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Abstract: In this study, we consider statistical inference problems for 

the residual life data that come from the Rayleigh model based on type 

II censored data. Maximum likelihood and Bayesian approaches are 

used to estimate the scale and location parameters for the Rayleigh 

model, the Gibbs sampling procedure is used to draw Markov Chain 

Monte Carlo (MCMC) samples and MCMC samples have been used to 

compute the Bayes estimates and to construct symmetric credible 

intervals. Furthermore, we estimate the posterior predictive density of the 

future ordered data and then obtain the corresponding predictors. The 

Gibbs and Metropolis samplers are used to predict the life lengths of the 

missing lifetimes in multiple stages of the residual type II censored 

sample. Numerical comparisons for a real life data involving the ball 

bearings’ lifetimes and the artificial data are conducted to assess the 

performance of the parameters' estimators and the predictors of future 

ordered data using some specialized computer programs. 
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Introduction 

In the last few decades, the prediction problem of 

future lifetimes, based on a sequence of known lifetimes, 

had a great reputation among other important sciences. 

Sometimes, we may ignore some known lifetimes called 

as non effective, this term (non effective lifetimes) is 

used to denote lifetimes that are less than some 

predetermined time t. This predetermined time t may be 

determined as a lifetime that some chipset will survive 

for a small lifetime even though it has some artificial 

error. In this study, we introduce an example of some 

ball bearings lifetimes, where we will ignore the 

lifetimes which are less than other known t which is 

considered by experts to be the lifetime that a single 

ball bearing will survive with its artificial error. Based 

on the remaining lifetimes of non defective ball 

bearings, we will use the methodology that is 

introduced below to predict the future lifetimes of still 

surviving ball bearings. 

The Rayleigh distribution was first introduced by 

Lord Rayleigh (1880), it was originally derived in 

connection with a problem in acoustics and has been 

used as the distance distribution among individuals in a 

spatial Poisson process. For more details on the Rayleigh 

distribution the reader is referred to Johnson et al. 

(1994). The origin and other aspects of this distribution 

can be found in Siddiqui (1962) and Miller and 

Sackrowttz (1967). 

The Rayleigh distribution is one of the most widely 

used distributions in reliability and survival analysis 

representation of the distribution or survival function. 

The distribution has been used very effectively for 

analyzing lifetime data, mainly when the data are 

censored. This means that the Rayleigh distribution is 

very common in studying most life testing experiments. 

For more details about the Rayleigh distribution, one 

may refer to Dey (2009). Dey et al. (2014) studied 

different methods of estimation for the two parameters 

Rayleigh distribution, they proved that the Bayes 



Ghassan K. Abufoudeh et al. / Journal of Mathematics and Statistics 2016, 12 (3): 182.191 

DOI: 10.3844/jmssp.2016.182.191 

 

183 

estimator is better than other estimators. They also 

presented the best priors for the two parameters based on 

their study of the existence and non existence of 

conjugate and Jeffreys’ priors. More recent Dey et al. 

(2016) studied the Estimation and Bayes prediction 

problems using non-informative prior for the Rayleigh 

distribution under progressively type II censored data. 

Suppose n items are kept under observation until 

failure, these items could be systems, components or 

computer chips in reliability study experiments, or they 

could be patients under certain drug or clinical 

conditions and their lifetimes ( )1 2, ,..., nX X X X=
ɶ

 

following the Rayleigh distribution with probability 

density function (pdf): 
 

( ) ( ) ( )2
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, ,
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and cumulative distribution function (cdf): 
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The scale and the location parameters are λ > 0 

and µ > 0. 

For a reason or another, one may terminate the 

experiment at the r-th failure, Xr:n, so we obtain a type 

II censored sample. Here r is fixed and Xr:n, the 

duration of the experiment is random. The likelihood 

function in this case is: 
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Let X be a non-negative random variable, in many 

real life situations the random variable: 
 

| , 0Y X t X t t= − > >  
 
is denoted to the residual life random variable which is 

greater than a predetermined age t. These residual life 

data and their ordering can be effectively applied in 

reliability theory and survival analysis, they also plays 

an important role if one observes the residual lifetimes 

only. This type of data arise naturally in survival 

actuarial studies. 

