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Abstract: This paper studies the accuracy of the VaR using the Delta-

Normal and Historical approaches in measuring the risk of CDS portfolios 

in three different zones, US, Europe and Asia, for the period March 2013-

November 2015. The portfolios consist exclusively of CDS of high rated 

banks and financial institutions. We found that at the 95% confidence level 

both approaches were accurate using equal weights over 500 days. However, 

at the 99% level, the Delta-Normal method underestimated the VaR except 

for Aisa portfolio even with the use of exponential weights for different 

values of λ. The Historical Simulation approach was more accurate because 

it accounted for fat tails and therefore avoided nonstationarity. Both 

approaches failed in accurately measuring the VaR over 50 days. 
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Introduction 

Credit Default Swaps (CDS) are derivative 

instruments designed to manage credit risks efficiently. 

The advantage of CDSs over other credit derivatives is 

that the way they work is straightforward. A CDS is an 

instrument that provides insurance against the risk of a 

default by a particular company. The company is known 

as the reference entity and a default by the company is 

known as a credit event. They are agreements between 

a buyer and a seller, where the buyer pays to the seller 

a series of premiums until the end of the life of the 

CDS or until a credit event occurs and the seller agrees 

to buy the bonds for their face value when a credit 

event occurs such as corporate restructuring, 

bankruptcy and lower credit rating. CDS are derivatives 

which transfers the credit risk (underlying asset) from 

the buyer to the seller through swaps. 

JPMorgan was the first to trade CDS in 1995. Then, 

CDS trading has considerably grown in the over-the-

counter derivatives markets. The International Securities 

Dealer Association (ISDA) started collecting data on 

CDS in 2001. Total outstanding notional attained its 

peak in 2007 and exceeded USD 62 trillion. During the 

credit crisis of 2007, regulators became concerned that 

CDS were a source of systematic risk. That was mainly 

due to the losses experienced by the insurance company, 

AIG, the big seller of protection on the AAA-rated 

tranches created from mortgages. In 2009, this number 

was divided in two through portfolio compression due to 

the regulators requirements. Long and short credit 

derivative positions on the same underlying credit entity 

held by the same institution are netted (Duffie et al., 2010). 

During the European sovereign debt crisis 

speculative activity in CDS markets intensified the debt 

problems of countries such as Greece which faced the 

biggest sovereign default the international markets have 

ever seen, resulting in an expected CDS payout of 

approximately USD 2.6 billion. Since that time CDS 

continued to trade actively with increased spreads and 

gained an important place in the derivatives markets. 

Therefore assessing the risk of CDS becomes a need for 

financial institutions, nonfinancial institutions, 

regulators and asset managers. The purpose of this 

paper is to use the Value at Risk (VaR) to assess and 

compare the CDS portfolios risks of some highly rated 

financial institutions in the US, Europe and Asia for the 

period 2013-2015. 

Prior to the mid-1990, VaR was used by financial 
institutions. The VaR mathematics were developed in the 
context of portfolio theory where the focus on market 
risks contributed to how VaR is computed. Its usage was 
mainly due to the failure of the risk tracking process. 
Practically, the VaR can be used by any entity to 
measure its risk exposure and capture the potential loss 
in value due to adverse market movements over a 
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specified period. VAR has been applied to market, credit 
and operational risk. In fact, linear sensitivity measures 
do not translate into a dollar loss and are called duration 
for exposure to interest rates, beta for exposure to stock-
market movements and delta for exposure of options to 
the underlying asset price and are used for setting limits. 
VaR combines the price-yield relationship with the 
probability of an adverse market movement. It is a 
statistical risk measure of potential losses. It also covers 
many other sources of risks such as commodities, equities, 
foreign currencies while considering leverage, correlations 
and current positions which are indispensable when 
dealing with large portfolios with derivatives. 

