equation 2 Γ is gamma function and we have: 

 

( ) 1

0

x tx t e dt
∞ − −Γ = ∫  (3) 

 

Caputo and Riemann-Liouville fractional 

derivatives of order α (Fadi et al., 2011), respectively 

can be define: 
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where, Dα
∗  is the Caputo fractional derivative. The 

properties of the operator J
α 

are defined: 
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Fundamental property of the Caputo’s fractional 

derivative are shown as follows (Fadi et al., 2011): 
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Main Results 

Learning Algorithm of the Chebyshev Neural 

Network 

Figure 1 shows the structure of proposed 

Chebyshev neural network which consists of the unit 

input block, one output block and a functional 

extension block based on the Chebyshev polynomials. In 

this network input data is extended to several terms 

using Chebyshev polynomials. The learning algorithm 

can be used to update the network parameters and 

minimizing the error function. Functions F(z) = z; 

sinh(z); tanh(z) are considered as activation functions. 

The network output with input data x and weights w may 

be computed as (Mall and Chakraverty, 2014; 2015): 

 

( ) ( );N x w F z=  (9) 

 

where, z is a weighted sum of expanded input data: 
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where, x is the input data, Tj-1(x) and wj with j = 1, 

2,...,m denote the expanded input data and weight 

vector, respectively. Two first Chebyshev 

polynomials are, T0(x) = 1, T1(x) = x. The higher order 

Chebyshev polynomials can be computed by, Tn+1(x) = 

2xTn(x)-Tn-1(x), where Tn(x) denotes nth order 

Chebyshev polynomial. Here n dimensional input 

pattern is expanded to m dimensional enhanced 

Chebyshev polynomials. 

Now, weights of proposed network may be modified 

by using the fundamental back propagation (Mall and 

Chakraverty, 2014; 2015): 

 

( )1
;

k

k k k k

j j j j

j

E x w
w w w w

w
η+

  ∂ = + ∆ = + −  
 ∂   

 (11) 

 

where, η and k are the learning parameter and iteration 

step, respectively; which is used to update the weights 

and E(x;w) is the error function. 
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Fig. 1. Proposed Chebyshev Neural Network Structure 

 

Chebyshev Neural Network Formulation for the 

Fractional Integro-Differential Equations 

A general form of the fractional integro-differential 

equations can be shown as follows: 

 

( ) ( ) ( ) ( )2, , , ,..., 0,n nx y x y x y x y x x D R Ψ ∇ ∇ ∇ = ∈ ⊆   (12) 

 

where, Ψ defines the structure of fractional integro-

differential equations, y(x) and r mean the solution and 

differential operator, respectively. If yt(x,w) indicate the 

trial solution with variable parameters w, then from 

Equation 12 we will have: 
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From Equation 13, the following minimization 

equation can conclude (Mall and Chakraverty, 2014; 

2015; Hoda and Nagla, 2011): 
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Now, we note the general form of fractional order 

integro-differential equations as shown: 

 

( )

( ) ( )( )( )0
, , , , , 0 1, 0 1

x

D y x

F x y x K x y d x

α

τ τ τ α= < < < ≤∫
 (15) 

with the boundary condition, y(0) = γ0. The trial 

solution yt(x,w) of feed forward neural network with 

input x and variable parameters w for above equation 

is written as: 

 

( ) ( )0, ;ty x w xN x wγ= +  (16) 

 

where, N(x;w) = z; sinh(z); tanh(z). The error function for 

the Equation 15 in general form can be shown as (Mall and 

Chakraverty, 2014; 2015): 
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To minimize the error function E(x;w) respect to w 

and corresponding to input x, we differentiate E(x;w) 

with respect to the parameters w. 

Gradient Computation for the Proposed Algorithm 

The fractional gradient of proposed network output 

with respect to network inputs when N(x;w) = z; sinh(z); 

tanh(z) is computed as below. Fractional derivatives of 

N(x;w) can be define as: 
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where, α > 0 is order of fractional derivative and n ∈ N 

is smallest integer greater than α. 
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If N(x;w) = z 

Fractional derivatives of N(x;w) = z with respect to 

input x is as follows: 
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If N(x;w) = sinh(z) 

Fractional derivatives of N(x;w) = sinh(z) with 

respect to input x is as follows: 
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If N(x;w) = tanh(z) 

Fractional derivatives of N(x;w) = tanh(z) with 

respect to input x is as follows: 
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where, wj denote parameters of network and 1jT −′  denote 

first derivative of the Chebyshev polynomials. From 

Equation 16 we have: 
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Also, from Equation 17 we have: 
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In end, approximate solutions can be computed by 

using the converged proposed Chebyshev neural network 

results in Equation 16. 

Applications 

In this section, we consider the fractional order 

integro-differential equations to show the powerfulness 

of the proposed method. Active functions updated as, 

F(z) = z; sinh(z); tanh(z) are considered to find the 

numerical results with high accuracy. The first five 

Chebyshev polynomials have been used. 
 