Now, assume we have complete data for the residual 

lifetimes Y1, Y2,..., Yn, where Yi = Xi-t|Xi > t, i = 1, 2,..., n 

are the residual lifetimes random variables after deleting 

the non effective lifetimes. The cdf of the residual 

lifetimes variable can be calculated as: 
 

( ) ( ) ( ) ( )
( )

Pr | , 0
1

F t y F t
G y X t y X t y

F t

+ −
= − − < > = >

−
 (4) 

and the corresponding pdf is given by: 

 

( ) ( )
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, 0
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f t y
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F t

+
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−
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Taking into consideration the Rayleigh distribution, 

this leads to: 

 

( ) ( ) ( )2 2

1 , 0
t y t

G y e y
µ µλ

 + − − −−   = − >  (6) 

 

and: 

 

( ) ( ) ( ) ( )2 2

2 , 0
t y t

g y t y e y
λ µ µ

λ µ
 − + − − −  = + − >  (7) 

 

This paper discusses two points; First the computing 

of the MLEs and Bayes estimates of µ and λ under 

squared error loss function then comparing their 

performances using extensive computer simulations. 

Second considering the prediction of future order statistics 

based on type-II censored observations. Prediction of 

unobserved data is important especially in actuarial, 

medical and engineering sciences. Balakrishnan and Rao 

(1997) and Kaminsky and Nelson (1998). 

The rest of this paper is prepared as follows: In 

section 2, we estimate the MLEs for both the scale and 

the location parameters of the Rayleigh distribution. The 

Bayes estimates for the scale and the location parameters 

λ and µ, respectively, are derived in section 3. In section 

4, we introduce the Bayes prediction problem of the 

unknown data from the future sample. Numerical 

simulations and data analysis illustrating the obtained 

results, depending on both artificial and real life data, are 

included in section 5. Theoretical and numerical results' 

conclusion is introduced in section 6. 

Maximum Likelihood Estimation 

In this section, we derive the Maximum Likelihood 

Estimators (MLEs) of the parameters λ and µ from the 

Rayleigh model based on type II censored data using the 

residual life observations. Let Y1:n < Y2:n < ... < Yr:n be a 

type II censored sample of size r (1 < r < n), for 

notations simplicity we will refer yi for Yi:n. Using 

Equation 3, 6 and 7, the likelihood function is given by: 
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Differentiating the natural logarithm of the likelihood 

function with respect to λ and µ and equating the 

resulting terms to zero, we obtain: 
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and: 
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Once the MLE of µ, say µ̂ , is obtained and computed 

as a numerical solution of Equation 8, the MLE of λ, say 

λ̂ , can be obtained directly from Equation 9. For more 

details about the existence and uniqueness of these MLEs, 

Balakrishnan and Kateri (2008). 

Bayes Estimate 

For the Bayesian inference and life testing plan, we 

need to assume some prior distributions to obtain the 

Bayes Estimates (BEs) of λ and µ and the corresponding 

credible intervals based on type II censored data. When 

the location parameter µ is known, the natural choice of 

the scale parameter λ has a conjugate gamma prior 

Gamma(a, b), with pdf: 
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with the hyper-parameters a > 0, b > 0 and Γ (a) 

= 1

0

a xx e dx

∞
− −∫ . 

When the location parameter µ is unknown, the 
continuous conjugate priors do not exist and have no 
specific form, Kaminskiy and Krivtsov (2005) and 

Dey (2014). Squared Error Loss (SEL) function is 
assumed to compute the Bayes estimates. We assume 
the prior of µ, π2 (µ) with support (0,∞), for more 
details Kundu (2008). 

Location Parameter Known 

Based on a Type II censored data Y1:n < Y2:n < ... < 

Yr:n; (1 ≤ r ≤ n) and the priors of λ and µ, we obtain the 

joint posterior of λ and µ as: 
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The conditional posterior distribution of λ given µ 

and y1,..., yr is given by: 
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which is: 
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Therefore, the BE of λ, say Bayesλɶ , is readily 

concluded to be: 
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Also, the (1-β) 100% Bayesian credible interval for λ 

is given by (λL, λU) where: 
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Using Equation 11, 13 and the incomplete gamma 

function which is defined as Γ (a, c) = 

1 , 0, 0a x

c

x e dx a c

∞
− − > >∫ , we obtain: 
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Now, using a suitable numerical method to solve 

Equation 14 and 15, we obtain (λL, λU). 