VaR summarizes the worst loss over a target horizon 

that will not be exceeded with a given level of 

confidence. In other words, VaR answers what could 

happen under changes in market values. Practically, the 

VaR improved worldwide standards for managing many 

types of risk and is used by any institution exposed to 

financial risk through passive, defensive and active 

methods. VaR passively translates the financial risk level 

to shareholders in easy and straight forward terms. It is 

used defensively to control risk through setting position 

limits for traders. It is also used actively to manage the 

risk through the allocation of capital across the whole 

institution’s units. VaR succeeded to draw a structured 

process for a better assessment of risk. 

On the other hand, VaR was used to test the 

efficiency of the GARCH model; Engle (2001) estimates 

the VaR of a portfolio that exhibits ARCH effects using 

the GARCH (1,1). While ARCH models assume equally 

weighted average of the squared residuals for a limited 

period, GARCH models assign decreasing weights to 

older observations. Such model is successful in 

forecasting the volatility of auto correlated returns. 

However, some practical extensions are needed such as 

GARCH (p,q) that is found to be useful when applied 

with a very large set of data. Engle cites Nelson’s 

Exponential GARCH (EGARCH) as being a good 

alternative when there is a need to integrate the sign in 

addition to the magnitude of news when forecasting 

volatility. Riposo and Bianca (2015) were the first to 

model the time-continuous ARCH (1)-M and GARCH 

(1,1)-M processes where the volatility has been 

constrained to take values into a bounded domain. The 

authors showed the uniqueness of the processes and 

derived the corresponding stationary probability functions. 

Vilasuso (2002) tested the predictive ability of an 

alternative model to GARCH, which is the fractionally 

integrated GARCH (FIGARCH) that appears to be 

appropriate in incorporating long-lasting shocks. 
Many approaches are used to measure VaR with 

numerous variations within each approach. The initial 

point starts with making assumptions about 

distributions for market risks. Then hypothetical 

portfolios can be built using historical data, variances 

and covariances across these risks or from Monte Carlo 

simulations. In this study, we compare the VaR 

estimates accuracy using the Delta-Normal and the 

Historical Simulation approaches. 

The paper is organized as follows. Section 2 is a 

literature review of the CDS mechanism and the use of 

VaR. Section 3 presents the sample and reviews the 

methodology. Section 4 provides the main findings of 

the research and discusses the use of other alternatives 

for optimal accuracy. Section 5 communicates the 

concluding remarks. 

CDS Mechanism and the Use of VaR 

A credit default swap is a credit derivative contract. 

Simply stated, it is a swap particularly designed to 

transfer the credit exposure of fixed income products 

between two or three parties. In other words, it is an 

insurance contract written on the principal (notional 

value) of a bond for a fixed period of time where the 

buyer of the swap makes payments to the seller up until 

the maturity date. If the debt issuer defaults or faces a 

credit event such as a failure or change to pay the interest 

or principal, or financial restructuring, the insured 

receives the face value from the insurer (Berndt et al., 

2007). If no default occurs, the insurance terminates 

with the contract expiration. The buyer pays periodical 

premiums, usually quarterly, to the seller over the 

lifetime of the contract, typically 5 years (Anson et al., 

2004). The premiums are proportional to the notional 

principal of the contract. A CDS may involve 

municipal bonds, mortgage-backed securities (called 

Asset Backed Security (ABS)), emerging market bonds, 

or corporate bonds. 

If the contract specifies physical settlement, the buyer 

has the right to sell to the seller of protection bonds 

issued by the reference entity and receive a cash payment 

equal to the notional value. If there is a cash settlement, a 

two-stage auction process is used to determine the mid-

market value of the cheapest to deliverable bond several 

days after the credit event (Hull, 2012). Most contracts 

specify physical settlement. 