Algorithm 1 Chebyshev Neural Network Algorithm 
 

• Calculating the Chebyshev polynomials T0, T1, ..., Tm 

• Replacing the Chebyshev polynomials in the 

Equation 10 

• Obtained z in the step 2 Can be replaced in the 

equations N(x;w) = z; sinh(z); tanh(z) 

• Obtained N(x;w) in step 3 Can be replaced in the 

training answer yt(x;w) 

• In continue, training answer yt(x;w) will be replaced 

instead y(x) in the fractional differential equation. 

• Now, interval [a, b] can be partitioned to n equal 

parts with arbitrary distance h. All values for the 

fractional differential equation in corresponding 

points can be defined as, E0, E1,..., En, respectively 

• Error function E can be defined as, E(x;w) = 

2

1

1

2

n

i

i

E
=
∑ . This error function must to minimize 

respect to unknown weights w1, w2,..., wn 

• To minimize the error function E respect to 

unknown weights, Gradient of E respect to w1, w2,..., 

wn will be used as, 
( );E x w

wj

∂

∂
= 0. This give us a 

system with n equations and n unknowns 

• Solving the obtained system by using matrix method 

or numerical methods as Genetic Algorithm, Bee 

Colony Optimization Algorithm, Ant Colony 

Optimization Algorithm, when N(x;w) is linear or 

nonlinear, respectively 

• The weights may be modified by using the back 

propagation principle Equation 11 

• After replacing modified weights in the training 

answer yt(x;w), can get approximate solutions for the 

mentioned equations in this study 
 

Example 1 

First we consider the following fractional integro-

differential equation (Fadi et al., 2011): 
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( ) [ ] ( )
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3 0.5 3
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The exact solution of the above equation is given as: 
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( ) 2y t t=  (24) 

 

The proposed network was trained for ten points in 

interval [0, 1] with the first five Chebyshev polynomials 

(m = 5). Comparison of absolute and maximum absolute 

errors between exact and ChNN solutions with F(z) = z; 

sinh(z); tanh(z) are cited in Table 1 and 2, respectively. 

Figure 2 shows comparison between analytical and 

ChNN solutions when the active function is as, F(z) = z. 

Plot of the absolute error between analytical and ChNN 

results with F(z) = z is shown in Fig. 3. Comparison 

between analytical and ChNN solutions and absolute 

error between them with F(z) = sinh(z) are showed in 

Fig. 4 and 5, respectively. Numerical results between 

analytical and ChNN solutions and absolute error 

between them with F(z) = tanh(z) are cited in Fig. 6 and 

7, respectively. According Table 2 the maximum 

absolute error for active functions F(z) = z; sinh(z); 

tanh(z) are as 3.40000×10
−40

, 0.13542×10
−2

 and 

0.40843×10
−1

, respectively. Therefore, the analytical and 

ChNN solutions have good agreement with the active 

function F(z) = z. 

Example 2 

We consider the following fractional integro-

differential equation (Fadi et al., 2011): 

 

( )
( )

( ) ( ) ( )

( ) ( ) [ ] ( )

0.25
0.75

0

cos sin
1.25

sin , 0,1 , 0 0
t

t
D y t t t t y t

t y d t yτ τ τ

= +  −  Γ

+ ∈ =∫
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Table 1. Comparison of absolute errors between the exact and ChNN solutions when F(z) = z; sinh(z); tanh(z) (Example 1) 

 t 

 ------------------------------------------------------------------------------------------------------------------------------------------ 

F(z) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

z [1.9783 1.2490 0.5480 0.8000 1.7600 2.6800 2.9300 2.6300 3.4000] ×10−40 

sinh(z) [1.1111 0.1096 0.2494 0.5286 0.8353 0.05314 0.6717 0.5634 1.3542] ×10−3 

tanh(z) [0.02331 0.01347 0.00713 0.06345 0.2544 0.2544 0.77492 1.9234 4.0843] ×10−2 

 
Table 2. Comparison of maximum absolute errors between the exact and ChNN solutions when F(z) = z; sinh(z); tanh(z) 

(Example 1) 

F(z) Z sinh(z) tanh(z) 

Max Error 3.40000×10−40 0.13542×10−2 0.40843×10−1 

 

 
 

Fig. 2. Numerical results of the exact and ChNN solutions when F(z) = z (Example 1) 
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Fig. 3. Plot of absolute error between the exact and ChNN solutions when F(z) = z (Example 1) 

 

 
 

Fig. 4. Numerical results of the exact and ChNN solutions when F(z) = sinh(z) (Example 1) 
 

 
 

Fig. 5. Plot of absolute error between Exact and ChNN solutions when F(z) = sinh(z) (Example 1) 
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Fig. 6. Numerical results of the exact and ChNN solutions when F(z) = tanh(z) (Example 1) 
 

 
 

Fig. 7. Plot of absolute error between the exact and ChNN solutions when F(z) = tanh(z) (Example 1) 

 
The exact solution of the above equation is given as: 

 

( )y t t=  (26) 

 
Comparison between analytical and ChNN solutions 

with the active function as, F(z) = z is cited in Fig. 8. 