Location Parameter Unknown 

Here, we explain how to obtain the BEs and the 

corresponding credible intervals for λ and µ when both 

parameters are unknown. The conditional posterior 

distribution of µ given λ and y1,..., yr is given by: 

 

( ) ( ) ( )2 1 2

1

1
| , ,...,

r

r i r a
i

y y t y
u

π µ λ π µ µ
+

=

∝ + −∏  (16) 

 

The BE of any function of λ and µ (say g (λ, µ)) is: 
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Since the expectation in Equation 17 may not be 

obtained in an explicit form, we suggest to use Gibbs 

sampling technique to generate samples from the 

conditional posterior distribution of λ and µ. The 

generated samples are used to compute BEs of λ and µ 

and also to construct credible intervals of λ and µ. The 

MCMC samples (λi, µi); i = 1, 2,... M are generated using 

the following algorithm: 

 

Step 1: Generate µ from π2 (µ|λ, y1,..., yr) using the 

Metropolis-Hasting algorithm. 

Step 2: For each µ, generate λ from π1 (λ|µ, data). 

Step 3: Repeat steps 1 and 2 M times to obtain MC 

samples {(λi, µi); i = 1, 2,...M}. 

 

The resulting samples (λi, µi) are used to approximate 

the BEs and to construct the credible intervals for the 

parameters. 

Bayes Prediction 

An important feature in Bayes analysis is the 

Bayes prediction of future data based on the current 

available sample which is also known as informative 

sample. We mainly consider the estimation of the 

posterior predictive density of the future data based on 

the current observed data. Our objective is to provide 

the prediction for the future data of an experiment 

depending on the results obtained from an informative 

experiment. Here we suggest the following method, 

we call it posterior density based method: 

Let y1 < y2 < ... < yr be the observed sample 

(informative sample) and yr+1 < yr+2 < ... < yn be the 

unobserved future sample, our goal is to predict ys, r < s 

≤ n. The posterior predictive density of ys given the 

observed data ( )1 2, ,..., ry y y y=
ɶ

 is defined as: 
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where, ( )
1| ,..,

| ,
s ry y y

g y λ µ  is the conditional density of ys 

given λ, µ and data Y
ɶ

, see for example Chen et al. 

(2000). 

Using the Markovian property of the conditional 

order statistics, David and Nagaraja (2003), the 

conditional pdf of ys given Y
ɶ

 is just the conditional pdf 

of ys given yr, (r + 1 ≤ s ≤ n). Specifically: 
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where, gr;s (yr, ys) is the joint pdf of the r-th and s-th 

order statistics from a sample of size n from the parent 

distribution G(.). One can observe that the conditional 

density of ys given yr is just the marginal density of (s-

r)-th order statistics from a sample of size (n-r) from 

the left truncated distribution of G(.) at yr. Using the 

binomial expansion, we conclude: 
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where, 
( )
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−
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. So, the posterior predictive 

density of Ys:n at any point y > yr can be written as: 
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The above form of the posterior predictive density 

function is not attractable and the predictive Bayes 

estimate cannot be obtained in an explicit form, the 

Bayes Predictor (BP) of ys under SEL function is: 



Ghassan K. Abufoudeh et al. / Journal of Mathematics and Statistics 2016, 12 (3): 182.191 

DOI: 10.3844/jmssp.2016.182.191 

 

186 

( )
( ) ( ) ( )

( )

( )

221 1

:

00 0

1

1
2 1

, | ,...,

r

r

s r n s i t y t yiBP

s n

iy

r

s r
Y c y e t y

i

y y d d dy

λ µ µ
λ µ

π λ µ λ µ

∞ ∞ ∞  − − − − + + + − − + −  

=

− − 
= − + − 

 
∑∫ ∫∫

 

 

Based on MC samples {(λi, µi); i = 1, 2,...M} obtained using the Gibbs sampling method, the simulation Bayes 

predictor is obtained to be: 
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Another important problem is to construct a two 

sided predictive interval of the order statistics ys. 