The standard CDS contract is generated by the 

International Swap and Derivatives Association (ISDA), 

an association of major market participants. CDS are 

traded in over-the-counter markets and are therefore risk-

oriented. Trading CDS requires from the financial 

institution to have a line of credit which is linked to its 

overall financial situation and from the seller to post 

collateral. An exception for posting collateral is made for 

highly rated protection sellers. Collateral is marked-to-

market and are adjusted according to the change in the 

rating of the protection seller. On average, 90% of credit 

derivatives trades are subject to collateral agreement 

(ISDA, 2010). In the case of default, this corresponds to 



Viviane Y. Naimy / Journal of Mathematics and Statistics 2016, 12 (2): 99.106 

DOI: 10.3844/jmssp.2016.99.106 

 

101 

either the failure of the buyer to continue paying the 

premium which automatically terminates the contract or 

the failure of the seller on the date of a credit event when 

the claim is payable. Also, CDS contract could also be 

terminated if the collateral requirements are violated 

(Jarrow, 2010a). The losses due to the failure of the 

seller are much greater than those due to failure of the 

CDS buyer. Practically, the leverage involved in CDS 

trade can generate a widespread market downturn if 

default takes place. 

According to the structural approach in the credit 

risk literature, selling a CDS isn’t but buying the 

underlying reference bond concomitantly with shorting 

Treasuries with identical coupons, maturity and 

notional principal to that of the reference bond (Jarrow, 

2010b). CDS are used for hedging and for speculation 

purposes. Buyers of protection are usually highly 

exposed to credit risk while speculators gamble on the 

credit quality of the reference entity. Therefore short 

positions are taken with positive expectations with 

regard to credit quality and long positions for negative 

view where buyers buy protection for small periodic 

fee and receive important payoff in case of defaults. A 

new family of harmonized CDS indices has been 

introduced in 2004: iTraxx in Europe and Asia and CDX 

in North America. This enhanced market transparency 

and market liquidity in the credit market. 

The use of CDS to hedge credit risk is not examined 
in this study. The purpose is to compute the risk of 
holding CDS in the trading book. More specifically, we 

compare the VaR of three CDS portfolios in the US, 
Europe and Asia zones using both the historical 
simulation and the Delta-Normal approaches. The 
following gives details about the VaR and its 
computational methods. 

In the late 1980s, Till Guildmann created the term 

VaR. As head of global research at JPMorgan, he was 

concerned about stable earnings but fluctuations in 

market values; the risk management group of the bank 

decided at that time that ‘value risks’ were more 

important than ‘earnings risks’ therefore paving the way 

to VaR (Jorion, 2007). By 1993 VaR was established as 

an important risk measure. In 1994, JPMorgan 

developed the RiskMetrics, a simplified version of their 

own system, which included variances and covariances 

for a set of market variables (Morgan, 1997). 

RiskMetrics was used to measure the VaR by many 

financial institutions and nonfinancial corporations. In 

1995, the Basel Committee issued a proposal to amend 

the 1988 Accord. It was implemented in 1998 and was 

based on VaR. It is the measure that regulators have 

chosen to set the capital requirements for market risk, 

credit risk and operational risk (BIS, 2005). 

Specifically, VaR is an attempt to provide a single 

number that summarizes the total risk in a portfolio 

(Hull, 2012). It describes the quantile of the projected 

distribution of gains and losses over the target horizon. 

Simply, it is the maximum loss not exceeded with a 

given probability defined as the confidence level, over a 

given period of time. VaR has become an essential tool 

for risk managers since it provides a quantitative 

measure of downside risk based on current positions. 

The objective is to provide a reasonably accurate 

estimate of risk at a reasonable cost (Jorion, 2007). This 

involves choosing a method that is most appropriate for 

the portfolio at hand. A variety of models are used to 

compute VaR with different variations within each 

model. The most commonly used models are the Delta-

Normal or model-building approach, the historical 

simulation and the Monte Carlo simulation approach. 

The Delta-Normal approach assumes a model for the 

joint distribution of changes in market variables and uses 

the historical data to estimate the model parameters. It is 

based on Harry Markowitz’s work in portfolio theory. 