Plot of absolute error between analytical and ChNN 

solutions with F(z) = z is shown in Fig. 9. 

Example 3 

Consider the following fractional integro-differential 

equation (Hasan et al., 2013): 
 

( )

( ) [ ] ( )

3/2 1/ 2
0.5

3 2

0

8 / 3 2

12

, 0,1 , 0 0
t

t t t
D y t

t d t y

π

τ τ τ

−
= +

+ − ∈ =∫
 (27) 

with the exact solution as: 
 

( ) 2y t t t= −  (28) 

 
Figure 10 shows comparison between analytical and 

ChNN solutions with the active function as, F(z) = z. 

Figure 11 presents plot of absolute error between 

analytical and ChNN solutions with F(z) = z. 

Example 4 

Consider the following fractional integro-differential 

equation (Hasan et al., 2013): 
 

( ) ( )
( )( )

( ) ( ) [ ] ( )

1/6 2

5/6

1
3

0

5 / 6 91 2163

91

5 2 , 0,1 , 0 0

t t
D y t

e t te d t yτ

π

τ τ τ

Γ − +
=

+ − + − ∈ =∫
 (29) 
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with the exact solution as: 

 

( ) 3y t t t= −  (30) 

 

Comparison between analytical and ChNN 

solutions and plot of absolute error with the active 

function as, F(z) = z are presented in Fig. 12 and 13, 

respectively. 

Example 5 

Consider the following fractional integro-differential 

equation (Changqing and Jianhua, 2013): 

( ) ( )
( )

( ) ( ) [ ] ( )
9/4 2

3/4

0

6
, 0,1 , 0 0

13/ 4 5

t
t

tt t e
D y t y t e y d t yτ τ τ= − + ∈ =

Γ ∫  (31) 

 

with the exact solution as: 

 

( ) 3y t t=  (32) 

 

Comparison between analytical and ChNN solutions 

with active function as, F(z) = z is showed in Fig. 14. 

Plot of absolute error between analytical and ChNN 

solutions with F(z) = z is showed in Fig. 15. 

 

 

 
Fig. 8. Numerical results of the exact and ChNN solutions when F(z) = z (Example 2) 

 

 

 

Fig. 9. Plot of absolute error between the exact and ChNN solutions when F(z) = z (Example 2) 
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Fig. 10. Numerical results of the exact and ChNN solutions when F(z) = z (Example 3) 
 

 
 

Fig. 11. Plot of absolute error between the exact and ChNN solutions when F(z) = z (Example 3) 
 

 
 

Fig. 12. Numerical results of the exact and ChNN solutions when F(z) = z (Example 4) 
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Fig. 13. Plot of absolute error between the exact and ChNN solutions when F(z) = z (Example 4) 

 

 
 

Fig. 14. Numerical results of the exact and ChNN solutions when F(z) = z (Example 5) 

 

 
 

Fig. 15. Plot of the absolute error between the exact and ChNN solutions when F(z) = z (Example 5) 
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Fig. 16. Numerical results of Exact and ChNN solutions when F(z) = z (Example 6) 

 

 

 
Fig. 17. Plot of absolute error between the exact and ChNN solutions when F(z) = z (Example 6) 

 

Example 6 

Consider the following fractional integro-differential 

equation (Mittal and Nigam, 2008): 

 

( ) ( )
( )

( )
2 2.25

0.75 1.5

0

6

5 3.25

t
t

tt e t
D y t y t t e y dτ τ τ

 
= − +     Γ 

∫  (33) 

 

with the initial conditions y(0) = 0 and exact solution as: 

 

( ) 3y t t=  (34) 

Figure 16 shows comparison between analytical and 

ChNN solutions with active function as, F(z) = z. Figure 

17 presents plot of absolute error between analytical and 

ChNN solutions with F(z) = z. 

Conclusion 

Chebyshev neural network is applied for solving 

the linear and the nonlinear fractional integro-

differential equations. A Chebyshev neural network 

with single layer is presented to prevail the difficulty 

and hardness of this type of equations. Numerical 

results from the proposed method are compared with 
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the analytical solutions. The maximum absolute error 

between exact and Chebyshev neural network 

solutions with F(z) = z, is showing a good agreement 

between Chebyshev neural network and analytical 

solutions. Comparisons of the obtained results from 

Chebyshev neural network with exact solutions show 

that this method is a capable tool for solving this kind 

of the linear and the nonlinear problems. This method 

can be applied to solve any kind of the complex 

ordinary and the partial differential equations from the 

fractional order. 
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