Therefore, we need to obtain the predictive survival 

function of ys which is defined as: 
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Under the SEL function, the predictive survival 

function of ys is: 
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Using the MC samples {(λi; µi); i = 1, 2,...M}, the 

simulated estimator for the predictive survival function 

is given by: 
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Now, the (1-β) 100% predictive interval of ys can be 

found by solving the following two non-linear equations 

for the lower bound (L) and upper bound (U) using a 

suitable numerical technique. Particulary: 

 

( ) ( )
1 1| ,..., | ,...,

ˆ ˆ1
2 2s r s r

P P

Y y y Y y y
S L and S U

β β
= − =  (19) 

Simulations and Data Analysis 

To illustrate the above procedures, we present the 

analysis of two data sets. The first data set is artificial 

and the second is real. The computations are performed 

using Mathematica 7, while the graphs are performed 

using Minitab. These procedures can be applied easily 

for any data set. 

Simulations 

Based on type II censored data, we report some 

numerical experiments performed to evaluate the 

behavior of the proposed methods for different sampling 

schemes and different priors. We have assumed µ = 1, λ 

= 1.5 to generate the Rayleigh residual life data at t = 

1.5. To compute the BEs under SEL function, we have 

assumed π2 (µ), the prior of µ, has gamma density 

function with shape and scale parameters c and d, 

respectively. To study the sensitivity of the variation in 

the specification of prior parameters on our Bayesian 

analysis, further MCMC simulations are performed 

using proper (informative) and improper (non-

informative) priors. The hyper-parameters values of λ 

and µ are a = b = c = d = 0, we call this prior as Prior 0. 

The proper priors on λ and µ are chosen such that the 

prior mean of λ is equal to 1 and its standard deviation is 

equal to 1 and that for µ, the prior mean is 2 with a 

standard deviation 1.414. The corresponding to these 

values are a = b = 1, c = 2, d = 1 (call it Prior 1). For the 

second proper prior (Prior 2), we assume that large 

amount of prior information is available and assign 

integer values to a, b, c and d. That is, we assume that a 

= 4, b = 2, c = 2 and d = 4 with prior means 2, 0.5 and 

prior standard deviations 1, 0.354 for λ and µ, 

respectively. In the third prior (Prior 3), we assume that 

another large amount of prior of information are 

available. The corresponding values of Prior 3 are a = 4, 

b = 3, c = 1 and d = 5. Prior 3 is more informative 

because it has smaller standard deviations than other 
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informative priors. Specifically, the prior means of λ and 

µ are equal to 1.33 and 0.2 and its standard deviations 

are equal to 0.67 and 0.2. 

In each sampling scheme, we compute the MLEs 

and the BEs for λ and µ under SEL function and 95% 

credible intervals based on 10,000 MC samples. We 

also report the average Bayes estimates, Mean Squared 

Errors (MSEs) and the coverage percentage lengths 

based on 10,000 replications. As shown in Table 1, the 

MLEs and Bayes estimates of λ and µ improve once 

more information is available (r gets large). This is 

valid for all priors suggested above. The BEs or the 

sample-based estimates are better than the MLEs of λ 

and µ (see Table 1) for all priors. If we compare 

between the BEs under Prior 0 and other priors, the 

BEs results for λ and µ using proper priors (informative 

priors) are much better than the Bayes estimates of λ 

and µ using Prior 0 (non-informative prior) according 

to the MSEs and the best prior is Prior 3 based on its 

MSEs results. As shown in Table 2, we notice that the 

average credible intervals lengths for λ and µ become 

smaller when r increases and n is fixed. It is also 

noticed that the average credible intervals lengths for 

both λ and µ under proper priors are smaller than that 

under improper prior. 

In the computations of predicted values, we 

consider both improper and proper priors under SEL 

function. Based on type II censored data, we have 

obtained the point predictors and the 95% Predictive 

Intervals (PIs) for the missing order statistics Ys, r < s 

≤ n. Based on the posterior density based method, we 

simulate the Bayes predictors for the missing order 

statistics Ys, r < s ≤ n, based on MC samples {(λi, µi); 

i = 1, 2,...,M} and M = 10,000. As shown in Table 3, 

we notice that the predicted values for the missing 

order statistics Ys are quite close to each other and the 

PIs corresponding to all four priors include the 

predicted values of the missing order statistics Ys. 