Therefore it fits to a portfolio consisting of long and short 

positions in stocks, bonds, commodities and other 

products. In this case, the change in the value of the 

portfolio is linearly dependant on the percentage changes 

in the prices of the assets comprising the portfolio. If daily 

returns are assumed to be multivariate normal, the 

probability distribution for the change in value of the 

portfolio over one day is also normal. Then, computing the 

VaR becomes straightforward. This approach is difficult to 

use for non-linear products because it does not take account 

of the gamma of the portfolio. In other words, when the 

positions can be represented by their delta exposures, the 

measurement of VaR is considerably simplified. This 

delta-normal approach is easily implemented because it 

involves a simple matrix multiplication. It is also fast even 

with a large number of assets because it replaces each 

position by its linear exposure and consequently it can be 

run in real time as positions change. 

The historical simulation approach is a nonparametric 

method that makes no specific assumption about the 

distribution of risk factors. It consists of using the day-

to-day changes in the values of the market variables that 

have been observed in the past in a direct way to 

estimate the probability distribution of the change in the 

value of the current portfolio between today and 

tomorrow. Each scenario is then drawn from the history 

of the studied observations (Jorion, 2007). This approach 

short circuits the need to estimate a covariance matrix 

which simplifies the calculation when portfolios are 

constituted of large number of assets and short sample 

periods (Naimy, 2013). What is needed is only the time 

series of the aggregate portfolio value. This method does 

not require distributional assumptions and therefore is 

robust and can capture gamma and vega risk. Historical 

simulation is also intuitive; users can go back in time and 

analyze the circumstances behind the VaR measure. 
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Monte Carlo simulation method is a parametric 

method that generates random movements in risk 

factors from estimated parametric distributions. The 

parametric stochastic process is first specified together 

with some parameters such as risk and correlations 

which are derived from historical data. Then fictitious 

price paths are simulated for all the risk factors. At 

each horizon, the portfolio is marked to market as in 

the historical simulation method. Each of these 

simulated realizations is used to compile a distribution 

of returns, from which a VaR figure can be measured 

(Jorion, 2007). Monte Carlo approach method is a 

powerful method to compute VaR. It accounts for the 

instruments in the portfolio for nonlinear price 

exposure, vega risk and complex pricing models in 

addition to the flexibility in incorporating time 

variation in volatility and extreme scenarios. 

Sample and Methodology 

The selection of the approaches we will be using to 

measure and compare the VaR of CDS depends on those 

that will yield the most reliable estimate of VaR given 

the nature of the portfolios we are analyzing. In fact, the 

selection of the models depends on the inputs we are 

collecting. The three approaches will yield roughly the 

same values if the historical returns are normally 

distributed with consistent means and variances and are 

used to estimate the variance-covariance matrix.  

Our analysis consists of comparing the VaRs of CDS 

of some selected highly rated banks and financial 

institutions in the US, Europe and Asia zones. Our 

sample covers the period March 2013-November 2015, a 

period of financial distress in the three zones. The 

purpose is to compare the VaR accuracy using different 

approaches with regard to percentage of outcomes falling 

within the VaR forecast. Overall we have nearly 12,000 

observations. The data was retrieved from Bloomberg. 

Table 1 lists the selected banks and financial institutions 

in the three zones. 

Several periods of market turmoil and an overall 

decline in CDS returns occurred during the sample 

period. Table 2-4 provide the associated descriptive 

statistics for the CDS monthly returns for the period 

January 2013-November 2015 in the three zones. 

Going back to May 2005, after the downgrade of 

Ford and General Motors an upward jump in CDS 

premia took place. This market turbulence put an upward 

pressure on CDS premia for a limited period. Recently, a 

decline in risk premia was observed due to relatively low 

equity market volatility. Institutional investors increased 

their demand for higher yielding assets especially after 

the resulting collapse of stock prices in China. 

Since the delta-normal approach and Monte Carlo 

simulations will yield roughly the same values if all of 

the inputs are assumed to be normally distributed, we 

test the normality distribution of returns in the three 

zones to choose between both approaches. Figure 1 

shows Lilliefors Test for the three zones. 