 
Table 1. MLEs and Bayes estimates with respect to SEL function based on type II censored data, when Priors 0, 1, 2 and 3 are used 

   Bayes 

   ------------------------------------------------------------------------------------------------------------------------------- 

n r Parameters MLEs (MSE) Prior 0 (MSE) Prior 1 (MSE) Prior 2 (MSE) Prior 3 (MSE) 

25 10 λ 1.3455 (0.9596) 1.3427 (0.8579) 1.3276 (0.2500) 1.32558 (0.2347) 1.1586 (0.2266) 

  µ 0.8000 (0.1406) 0.9369 (0.0878) 0.9344 (0.0690) 0.8291 (0.0686) 0.7035 (0.0197) 

25 15 λ 1.4332 (0.9491) 1.3929 (0.7070) 1.3428 (0.2290) 1.3894 (0.2025) 1.1658 (0.2061) 

  µ 0.8898 (0.0541) 0.9429 (0.0400) 0.9409 (0.0354) 0.8327 (0.0194) 0.6959 (0.0192) 

25 20 λ 1.5055 (0.5097) 1.5998 (0.0554) 1.4085 (0.2184) 1.4812 (0.1884) 1.1995 (0.1740) 

  µ 0.8981 (0.0293) 0.9505 (0.0123) 0.9461 (0.0115) 0.8617 (0.0109) 0.7321 (0.010) 

40 10 λ 1.3436 (0.8939) 1.3936 (0.8502) 1.3558 (0.2699) 1.4298 (0.2373) 1.1147 (0.2252) 

  µ 0.8878 (0.0882) 0.9210 (0.0869) 0.9454 (0.0610) 0.8356 (0.0576) 0.6823 (0.0278) 

40 20 λ 1.3836 (0.8801) 1.4324 (0.7379) 1.3610 (0.2293) 1.4533 (0.2097) 1.1280 (0.1600) 

  µ 1.1106 (0.0810) 0.9542 (0.0769) 0.9464 (0.0664) 0.8463 (0.0493) 0.6931 (0.0196) 

40 30 λ 1.4443 (0.2162) 1.4942 (0.1892) 1.4168 (0.1299) 1.4707 (0.1191) 1.1596 (0.1111) 

  µ 1.0762 (0.0311) 0.9590 (0.0294) 0.9570 (0.0275) 0.8936 (0.0187) 0.7209 (0.0037) 

Note: The first entry represents the point estimate and the corresponding MSE is given between parentheses. 

 
Table 2. Average lengths credible intervals based on type II censored data and the coverage percentages, when Priors 0, 1, 2 

and 3 are used 

   Average length of credible interval (coverage percentage) 

   --------------------------------------------------------------------------------------------------------------- 

n m Parameters Prior 0 Prior 1 Prior 2 Prior 3 

25 10 λ 3.2542 (0.95) 2.8754 (0.95) 2.8657 (0.95) 2.8589 (0.94) 

  µ 0.8893 (0.94) 0.8475 (0.95) 0.8355 (0.95) 0.8315 (0.94) 

25 15 λ 3.1785 (0.94) 2.7255 (0.94) 2.7344 (0.94) 2.7019 (0.95) 

  µ 0.8945 (0.95) 0.8335 (0.96) 0.8298 (0.95) 0.8136 (0.95) 

25 20 λ 2.9912 (0.94) 2.5574 (0.94) 2.5234 (0.96) 2.5036 (0.96) 

  µ 0.8764 (0.93) 0.8225 (0.94) 0.8178 (0.95) 0.8099 (0.95) 

40 10 λ 3.2544 (0.95) 2.8663 (0.95) 2.8247 (0.95) 2.7692 (0.95) 

  µ 0.9263 (0.95) 0.8278 (0.95) 0.8274 (0.94) 0.8146 (0.94) 

40 20 λ 3.0587 (0.93) 2.7456 (0.96) 2.7262 (0.94) 2.6938 (0.95) 

  µ 0.8944 (0.96) 0.8044 (0.96) 0.8038 (0.95) 0.7988 (0.94) 

40 30 λ 2.9542 (0.94) 2.5485 (0.95) 2.5457 (0.96) 2.5134 (0.96) 

  µ 0.8756 (0.97) 0.8001 (0.96) 0.7987 (0.96) 0.7834 (0.95) 
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Table 3. Point predictors and PIs for the missing order statistics Ys:n, r < s ≤ n 

   Predicted value (MSE) (95% PIs) 