Based on the normality test results in Table 5 that 

indicates acceptable normality in the three zones, we will 

choose the Delta-Normal approach. In addition, given 

that the historical and Monte Carlo simulation 

approaches will converge if the distributions we use in 

the latter are entirely based upon historical data, we will 

opt for the historical simulation model which will 

provide good estimate of the VaR. 

Implementation of the Historical Simulation 

Method 

As previously mentioned, the historical simulation is 

a nonparametric method that consists of going back in 

time and implementing the history on the current 

positions. This model applies current weights to a time 

series of historical asset returns, that is: 

 

, , ,1
1, ,

N

p k i t i ki
R w R k t

=
= = …∑  (1) 

 

The weights wt are kept at their currents values. This 

return does not represent an actual portfolio but rather 

reconstructs the history of a hypothetical portfolio using 

the current position. The approach is also called 

bootstrapping because it uses the actual distribution of 

recent historical data without replacement. Each scenario 

k is drawn from the history of t observations (Jorion, 

2007). Then, hypothetical values for the risk factors are 

used and obtained from applying historical changes in 

prices to the current level of prices: 

 
*

, ,0 , 1, ,i k i i kS S S i N= + ∆ = …  (2) 

 

A new portfolio value V
*
p,k is computed from the full 

set of hypothetical prices. This creates the hypothetical 

return corresponding to simulation k: 

 
*

0
,

0

k
p k

V V
R

V

−
=  (3) 

 

VaR then is obtained from the entire distribution of 

hypothetical returns, where each scenario is assigned the 

same weight of (1/t). 

In the three zones 500 scenarios were created and 

VaRs were then calculated for the period May 2013 

through May 2015. 

Figure 2 and 3 depict portfolios losses in Asia and 

Europe. US and Europe portfolios were following 

practically the same tempo. 
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Fig. 1. Lilliefors normality test 
 

 
 

Fig. 2. Time series of portfolio losses Asia 
 

 
 

Fig. 3. Time series of portfolio losses Europe 
 
Table 1. The sample 

Europe US Asia 

UniCredit (UCGIM) Bank of America (BOFA) Bank of Tokyo (BOTM) 

UBS Bank (UBS) American Express Co (AXPRS) Nomura Securities (NOMURAS) 

Lloyds Bank (LLOY) Citigroup Inc (CINC) Mizuho Bank (MIZUHOB) 

Royal Bank of Scotland (RBSPLC) JP Morgan Chase and Co. (JPMCC) Sumiyomo Mitsui Banking (SMBC) 

Societe General (SOCGEN) Wells Fargo and Co (CWF) 

Deutsche Bank (DB) Merrill Lynch and Co Inc (MER) 

Credit Suisse Group (CRDSUI) Mack-Cali Reality (CLI) 
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Table 2. Descriptive statistics for the US 

 AXPRS (%) BOFA (%) CINC (%) JPMCC (%) CWF (%) MER (%) CLI (%) 

Mean -0.99 -0.55 -0.16 0.28 -0.35 -0.65 1.01 
Variance 1.55 1.54 1.63 1.24 1.28 1.21 0.67 
Std. Dev. 12.45 12.40 12.76 11.12 11.30 11.02 8.19 
Skewness 36.45 53.10 106.22 11.93 21.74 126.57 19.59 
Median -4.57 -2.03 -1.48 -0.86 -1.72 -0.94 0.35 
Mode -10.29 -14.17 -6.26 13.06 -1.68 -0.91 0.25 
Minimum -23.95 -25.04 -15.98 -17.45 -18.48 -20.43 -16.95 
Maximum 24.31 34.30 32.31 20.72 22.85 40.57 17.20 
1st Quartile 10.03 10.21 -9.14 -7.27 -10.04 -5.68 -4.00 
3rd Quartile 5.63 8.08 7.16 10.83 8.48 5.07 4.95 
 
Table 3. Descriptive statistics for Asia 

  BOTM (%) NOMURASE (%) MIZUHOB (%) SMBC (%) 