   -------------------------------------------------------------------------------------------------------------------- 

n r Ys:n Prior 0 Prior 1 Prior 2 Prior 3 

25 10 Y11:25 0.6315 (0.0117) 0.4482 (0.0088) 0.4599 (0.0080) 0.4271 (0.0045) 

   (0.5702; 0.8122) (0.4075; 0.5638) (0.4242; 0.5608) (0.3891; 0.5366) 

  Y15:25 0.8605(0.0211) 0.6236 (0.0126) 0.6087 (0.0116) 0.6053 (0.0066) 

   (0.6543; 1.2695) (0.4742; 0.8733) (0.4816; 0.8197) (0.4816; 0.8197) 

  Y20:25 0.9122 (0.0460) 0.9122 (0.0204) 0.8537(0.0196) 0.8821 (0.0119) 

   (0.8655; 1.9539) (0.6312; 1.3742) (0.6220; 1.2092) (0.6123; 1.3132) 

  Y25:25 2.1689 (0.2181) 1.6022 (0.0235) 1.4940 (0.0214) 1.5903 (0.0178) 

   (1.2908; 3.6919) (0.97528; 2.6100) (0.9678; 1.7144) (1.1740; 1.7890) 

25 15 Y16:25 0.7765 (0.0104) 0.6771 (0.0106) 0.5957 (0.0050) 0.6456 (0.0050) 

   (0.7155; 0.9504) (0.6290; 0.8145) (0.5540; 0.7144) (0.5966; 0.7835) 

  Y19:25 0.9760 (0.0139) 0.8401 (0.0143) 0.7386 (0.0071) 0.8204 (0.0069) 

   (0.7806; 1.3223) (0.6849; 1.1043) (0.6015; 0.9843) (0.6554; 1.1060) 

  Y22:25 1.3078 (0.0228) 1.0556 (0.0145) 0.9304 (0.0111) 1.0669 (0.0101) 

   (0.9343; 1.2562) (0.7951; 1.4678) (0.7016; 1.2802) (0.7731; 1.2497) 

  Y25:25 1.9071 (0.0636) 1.5763 (0.0531) 1.4410 (0.0280) 1.6612 (0.0230) 

   (1.2258; 1.9720) (1.0451; 2.3988) (0.9300; 2.2510) (1.0680; 2.1164) 

25 20 Y21:25 1.1486 (0.0196) 0.8588 (0.0093) 0.9345 (0.0064) 0.9179 (0.0043) 

   (1.0456; 1.4337) (0.7918; 1.0420) (0.8710; 1.1085) (0.8729; 1.1133) 

  Y23:25 1.3848 (0.0246) 1.0411 (0.0126) 1.1182 (0.0117) 1.1239 (0.0107) 

   (1.1131; 1.8940) (0.8421; 1.3998) (0.9214; 1.4667) (0.8986; 1.2326) 

  Y25:25 1.9544 (0.0613) 1.4037 (0.0246) 1.5166 (0.0235) 1.5369 (0.0201) 

   (1.3199; 3.0278) (0.9804; 2.1134) (1.0736; 2.2390) (1.0563; 2.1469) 

40 10 Y11:40 0.3841 (0.0073) 0.3248 (0.0045) 0.2917 (0.0028) 0.3028 (0.0007) 

   (0.3502; 0.4833) (0.2968; 0.4041) (0.2699; 0.3546) (0.2787; 0.3624) 

  Y20:40 0.7232 (0.0212) 0.5663 (0.0109) 0.4962 (0.0064) 0.5369 (0.0016) 

   (0.5054; 1.0886) (0.4124; 0.4910) (0.3684; 0.6904) (0.3970; 0.6443) 

  Y30:40 1.1519 (0.0480) 0.8361 (0.0117) 0.7651 (0.0109) 0.8826 (0.0086) 

   (0.7729; 0.7561) (0.5584; 0.1804) (0.5462; 1.0734) (0.6011; 0.8854) 

  Y40:40 2.4033 (0.4506) 1.7479 (0.0318) 1.5421 (0.0280) 1.8414 (0.0253) 

   (1.3851; 2.5279) (1.0522; 2.1124) (0.9706; 2.3846) (1.1526; 2.1206) 

40 20 Y21:40 0.6716 (0.0099) 0.5101 (0.0024) 0.5322 (0.0022) 0.5107 (0.0015) 