Mean 0.29 -2.21 -0.01 0.06 
Variance 2.29 1.05 1.48 1.52 
Std. Dev. 15.12 10.23 12.15 12.31 
Skewness 182.02 72.08 80.17 28.95 
Median -0.60 -2.05 -1.11 -0.48 
Mode 2.37 2.95 2.60 -0.42 
Minimum -20.88 -20.32 -21.14 -26.14 
Maximum 49.69 26.24 31.88 26.97 
1st Quartile -8.79 -10.13 -7.98 -8.91 
3rd Quartile 3.42 2.90 4.11 9.03 
 
Table 4. Descriptive statistics for Europe 

 UCGIM (%)  UBS (%)  LLOY (%) RBSPLC (%) SOCGEN (%) DB (%) CRDSUI (%) 

Mean -1.17 -1.48 -2.60 -2.18 -1.57 0.65 0.23 
Variance 3.01 1.71 1.60 2.14 1.81 1.71 1.47 
Std. Dev. 17.35 13.10 12.67 14.63 13.47 13.08 12.11 
Skewness 10.22 -4.39 27.71 55.09 10.25 -9.93 4.32 
Median 1.15 -3.23 -3.24 -5.18 -0.60 3.01 -2.59 
Mode -12.80 9.95 -8.89 -11.02 5.67 8.01 -6.98 
Minimum -29.52 -27.00 -28.90 -28.63 -25.19 -21.92 -19.29 
Maximum 33.76 20.73 27.58 34.28 28.89 26.70 21.93 
1st Quartile -14.84 -10.71 -10.23 -12.86 -11.57 -10.57 -8.00 
3rd Quartile 9.37 9.90 4.50 7.23 8.62 10.86 10.47 
 
Table 5. Normality test results 

Lilliefors test results    US Europe Asia 

Test Statistic 0.0937 0.1286 0.0925 
CVal (15% Sig. Level) 0.1299 0.1299 0.1299 
CVal (10% Sig. Level) 0.1373 0.1373 0.1373 
CVal (5% Sig. Level) 0.1500 0.1500 0.1500 
CVal (2.5% Sig. Level) 0.1601 0.1601 0.1601 
CVal (1% Sig. Level) 0.2192 0.2192 0.2192 
 
Table 6. VaR accuracy outcomes 

 95% VaR   99% VaR 
 ---------------------------------------- ------------------------------------------ 
Method US (%) Europe (%) Asia (%) US (%) Europe (%) Asia (%) 

Delta-normal with equal weights over 501 days 95.2 95.1 95.0 97.4 98.3 98 
Historical simulation with equal weights over 501 days 94.6 94.4 94.3 98.4 98.6 99  
 
Table 7. Delta-normal with exponential weights 

 95% VaR   99% VaR 
 --------------------------------------- -------------------------------------- 
Method US (%) Europe (%) Asia (%) US (%) Europe (%) Asia (%) 

Delta-Normal with exponential weights 
λ = 0.94 94.7 94.6 94.9 97.2 98.1 98.0 
λ = 0.99 95.2 95.1 95.0 97.4 98.3 98.2 
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Implementation of Delta-Normal Method 

When the risk factors are jointly normally distributed 

and the positions can be represented by their delta 

exposures, the measurement of VaR becomes simple. 

Assuming N the number of risk factors, we define wi,t as 

the exposures aggregated across all instruments for each 

risk factor i and measured in currency units. Dividing 

these by the portfolio value W, we get the portfolio 

weights wi,t. The total rate of return of the portfolio is: 

 

 , 1 , , 11

N

p t i t i ti
R w R+ +=

=∑  (4) 

 

Weights are indexed by time to indicate that this is 

the current portfolio. Given that portfolios of jointly 

normal variables are themselves normally distributed, 

aggregation of risks becomes possible. Using matrix 

notations, the portfolio variance is: 

 

( )2 '

, 1 1p t t tt
R w wσ + +

= ∑  (5) 

 

Σt+1 is the forecast of the covariance matrix over the 

VaR horizon. Therefore, the portfolio VaR is: 

 
' '

1 1
VAR t t tt tt

x x W w wα α
+ +

= =∑ ∑  (6) 

 

where, α is the deviate corresponding to the confidence 

level for the normal distribution or for another 

parametric distribution. 