   (0.6373; 0.7687) (0.4850; 0.5806) (0.5072; 0.6033) (0.4846; 0.5738) 

  Y28:40 0.8236 (0.0129) 0.6154 (0.0028) 0.6377 (0.0028) 0.6272 (0.0025) 

   (0.6926; 1.040) (0.5132; 0.7282) (0.5476; 0.7797) (0.5487; 0.7693) 

  Y35:40 1.3485 (0.0298) 1.0258 (0.0146) 1.0066 (0.0117) 1.0585 (0.0094) 

   (1.0010; 1.8677) (0.7638; 1.4080) (0.7673; 1.3371) (0.7881; 1.3412) 

  Y40:40 2.1214 (0.1077) 1.5873 (0.0198) 1.6504 (0.0146) 1.7337 (0.0113) 

   (1.3861; 3.2558) (1.0632; 1.8340) (1.1017; 2.5178) (1.1341; 2.1837) 

40 30 Y31:40 1.0139 (0.0077) 0.8308 (0.0072) 0.7774 (0.0066) 0.8041 (0.0043) 

   (0.9624; 1.1577) (0.7935; 0.9331) (0.7434; 0.8723) (0.7634; 0.8767) 

  Y34:40 1.1793 (0.0086) 0.9626 (0.0082) 0.9044 (0.0074) 0.9515 (0.0059) 

   (1.0184; 1.4607) (0.8382; 1.1745) (0.7868; 1.0973) (0.8134; 1.0837) 

  Y37:40 1.4424 (0.0122) 1.1655 (0.0115) 1.1020 (0.0103) 1.1591 (0.0089) 

   (1.1438; 1.9142) (0.9383; 1.5020) (0.8847; 1.4317) (0.9199; 1.4163) 

  Y40:40 2.0298 (0.0507) 1.6314 (0.0120) 1.5004 (0.0114) 1.6897 (0.0110) 

   (1.4286; 2.9836) (1.1660; 2.3308) (1.0668; 2.2059) (1.1545; 2.2358) 

Note: The first entry represents the point predictor, the corresponding MSE is given between parentheses and the corresponding 

predictive interval is given below between parentheses. 

 

It is also noticed that the MSEs of the predicted values 

increase when the values of r become large. This 

means that the prediction worsen when we predict 

values that are much more far from the observed 

values. Hence, the prediction of the closer values to 

the observed ones is much accurate than the prediction 

of most wider values. In terms of MSEs, the Bayes 

predictors under prior 3 work better than the Bayes 

predictor under priors 1 and 2. In fact, the MSEs of 

the Bayes predictors decrease as the standard 

deviation of the proper prior decreases and since Prior 

3 is more informative (i.e., has minimum standard 

deviation) it has the least MSEs results over the other 

priors. It can also be seen from Table 3 that our 
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results are not very sensitive to the assumed values of 

the proper prior parameters. 

Data Analysis 

In this subsection we analyze the ball bearings data 

which were originally reported by Lawless (1982, p. 

288) and represent the number of million revolutions 

before failing for each of 25 ball bearings in a life 

test. These data were studied by several authors; 

Gupta and Kundu (2001) used these data set to 

compare gamma, Weibull and generalized exponential 

models. They compare between the three distributions 

in the estimation not prediction point of view. 

Meintanis (2008) showed that the generalized 

Rayleigh distribution works quite well for these ball 

bearing data. Raqab and Madi (2011) used these data 

to estimate the two parameters of the generalized 

Rayleigh distribution and to predict the censored 

values of these data under the type II progressively 

censoring scheme. The prediction results performed 

using the method presented in this study are better 

than the results presented in Raqab and Madi (2011), 

this could be noticed if anyone compares between the 

PIs lengths of the two papers. The predicted values in 

the two papers are very close to each other. Raqab and 

Madi (2011) did not include their MSEs results but 

our MSEs results are very small which means that our 

prediction results are very accurate. 