Findings and Discussion 

Table 6 compares the 1-day VaR numbers obtained 

from the two approaches for the three zones in terms of 

percentage of outcomes falling within the VaR forecast. 

The above percentages are obtained by taking one 

minus the fraction of exception. At the 95% confidence 

level both approaches lead to an acceptable level of 

accuracy. At the 99% confidence level, the Delta-Normal 

approach underestimates the VaR compared to the 

historical-simulation approach and both approaches are 

not finely calibrated except for Aisa zone under the 

historical simulation method. Results are not accurate 

using both approaches over 50 days, even at the 95% 

confidence level where all outputs fall below 95%. 

In fact the Delta-Normal VaR measures should be 

increased by about 13% to yield an accurate coverage 

this is due to the fat tails observed in the data, despite the 

acceptable Lilliefors test results. Another distribution 

can be chosen perhaps with a greater α to compensate for 

the proportion of outliers given that our position is 

characterized with linear risk profiles. 
For a better accuracy, we run the Delta-Normal 

model using exponential weights for different values of 

λ. Table 7 shows that accuracy in the three zones did not 

improve much with the use of exponential weights. 

Almost same results compared to equal weights were 

observed for λ = 0.99. 

Obviously, in the Delta-Normal model, VaR attempts 

to capture the behavior of the CDS portfolio returns in 

the left tail (fat tails) which explains the underestimation 

of the VaR in the US and Europe portfolios. As we have 

seen, the underestimation increased for higher 

confidence levels. This approach is definitely not 

appropriate for nonlinear instruments because it is unable 

to capture asymmetries in the distribution. This approach 

looks relatively adequate for the three portfolios we are 

analyzing: Asymmetries are in fact washed away as 

predicted by the central limit theorem. Fortunately, the 

Historical-Simulation approach was accurate, may be by 

chance in our case, because only one sample path was 

used and it was relatively constant and homogeneous. If 

the window we used omits important events, the tails 

will not be well represented and vice versa, the sample 

may contain events that will not reappear in the future. 

Other methods that we did not use in this study could 

be also suggested for better accuracy such as the Delta, 

Delta-gamma-delta, Delta-gamma-Monte Carlo, Grid 

Monte Carlo, or Full Monte Carlo approaches. Pritsker 

(1997) examines the tradeoff between speed and 

accuracy for a non-linear portfolio and found that the 

most accurate method is the full Monte Carlo which is 

very close to the true VaR. 

Conclusion 

Both approaches presented accuracy with regard to 

VaRs measures in the three zones. This was mainly due 

to the composition of our selected portfolios, to the 

distributions close to normal and to the selection of the 

period under study that witnessed relatively consistent 

events where the past represented fairly the immediate 

future. The historical simulation method was accurate 

because it accounted for fat tails especially that our 

window of estimation covered 500 days. This was 

reasonable to avoid inaccuracy and nonstationarity. The 

Delta-Normal approach was less accurate at the 99% 

confidence level due to the existence of those tails in the 

distribution of returns in the three CDS portfolios, 

however it was easy to implement. Even if Monte Carlo 

approach is the most powerful to compute VaR due to its 

flexibility to incorporate time variation in volatility and 

extreme scenarios, the nature of the distributions we are 

studying did not require the use of this method. 

Our choice of methods won’t be acceptable in the 

context of large and diversified portfolios even if the 

marked trend is toward the use of historical simulation 

methods. The Monte Carlo approach is the most 

complete however difficult to implement since it requires 



Viviane Y. Naimy / Journal of Mathematics and Statistics 2016, 12 (2): 99.106 

DOI: 10.3844/jmssp.2016.99.106 

 

106 

the use of a stochastic process for the risk factors from 

which various sample paths are simulated. It can 

incorporate nonlinear positions and nonnormal distributions 

but the price to pay for such flexibility is high. 
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