The type II censored sample we use is as follows: 

{Xi, i = 1,..., 25} = {17.88, 28.92, 33.00, 41.52, 42.12, 

45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80, 67.80, 

67.80, 68.64, 86.64, 68.88, 84.12, 93.12, 98.64}. The 

sample consists of the smallest twenty lifetimes out of 

twenty five failure times of ball bearings in endurance 

test. In this example we propose that the 

predetermined time t is 1.5 to denote that the ball 

bearing that fails before 1.5 million revolutions has an 

artificial error. All lifetimes that are less than t will be 

deleted, in this example we consider all lifetimes 

because each of them is greater than t. As presented in 

the previous section, our interest is in the random 

variable Y = X-t. The maximum likelihood estimates 

based on the above data were determined to be µ̂  = 

0.7572, λ̂  = 0.0197. The Bayes estimates using Prior 

1 parameter values turned out to be 1ˆ P

Bayesµ  = 0.9911, 

1ˆP

Bayesλ  = 0.0223 while the Bayes estimates using Prior 3 

parameter values turned out to be 1ˆ P

Bayesµ  = 0.8947, 

1ˆP

Bayesλ  = 0.0215. Further, the 95% prediction intervals 

for µ and λ under Prior 1 are determined to be 

(0.5620; 1.4490) and (0.0138; 0.0320) while the 95% 

prediction intervals for µ and λ under Prior 3 are 

determined to be (0.6021; 1.3972) and (0.0168; 

0.0301), respectively. The Bayes point predictors and 

the 95% prediction intervals for the missing order 

statistics {Xs:n, 21 ≤ s ≤ 25} after re-parametrization, 

when Priors 1 and 3 are used, are presented in Table 5 

below. 

It is observed that all predicted values with respect 

to SEL function are ordered and fall in their 

corresponding PIs. As shown in Table 5, the MSEs 

results and the PIs lengths for Prior 3 are better than 

that of Prior 1 because Prior 3 is more informative 

than Prior 1. Further, the kernel method is used to 

present the plots of the predictive densities of Y21, Y22, 

Y23, Y24 and Y25 in Figure 1-5. 

 
Table 4. MLEs and Bayes estimates for the real data. 

n m Parameters MLEs (MSE) Bayes (Prior 1) (MSE) Bayes (Prior 3) (MSE) 

25 20 λ 0.0197 (0.0036) 0.0223 (0.0033) 0.0215 (0.0028) 

  µ 0.7572 (0.0799) 0.9911 (0.0686) 0.8947 (0.0539) 

 
Table 5. Point predictors and PIs for the missing order statistics Ys:n, r < s ≤ n 

   Predicted value (MSE) (95% PIs) 

   --------------------------------------------------------------------------- 

n r Ys:n Prior 1 Prior 3 

25 20 Y21:25 104.468 (0.0010) 103.541 (0.0008) 

   (95.788; 120.050) (98.765; 116.620) 

  Y22:25 111.228(0.0013) 109.436 (0.0012) 

   (100.176; 133.600) (99.959; 128.590) 

  Y23:25 120.250 (0.0020) 116.580 (0.0017) 

   (103.129; 150.670) (102.238; 141.600) 

  Y24:25 131.700 (0.0065) 126.370 (0.0035) 

   (107.587; 172.370) (106.199; 159.760) 

  Y25:25 151.790 (0.0124) 144.150 (0.0078) 

   (115.400; 211.200) (112.850; 195.740) 
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Fig. 1. Estimate of the predictive density function for Y21 
 

 
 
Fig. 2. Estimate of the predictive density function of Y22 

 

 
 
Fig. 3. Estimate of the predictive density function for Y23 

 
 
Fig. 4. Estimate of the predictive density function of Y24 
 

 
 
Fig. 5. Estimate of the predictive density function for Y25 
 

Conclusion 

In this article, we have studied the problem of 

estimation and prediction for the two-parameter 

Rayleigh distribution under residual type-II censored 

data. In the estimation problem, we have computed the 

maximum likelihood estimators along with the Bayes 

estimations for the model parameters. Based on the 

simulation part of the paper, we have proved that the 

Bayes estimation method is better than the maximum 

likelihood method of estimation. It is also proved that the 

Bayes estimation method under more informative priors 

is better than Bayes estimation under less informative, 

non-informative and the maximum likelihood estimation 

method. In the prediction problem, we have used the 

Gibbs and Metropolis samplers to predict the residual 
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times to failure units, Yi:n, i = j + 1, 1,..., n, that remain 

based on the last observed time. It is proved that the 

predicted values under more informative priors are better 

than the less informative and non-informative priors. 

Depending on these results, we have applied the above 

obtained results in estimation and predicting of a real life 

ball bearings data. 
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